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Abstract

This paper reports on the learning of spatial concepts in the Lg project. The chal-
lenge of designing an architecture capable of learning spatial concepts from any of the
world’s languages is first highlighted by reviewing the spatial systems of a number of
languages which differ strikingly from English in this regard. A partially structured
connectionist architecture is presented which has successfully learned concepts from
the languages outlined. In this architecture, highly structured subnetworks, special-
ized for the spatial concept learning task, feed into an unstructured, fully-connected
upper subnetwork. The system’s success at the learning task is attributed on the one
hand to the constrained search space which results from structuring, and on the other
hand to the flexibility afforded by the unstructured upper subnetwork.

*The author may be reached by e-mail as regier@icsi.Berkeley. EDU
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Figure 1: Learning to Associate Scenes with Spatial Terms

1 Introduction

The Lg project [Feldman et al., 1990; Weber and Stolcke, 1990] concerns the computational
task of acquiring natural language in the visually-based semantic domain of spatial relations
between geometrical objects. The goal is to learn to determine, for any natural language,
whether a scene description in that language is true of a particular scene. The training
data is a set of pairings of scenes with sentences in the target language, such that the
sentence is true of the scene. A significant part of this task is learning the perceptually
grounded semantics for the individual spatial terms in the language. Thus, as a subtask,
we would like to learn to associate scenes, containing several simple objects, with spatial
terms describing the spatial relations in the scene. Languages differ widely in the perceptual
features encoded in their spatial terms, making this subtask a challenging one. Examples
of this crosslinguistic variation will be discussed below.

When learning a particular spatial concept, the system is supplied with a scene, and an
indication of which object is the reference object (called the landmark, or LM) and which
is the object located relative to the reference object (called the trajector, or TR). This is
illustrated in Figure 1.

Earlier work on this subtask [Regier, 1990; Regier, 1991b; Regier, 1991a] used connec-
tionist mechanisms to learn several basic spatial terms in English and some other languages,
and handled the problem of learning the semantics for these in the absence of explicit neg-
ative instances. This paper provides an overview of the current system, including several
features not covered in the earlier papers.

2 Crosslinguistic Variation in Spatial Systems

As pointed out in [Brugman, 1983; Bowerman, 1989; Talmy, 1983], among others, languages
differ dramatically in the ways in which they express spatial relations. Several examples
of spatial systems exhibiting features which are significantly different from English are
described briefly below, to serve as an indication of the breadth of coverage the system
must exhibit.
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Figure 2: Examples of Mixtec “siki” and “§ini”

2.1 Mixtec

[Brugman, 1983] provides an overview of the Chalcatongo Mixtec spatial system, which is
based in large measure on a human and animal body-part metaphor. Thus, a trajector
above a long, wide landmark is considered to be located at the landmark’s “animal-back”,
by analogy to the dorsum of a horizontally-extended quadruped. By contrast, a trajector
above a tall, erect landmark is considered to be located at the landmark’s “head”, even
if the landmark has no actual head. This distinction is illustrated in Figure 2. Note that
both scenes would be classified as “above”, or “over”, in English. In this example, Mixtec
is picking up on a visual feature which English is not, namely the orientation of the major
axis of the landmark.?

2.2 German

Interestingly, even closely related languages can differ substantively in their spatial systems,
as pointed out in [Bowerman, 1989]. Figure 3 shows two scenes which would both be
classified as “on” in English, but which do not fall in the same category in German. In
German, the orientation of the landmark surface which supports the trajector is significant,

while it is not for English “on”.

2.3 Bengali

Figure 4 illustrates the fact that Bengali also makes a visually-based distinction which
English does not, namely, the distinction between partial and complete inclusion. The term

!Note that English is not always insensitive to this feature; it plays a role in terms such as “along”.
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Figure 3: Examples of German “auf” and “an”
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Figure 4: Examples of Bengali “moddhay” and “bhethoray”




“moddhay” is applicable in any situation in which the trajector is at least somewhat inside
the landmark, while the term “bhethoray” is reserved for those situations in which the
inclusion is complete [Ahmad, 1990].

2.4 Some Others

An exhaustive cataloging of cross-linguistic variations in spatial systems is well beyond the
scope of this paper, and indeed probably beyond the scope of any single paper. Nonetheless,
there are a number of additional phenomena from other languages which deserve mention.
Some of these are listed below.

e Dutch: the preposition “aan” (cognate with but not semantically identical to German
“an”) seems to involve a notion of hanging, such that earrings are worn “aan” the
ear, but a band-aid on one’s leg is not “aan” the leg, unless it is mostly loose, and
hanging by a corner.

e Korean: the verbs “kki-ta” and “ppay-ta” can be used only when there is a tight fit
between the landmark and trajector (e.g. a ring on a finger, a finger in a ring, a lid
on a jar, a cassette in its case) [Bowerman, 1989].

e Palestinian colloquial Arabic: the term “fawq”, usually glossed as “up” or “above”,
can also be used to refer to situations in which there is contact between trajector and
landmark provided the trajector is located high with respect to the deictic center. Thus,
one could refer to a book on top of a tall refrigerator as being “fawq” the refrigerator,
but a book lying on the kitchen table cannot be said to be “fawq” the table (that
would imply that it was hovering above the table in mid-air) [Muwafi, 1991].

3 General Approach

A partially structured connectionist network has been designed, and trained under a vari-
ant of back-propagation [Rumelhart and McClelland, 1986], to learn spatial concepts from
several of the above languages. Figure 5 illustrates the architecture of the network. While
there is a good deal of detail shown here, we can begin by pointing out two basic facts about
the network:

e Input and output: The input scene, with trajector and landmark labeled, is shown
at the bottom of the figure. The outline of the trajector is copied into the TR Bound-
ary Map, and the outline of the landmark is copied into the LM Boundary Map. These
two boundary maps are kept in register such that if they were to be superimposed,
the result would be identical to the input scene.

If the network has been trained to learn some spatial term, the output node at the
top will yield a value indicating how appropriate that term would be when describing
the relation shown in the input scene.

e Partial structuring: The network consists of three modules, marked “A”, “B”, and
“C”. Of these, “A” and “B”, the lower two, are highly structured, and were designed
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with the spatial concept learning task very much in mind. Module “C”, on the other
hand, is an unstructured module, exhibiting full connectivity between hidden layers,
as is common in connectionist networks.

This partially structured design is an attempt to capture some of the best features of
both structured and unstructured network design, namely:
— the tractabilily in learning that results from structuring, as the dimensionality of
the search space is typically dramatically reduced, and

— the flexibility that results from an unstructured, fully-connected network design.
Flexibility is clearly a critical feature of a system which must be able to adapt
itself to the spatial system of any natural language.

4 Directional Features and ©-Nodes

We consider first the structured module labeled “A”. This module is responsible for handling
directional features in the scene.
4.1 Directional Features

A number of orientations are extracted from the scene, or, in some cases, learned. These
orientations are of two types:

e Relational orientations: Orientations which describe the location of one object relative
to another. The two which are currently in use are

— Proximal orientation: The orientation of the line connecting the two objects
where they are closest to one another.

— Center-of-mass orientation (CoM orientation): The orientation of the line con-
necting the centers of mass of the two objects.

These two relational orientations are illustrated in Figure 6.

e Reference orientations: These are orientations with which relational orientations may
align. Examples are the major and minor axes of the landmark, and upright vertical.

All of the orientations mentioned above are extracted from the scene, with the exception of
upright vertical, which is learned.

4.2 0©O-Nodes

The central computation performed in this first structured module is orientation compari-
son:

How well does a given relational orientation align with a given reference orien-
tation?
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Figure 6: Relational Orientations

For example, we might want to know how well the CoM and proximal orientations align
with upright vertical. Clearly, in Figure 6, the proximal orientation is perfectly aligned with
upright vertical, while the CoM orientation is not.

All orientations in the system are represented in (sin,cos) pairs. Given this, we can
easily measure the degree of alignment of two orientations by using a Gaussian (see [Moody
and Darken, 1988] for earlier work using Gaussian nodes in a somewhat different way in
connectionist networks):

(sing — sing)? + (cosg — cos;)?

] (1)

fo(sin;, cos;) = exp [— 5
T
where (sin;, cos;) encodes the relational orientation, and (sing, cosg) encodes the reference
orientation to which it is being compared.

The node which performs this comparison is termed a ©@-node, illustrated in Figure 7.
Note that the relational orientation is supplied as input to the node, while the reference
orientation is encoded in variables internal to the node. The o4 for the Gaussian is also
kept as a variable internal to the node.

These internal variables may be trained together with the weights of the network in
which the ©-node is embedded, or may themselves be input to the node, so as to tune it
to a particular reference orientation on the fly. In the system being presented, ©®-nodes are

used in each of these two ways, as we shall see.
In order to train the internal variables of a ©-node, we need to determine the partial
derivative of the error with respect to each of these variables, i.e. 8251 788E , and aa—E
6 COSp Og

These are easily obtained once we find the partial derivative of fy (recall Equation 1) with

respect to each of the internal variables:

0fs —2(sing — sin;) @)
dsing B exp [((sine—sini)2_|;(cose—cosi)2)]O_g
%%
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Figure 7: Internal Structure of a Single ©-node
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dfs  2((sing — sin;)? + (cosg — cos;)?) (4)
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Every O-node will learn its oy, and several, though not all, will learn their reference
orientations as well (sing, cosg).

Recall Figure 5. As can be seen, module “A” contains a layer of eight @-nodes. Of these,
the leftmost four accept the proximal orientation as relational orientation input, while the
rightmost four take the CoM orientation. In addition, the major and minor axis orientations
of the landmark (marked M(LM) and m(LM), respectively) provide input to some of the
nodes. Each of these nodes will have its reference orientation set to the orientation of the
corresponding landmark axis. In contrast, the middle four nodes do not accept reference
orientation input. These nodes may train their internal variables to arrive at reference
orientations which are useful for the task.

5 Non-Directional Features and Feature Maps

5.1 Feature Maps

Returning momentarily once again to Figure 5, we now consider module “B”, which handles
non-directional features such as inclusion and contact, among others.

To begin with, notice that in this module, above the two maps that receive input from
the scene (namely the TR and LM boundary maps), there is a map labeled the LM interior
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Figure 8: Feature Map Architecture

map. This map contains a copy of the landmark with all of the interior of the landmark
activated, as well as the boundary.? The LM interior map will play a critical role in this
module.

Above the LM interior map, and receiving input from it, are two feature maps. These
are the central structural devices of this module.

The design of a single feature map is shown in Figure 8. It is simply a map of units,
with a head node at the top taking some function of the entire map; this function is either
the maximum or the average value of the nodes in the feature map.

There are three forms of structuring built into the feature map:

e Each node has a very highly localized receptive field, examining only the node directly
below in the LM interior map, and its four nearest neighbors. This yields a very simple
center-surround receptive field.

e The weights of corresponding links at different positions are constrained to be identical
(see [LeCun, 1989] for details on this technique of weight-sharing). In addition, all
links in the surround are constrained to be of the same weight. This implies that
there are actually only two weights to be adjusted for a single feature map, despite all

2This is accomplished using a simple spreading activation mechanism.



the links: that for all center links, and that for all surround links.

e Each node in the feature map is gated by the node in the corresponding position in the
TR boundary map, such that if the node in the TR boundary map is not activated,
the feature map node will not respond.

Thus, the function of a given feature map node at position 7 is

Fi=lo( Y Lw) x b, (5)

JEN()

where o is the usual sigmoidal squashing function, and N(7) is that set of visual field
positions which constitutes the neighborhood of a unit at position ¢, namely, position
together with its four nearest neighbors, as mentioned above. [; and {; are, respectively, the
LM interior map unit at position ¢, and the TR boundary map unit at the same position.

Thus, the function of a feature map unit at position ¢ is the usual sigmoid of the weighted
sum of its inputs (from ¢’s neighborhood in the LM interior map), but gated by the TR
boundary map unit at position 7. The effect of this is that whatever function the receptive
field is trained to compute, given input from the LM interior map, that function is computed
at every point in the visual field which is a part of the trajector boundary, and only at those
points.

Finally, the “head node” shown in Figure 8 computes some function over all nodes in
the feature map below it. There are currently two types of head nodes:

e Max: This node returns the maximum response over the nodes in the map below.

F = max F;

e Avg: This node returns the average response of the nodes in the map below it,
averaged over only those positions corresponding to TR boundary points.

F= [Z F;]/size(TR boundary)

By definition, F; is zero when there is no TR boundary point at ¢ (recall Equation 5).

The overall architecture shown in Figure 5 contains two feature maps, one headed by a
node returning the maximum over the map, the other headed by an averaging node.

The intuition behind having a node which takes the maximum of the responses of the
nodes in the feature map below is that there are cases in which semantically significant
perceptual features (such as contact) may occur on just a small portion of the TR boundary.
Examples of this are English “on” and German “auf”. The system should be constructed
so as to be able to respond to such localized events.

At the same time, there are also cases in which the response along the entire TR bound-
ary should be taken into account. Examples of this are the distinction in Bengali between
“moddhay” and “bhethoray” (partial vs. total inclusion), and the Korean sensitivity to
tightness-of-fit.
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The idea here is that averaging nodes will allow the system to learn “bhethoray”, for
the fraction of TR boundary points that lie within the LM gives a good indication of the
extent to which the input scene should be classified as “bhethoray”.® A node which simply
takes the maximum value of all the nodes in the feature map below would not be able to

do this.

In contrast, just a single TR boundary point lying inside the LM would be enough to
cause the scene to be classified as “moddhay”; this could be done using a head node taking
the maximum over the map below it.

5.2 Learning in Feature Maps

As mentioned above, the system is trained under a variant of back-propagation. In order
to train the weights within the feature maps, several changes to the usual back-propagation
setup were necessary. These changes are described in this section.

Learning proceeds differently for feature maps headed by Maz and Avg head nodes.

o If m is the Max head node of a feature map, the feature map nodes compete to
determine which will impose the weight changes for its incoming weight vector on the
weight vectors of the other nodes. The map node with the maximum response will
update its incoming weights, and the weight vectors for all other nodes in the map are
constrained to take the same values as those of the winner. This is done as follows:

The value 6,, = —% is computed for node m as if it were an ordinary sigmoid unit.
This value is then propagated down to each feature map node f such that 6y = ¢, for
all local feature units f in the feature map. Given this, we can compute the weight
updates for the links entering the feature map node which had the greatest response,
update its weights, and constrain the incoming weight vectors for all other feature

map nodes to be identical to that.

e Things are somewhat more complicated in the case of Avg nodes. Figure 9 illustrates
a schematized version of the structure of the map below an Avg node, here called a.
Only two feature map nodes are shown (numbers 3 and 8), and they are shown with
only two input lines each (¢ for center and p for periphery). In reality, there is a full
map of such nodes, and each has four peripheral inputs and one central one. This
version is used in order to avoid an excessively cluttered exposition.

Here, n is the number of TR boundary points, F; is the output of feature map unit ¢,
and o}, and of are the nodes in the LM interior map which connect to node ¢ via the
peripheral and central links, respectively.

Recall from the derivation of back-propagation that

oF _ OF Onet; = 8,0 (6)

B dwﬂ _871615]' awﬂ

®This of course assumes that the individual nodes in the feature map are able to learn to detect inclusion
at a given point.
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Figure 9: Learning Using Avg Nodes (see text)

where w;; projects from ¢ to j, and that

_ 0L OFE 9oy _ 0L, .
6 = 3netj_ (90]-(?71615]‘_ (?oj-f(net])' (7)

Now, for an averaging node a,

Jdo, 1
= — 8
Onet, n’ (8)
so that 9E 1
b = — —.
dog n (9)

Since the function of a is to take the average of all the nodes in the map below it, the
weights connecting the map nodes to a are all frozen at 1.0. Thus, for a feature map
node f, since —% = Y i[0rwg;], and since wyf = 1.0,

J

8E (?Of _ aOf

- — — /
Jdos Onels a(’?netf baf (nety). (10)

6y = -

This means that, if wf is the weight on the ¢th input link to feature node f,

oF of oF 1
——5 =9 t = - X — x ['(nets) x of 11
a7 = baf nets)of = =g o nety) xof, (11)
where 0{ is the output of the node feeding into input line i of the feature map node

at position f (see Figure 9).
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Gradients are computed at all feature map nodes. Finally, all weights wa are updated
according to the sum

Z‘STE;' (12)

k

Using these modifications to the usual back propagation algorithm, links within these
feature maps can be trained along with those in the rest of the network. The result is that
the head nodes of the feature maps learn to detect non-directional features such as contact,
inclusion, tightness of fit, and the like, when needed. The architecture being presented
here has two feature maps, one headed by a Max node, and one by an Avg node (recall
Figure 5).

6 The Architecture in Review

The two structured modules in the design, modules “A” and “B”, have been discussed in
detail. The design of module “C” does not merit much discussion in and of itself, as it
consists simply of standard, fully connected hidden layers of sigmoidal units, as are typical
of connectionist networks.

However, it is worthwhile mentioning the role that module “C” plays during the learning
of spatial concepts, relative to the other two modules,

The two structured modules, as mentioned, are responsible for the learning of particular
directional and non-directional features; the various output nodes of these modules will
provide an indication of the extent to which a given feature is present in the scene. Thus,
after training, we might have a ©-node (in module “A”) indicating the degree to which the
proximal orientation aligns with upright vertical, and a feature map head node (in module
“B”) indicating the presence or absence of contact.

These learned features can then be combined through module “C”, in more or less
“classic” connectionist fashion, to yield an output value. This reflects one of the central
design decisions embodied in the network: the division of labor between highly structured
feature-detecting modules on the one hand, and an unstructured feature-combining module
on the other. As mentioned earlier, the motivation behind this is the desire to capture,
in a single network, the learning tractability afforded by structuring, and the flexibility in
feature combination which results from unstructured hidden layers.

7 Results

The system was trained under quickprop [Fahlman, 1988], a variant of back-propagation
which exhibits fast convergence. Figure 10 presents a typical training set, that for the
English preposition “on”. Here, nine positive instances of “on” are presented in (a), and
nine negative instances in (b).

The system as presented has been trained on the following spatial concepts:

o English: above, in, on, outside

13
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Figure 10: Positive and Negative Examples for English “On”

e Mixtec: Sini
e German: an, auf
e Bengali: bhethoray, moddhay

e Japanese: ue ni (similar to English “above”, but insensitive to contact between TR
and LM; thus some scenes which would be classified as “on” in English are described
using “ue ni” in Japanese.)

Training was in all cases very fast, requiring under 100 quickprop epochs to attain error
rates under 0.0001.

Figure 11(a) illustrates the difference between the German term “auf” and English
“on”, by showing the system’s response, once it was trained to recognize “auf”, on a series
of positive examples of “on”. The number between 0.0 and 1.0 at the bottom of each scene
indicates how appropriate the system deems the use of “auf” for the scene. As shown here,
“auf” requires not only that the TR be in contact with (and presumably supported by) the

LM, but also that the proximal orientation be roughly upright vertical.*

Similarly, Figure 11(b) illustrates the difference between the Mixtec term “8ini” and
German “auf”, by showing the system’s response to positive examples of “auf” after it was
trained to recognize “8ini”. As reflected by the system’s response in each case here, Mixtec
“§ini” requires that the major axis of the LM be oriented vertically, while “auf” has no such
requirement.

*The notion of support, which is in fact central to English “on”, and possibly German “auf” as well, is
not currently implemented, but will be in future versions of this system.
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Figure 11: German “Auf” vs. English “On”, and Mixtec “Sini” vs. German “Auf”

Finally, Figure 12 illustrates the difference between the Bengali terms “bhethoray” and
“moddhay”, by showing the system’s response to positive examples of “moddhay” after it
was trained to recognize “bhethoray”. Recall that “bhethoray” encodes complete inclusion,
while “moddhay” encodes partial or complete inclusion. This is reflected in the examples
shown here.

8 Current and Future Work

Current work is focused on two separate tasks. The first is a constantly ongoing task,
namely the testing of the system on new spatial systems, seeing whether or not it is in fact
capable of learning them.

The second task is extending the system to handle motion. Under this extension, the
input to the system will no longer be a single scene, but rather a sequence of scenes, a
movie. Preliminary work has been completed on learning such concepts as “into” and the
motion sense of “through”, and the approach is being tested on other concepts.

One issue which arises at this point is polysemy, the phenomenon of several distinct but
related meanings for a single lexeme. For example, the English lexeme “in” may be used to
denote either static inclusion:

The ball is in the box.
or motion into a situation of inclusion, synonymously with “into”:

He walked in the room.
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Figure 12: Bengali “Bhethoray” vs. “Moddhay”

The structure of some polysemous locative terms have been worked out in detail (e.g.
[Brugman, 1981] on English “over”), and accounting for such data will be a focus of work
in the near future.

9 Conclusions

The connectionist system presented in this report was designed to learn spatial concepts
from arbitrary natural languages. It has been shown to work on a number of spatial concepts
from languages with quite different spatial systems. Ongoing work will be devoted to testing
the system on various spatial systems from the world’s languages, and extending the system
to handle motion and the resulting polysemy.

The system exhibits a partially structured architecture, with highly structured subnet-
works, designed with the spatial concept learning task in mind, feeding into an unstruc-
tured, fully-connected subnetwork. The unstructured module serves to combine the features
learned by the structured subnetworks. This partially structured design is an attempt to
capture both the tractability in learning which results from structuring, due to the reduced
size of the search space, and the flexibility which results from an unstructured design.
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