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Abstract

One of the challenges for models of cognitive phenomena is the development of ef-
ficient and flexible interfaces between low level sensory information and high level
processes. For visual processing, researchers have long argued that an attentional
mechanism is required to perform many of the tasks required by high level vision.
This thesis presents VISIT, a connectionist model of covert visual attention that has
been used as a vehicle for studying this interface. The model is efficient, flexible,
and is biologically plausible. The complexity of the network is linear in the number
of pixels. Effective parallel strategies are used to minimize the number of iterations
required. The resulting system is able to efficiently solve two tasks that are particu-
larly difficult for standard bottom-up models of vision: computing spatial relations
and visual search. Simulations show that the network’s behavior matches much of
the known psychophysical data on human visual attention. The general architecture
of the model also closely matches the known physiological data on the human at-
tention system. Various extensions to VISIT are discussed, including methods for
learning the component modules.
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level processes. For visual processing, researchers have long argued that an atten-

tional mechanism is required to perform many of the tasks required by high level

vision. This thesis presents VISIT, a connectionist model of covert visual attention

that has been used as a vehicle for studying this interface. The model is efficient,

flexible, and is biologically plausible. The complexity of the network is linear in the

number of pixels. Effective parallel strategies are used to minimize the number of

iterations required. The resulting system is able to efficiently solve two tasks that

are particularly difficult for standard bottom-up models of vision: computing spatial

relations and visual search. Simulations show that the network’s behavior matches

much of the known psychophysical data on human visual attention. The general

architecture of the model also closely matches the known physiological data on the

human attention system. Various extensions to VISIT are discussed, including
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1. Introduction

Every minute we are awake, we move our eyes in a series of rapid movements known as eye sac-

cades. Although we are usually unaware of them, saccades can occur as often as 5 to 7 times a sec-

ond. Since the fovea has a much higher resolution than the periphery, saccades let us scrutinize

interesting objects everywhere in the scene. If our retina could represent every portion of the visual

field with equal resolution, saccades would be unnecessary. We would save processing time but

would need an order of magnitude more neurons, so there is a trade-off between time and space.

Evolution has settled on saccades as a compromise.

A somewhat surprising (but experimentally well established) fact is that an analogous phenomenon

occurs within our brain. Even when there are no overt movements of eye, head, or body, we are

continually attending to different regions of the visual field. Experiments show that these covert

shifts of attention can occur as often as 15 to 20 times a second. As with saccades, there are com-

pelling efficiency arguments that explain the need for such a mechanism. This thesis presents a

computational model of this second form of attention.

I first discuss the arguments that covert attention will be a crucial component in any realisitc visual

system. I then discuss VISIT, a model of visual attention and describe a highly parallel connection-

ist network for implementing each of its component operations.The model is applied to two basic

visual tasks: the computation of spatial relations, and recognition based on feature combinations.

Attention is required to perform both of these tasks accurately in the presence of multiple objects.

To understand these processes in detail VISIT is tested on two specific tasks: computing spatial

relations among point clusters, and searching for a combination of features in cluttered scenes. The

resulting system is efficient and flexible. The complexity of the network is linear in the number of

pixels. Parallel strategies limit the number of sequential iterations required. For visual search, an

efficient search strategy, SWIFT, is used to minimize the number of fixations. As a result, the net-

work is able to solve these tasks with high resolution images.

Although the primary advantage of VISIT’s design is computational efficiency, the main inspira-

tion for the structure and function have been biological. The general architecture of VISIT matches

the known physiological data on the human attention system reasonably well. The network’s

behavior is consistent with much of the known psychophysical experiments on human attention.
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For example, there is a large body of psychological literature on visual search. VISIT combined

with SWIFT is able to account for many of the interesting recent results in this domain. I discuss

these aspects and review the literature within the framework of VISIT. I also describe possible

extensions to the architecture, mechanisms for learning aspects of the architecture, and relation-

ships to existing computational models of attention.
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2. Why Pay Attention?

“There are two criticisms of many of these neural net models. The first is that they
don’t act fast enough. Speed is a crucial requirement for animals like ourselves.
Most theorists have yet to give speed the weight it deserves. The second concerns
relationships. An example might help us here. Imagine that two letters - any letters-
are flashed briefly on a screen, one above the other. The task is to say which is the
upper one. This is easily done by older models, using the processes commonly
employed in modern digital computers, but attempts to do it with parallel
distributed processing appear to me to be very cumbersome. I suspect that what is
missing may be a mechanism ofattention. Attention is likely to be a serial process
working on top of the highly parallel PDP processes.”

- Francis Crick,What Mad Pursuit, 1988.

This chapter outlines the primary arguments for implementing an attentional mechanism. There are

two such lines of reasoning. Computational complexity arguments suggest that too much hardware

would be required for high level vision without attention. There is also a large body of psychophys-

ical evidence demonstrating that people need visual attention for certain tasks. In many cases the

complexity arguments accurately predict the experimental results, suggesting that attention should

be a fundamental component of any realistic vision system.

2.1 Computational Complexity Reasons

It is popular in the connectionist literature to use feed forward network models for vision (Goggin

et. al, 1991; Keeleret. al, 1991; Le Cunet. al, 1990; Pomerleau, 1991; Zemelet. al, 1990). Typi-

cally the input layers are clamped with an image (sometimes a pre-processed image), with each

input unit representing one pixel. The networks contain one output unit per item to be recognized.

The output unit corresponding to the object in the image should be the most active. This general

approach has certain advantages in restricted domains but breaks down when multiple objects exist
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in the image, when the image has high resolution, or when the task is sufficiently complex.

To see this, consider the nature of massively parallel visual processing. In the brain, early stages

contain individual neurons dedicated to computing local features at every image location in parallel

(see Figure 2.1). There are neurons for detecting orientation, color, motion, depth, spatial fre-

quency, etc. (Van Essen & Anderson, 1990). In terms of computation time this is a very efficient

strategy. Due to the large number of pixels in realistic images, most researchers agree that similar

parallel processing is required for computational vision. However, it is not difficult to see that this

kind of encoding quickly becomes intractable at higher levels. It is not possible to explicitly repre-

sent every possible combination of features at every location. A better strategy would be to have

one central process for detecting complex features that can be directed towards any region in the

image.

As early as 1969, Minsky and Papert presented formal proofs for these intuitive arguments (Minsky

& Papert, 1969). They showed that several simple visual predicates cannot be efficiently computed

by feed forward threshold networks. For example, they proved that the connectivity predicate (the

task of determining whether a curve is connected) requires an exponential number of weights. On

the other hand, it is easy to envision a sequential solution using curve tracing. Minsky and Papert’s

arguments prove that, in general, vision cannot be performed efficiently with a strictly bottom-up

system. More recently, Tsotsos (1990) has shown that general visual search is NP-complete without

the use of top-down information and has suggested using visual attention to render the task tracta-

ble.

Image

Orientation Color Motion

Figure 2.1. The typical feed-forward connectionist model of visual processing. A set of basic features are
computed locally in parallel at every image location. Higher-level features are computed in a hierarchical
fashion by explicitly combining lower levels features.
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2.1.1 The Binding Problem

A basic goal of vision is to identify objects based on combinations of features (e.g. a red-horizontal

bar). An immediate consequence of the complexity arguments outlined above is that this is a diffi-

cult operation to perform efficiently. Since objects can appear anywhere in the image, in any size

and shape, it is infeasible have an explicit parallel representation for every possible combination

of features at every location and scale. This dilemma is called thebinding problem and appears in

several different forms. Sejnowski refers to it as one of the fundamental open problems in neural

computation and writes: “the binding problem is a touchstone for testing network models that claim

to have psychological validity” (Sejnowski, 1986).

Obviously, people can associate feature combinations with objects, so there must be a way around

the binding problem. We know of some operations that can be performed efficiently in parallel. For

example it is possible to compute a global OR of each feature map. This operation identifies the

particular features that are present in an image. If a single object were present in the image, this

information would be sufficient to form the association. However, when multiple objects are

present this setup will suffer from interference. If two objects are present and the red global OR is

active, the system cannot identify which object is red.

Due to this interference, it is also difficult to identify the locations of individual objects when mul-

tiple objects are present. A natural solution is based on a mechanism that inhibits the representation

everywhere except at the location of interest. If such a mechanism can be constructed efficiently,

then the binding problem can be solved. A system using this mechanism can attend to individual

objects to determine their feature combinations (Figure 2.1). The location of the object can then be

determined by computing the center of mass of the active pixels.

2.2 Psychophysical Evidence

There is a large body of psychological literature on visual attention supporting the above argu-

ments. Perhaps the most pertinent to the binding problem is the work on visual search (Treisman

& Gormican, 1988). The basic experiments show that targets defined by a single feature can be

detected in constant time but that targets defined by a combination of two or more features require
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time linear in the total number of objects.1 Saccades are ruled out suggesting that internal processes

are responsible for the sequential behavior. There have also been some physiological findings rel-

evant to these experiments. The most convincing demonstration of attention is the experiment

reported in (Desimone & Moran, 1987). They recorded from cells in the visual cortex of awake,

behaving monkeys. They found that when monkeys were attending to a location in visual space,

cells in the inferotemporal cortex (IT) responded only when stimuli were presented within that

region. Cells in IT are retinotopically organized and normally respond to a large portion of the

visual field. This experiment shows that the effective receptive field of these cells can shrink to

cover only attended locations. There is a large body of research along these lines and

Chapters6 and7 discuss these experiments in much more detail. Nevertheless the basic message

is clear: visual attention exists in people and is required to perform a variety of visual tasks.

2.3 Interfacing Low and High Level Processing

The early stages of visual processing can be performed in parallel. Due to complexity reasons, later

stages seem to require a sequential component. What is the nature of the interface between the two

levels? The ease of our everyday visual experience suggests that it is efficient, flexible, and

1. There are some exceptions - see Chapter7.

Image

Figure 2.1. Inhibiting the feature maps everywhere except at a single region solves the binding
problem.

Global OR’s

Feature Maps
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includes mechanisms for top-down control. Ullman (1987) has proposed an elegant framework

along these lines. He argues for the existence of a small fixed set of visual control primitives. Given

a task specification, an intermediate system dynamically creates a sequentialvisual routine for

solving it. This would involve initiating the primitives in some order. He proposed five specific

primitives, including primitives for focusing attention, for marking locations, for spreading activa-

tion, for curve tracing, and for indexing. (Jolicoeur, Ullman, & Mackay, 1986) describe some direct

psychophysical evidence in support of this framework. They find that the time required to report

whether two stimuli lie on the same curve increases linearly with the distance between them. The

distance is not the physical distance between the stimuli on the image, but rather the distance along

the curve. The authors propose that this is due to a process which searches sequentially along the

curve.

As a step towards a neurally plausible realization of the full visual routines framework, the rest of

this thesis describes a model of visual attention and associated control structures.
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3. Implementing VISIT

The arguments favoring attention are relatively clear but constructing a feasible mechanism is non-

trivial. How can a parallel connectionist network, with its fixed set of units and interconnections,

implement attention efficiently and flexibly? The final network must be able to inhibit a topo-

graphic representation everywhere except at a single region. The size of the focus of attention

should be continuously variable to accomodate stimuli of different sizes. The network should be

able to shift the attended location dynamically. There should be a reasonable way to choose the

locations which are attended - both bottom up and top down information should be incorporated.

Mechanisms should exist for handling the control issues. The resulting system should also provide

a flexible interface to higher level recognition systems. This chapter addresses these questions and

describes VISIT1, a network for implementing visual attention.

3.1 Global Network Structure

The above requirements can be clumped into three distinct tasks: an efficient gating scheme, a flex-

ible method for choosing interesting locations, and sequential control. In VISIT separate networks

are responsible for each operation (Figure 3.1.). This makes it possible to optimize each one with-

out compromising efficiency. Thegating network is responsible for suppressing all activity except

that at a given region. The region is continuously variable and is used to limit the extent of high

level processing in the image. The locations of interest are determined separately by apriority net-

work which is free to use top-down and bottom-up information. Thecontrol network is responsible

for sequencing and for mediating the information flow between the gating and priority networks.

The model also incorporates aworking memory for the temporary storage of relevant information.

These four systems are described in the following sections.

1. A loose acronym for a network that performs VIsual Search ITeratively.
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3.2 The Gating Network

The gating network actually implements the focus of attenion. It is responsible for restricting sub-

sequent processing to an arbitrary circular region. The design is simple. The network is imple-

mented as a retinotopic layer of units, with one gate unit per pixel. Each unit encodes its position

within the image. Each unit also receives input from three external units which represent the center

and radius of the current circle of attention, (Ax, Ay, Ar). Each unit,i, computes the equation for a

circle and turns on if it isoutside the circle, i.e. if the following inequality is true:

(3.1)

where(xi, yi) refers to the position of the unit. The output of the gating network is used to inhibit

subsequent gated layers (Figure 3.2). The network continually updates the circle to reflect changes

in the activity of the 3 external units. The effect is a layer of units which filters the input image

according to a global control signal. The above scheme is simple and efficient. The hardware

required to implement it is minimal: 3 input connections per gate unit. Once the location of the cir-

cle is known, it takes one time step to update the focus.

Control Priority Network

Image

High Level Recognition

Gating
Network

Figure 3.1. General architecture of VISIT.

Representation

Working Memory

xi Ax−( ) 2 yi Ay−( ) 2+ Ar
2>
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3.3 The Priority Network

The gating network relies on a good mechanism for selecting interesting locations to visit. Psycho-

physical experiments show that in general, this computation is highly context dependent. In some

situations a bottom up method such as choosing the brightest image location is appropriate. At

other times top-down information such as prior knowledge of an important location must be used.

In VISIT, the priority network is responsible for this computation. The general idea is to create a

retinotopic map where activity is proportional to the “relevance” or priority of locations. Each loca-

tion in the priority map corresponds to a small circular region of the image. There are three units

for each location. The output of the first unit represent a priority value from 0 to 1. The priority

computation can vary with the task. The only constraint is computational efficiency.

Chapters4 and5 describe two possible schemes for computing priority.

The remaining two units are used to help the control network shift attention (Figure 3.3). These

units encode the vector difference between the center of mass of the cluster of points within their

receptive fields and the point . In this way each grid location encodes an “error vector” for

adjusting the focus of attention. These vectors are continually updated to compensate for changes

in  and . By adding the vector with the highest priority value to and , the focus of attention

can be shifted to the location of the most salient cluster in a single step.

The error vector representation is quite flexible. The control network has several options available

to it, depending on the requirements of the current task. It can decide to move the focus of attention

Figure 3.2. The gating network inhibits subsequent layers, restricting activity to a single circular
region.

Image

Gate units

AR

AX

AY

Gated layer

Ax Ay,( )

Ax Ay Ax Ay
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to the most salient or the least salient location. It can select the location nearest the current focus

by selecting the smallest error vector. To choose locations to the right, it can select a vector whose

first component is positive. Or, the control network can decide to ignore the error map completely

and move the focus according to some independent top-down information.1

It is important to note that locations in the priority map do not represent individual objects, but a

fixed small region in the image. The former requires a segregation step that in general can be quite

complex and time consuming. Since objects can vary in size and shape, it is highly unlikely that

segmentation can be performed in a simple feed-forward network. (Several psychophysical studies

suggest that even some simple aspects of object segregation may actuallyrequire attention (Treis-

man & Schmidt, 1982).) However, the representation does impose some restrictions. An object that

is larger than the receptive fields of the individual priority units could cause several of them to

become active. As a consequence, the location information provided by the error map is somewhat

coarse. To circumvent this problem we include a fine tuning mechanism as part of the control net-

work (Section 3.5.2).

1. The error vector representation was inspired by discoveries of a similar mechanism in the monkey superior
colliculus for controlling eye saccades (see Chapter6).The output of the confidence units is similar to the
saliency map in (Koch & Ullman, 1985) (see Chapter10), although in general many factors may contribute
to the saliency of a given location.

Figure 3.3. Error units. At each location, an offset vector is computed relative to the current
center of attention.

Image

Gate units

Error units

Priority map
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3.4 The Working Memory

One of the primary motivations for visual attention is the ability to compute locations of individual

objects. In our system, the location and scale can be obtained directly from the values of the units

representing , , and . Since retrieving locations is now a sequential process, we need a mech-

anism for capturing and temporarily storing these values. We accomplish this with small recurrent

networks for each value that needs to be stored. Each of these “binding” networks continually

tracks a particular unit (one of, , and ) until a control signal is sent, whereupon it freezes the

output to be the current value of the unit.

The network for doing this is shown in Figure 3.4. The two hidden units have a positive linear acti-

vation function (0 if the weighted sum of its inputs, i, is negative;i otherwise). The output unit is

linear. While the control unit is off, the hidden units compute the difference between the value of

the assigned unit and the current output, and sends it to the output unit. The left hidden unit indi-

cates when the output should be decreased whereas the right unit indicates when it should be

increased. An inhibitory connection is included from each hidden unit to itself to ensure that after

it fires, it stays off long enough to allow the output unit to adjust itself. When the control unit is

turned on, the hidden units are shut off by large negative weights. An excitatory link from the con-

trol unit to itself ensures that once the control unit has fired, it stays on, preventing further adjust-

ments. Three of these “binding networks” are used for each set of parameters that are stored.

Ax Ay Ar

Ax Ay Ar

Figure 3.4. Schematic of a binding network. The network continually tracks its input sig-
nal until a control signal is sent, at which point the output is frozen to be the current signal.

+1

-1

-∞

+1

+1

+1

-1

-1+1 -∞

-∞

-∞

Output

Input Control

Hidden UnitHidden Unit
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3.5 The Control Network

One of the most interesting aspects of visual attention is the control process. How does the system

focus on an object? How does it shift from location to location? How is it prevented from visiting

the same location twice? These issues deal with the sequential aspects of attention and are often

ignored in models. One of the contributions of this thesis is to make these processes explicit. There

are several possible approaches, but not all of them will be efficiently implementable in neural

hardware. Therefore I have tried to enforce the constraint that every aspect of the control must be

implementable as a connectionist network. This section describes the function and implementation

of these networks.

3.5.1 Computing Location

Although it is not possible to compute the locations of every object in the scene in a feed forward

network, it is possible to compute the center of mass of the entire image. When attending to a single

object, this computation will accurately localize it. This is the scheme used in VISIT (see Figure

3.6). The center of mass, , is defined as the average of the x and y coordinates of the active

Figure 3.5. A network for computing center of mass.

Y(i)X(i)1

Cx
Cy

1 2 3

4 5

Gated Image

Image

Cx Cy,( )
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points:

 and (3.2)

where  and  denote the x and y coordinates of the i’th unit and  denotes its activity.

can be computed by a unit which receives input from all gate units with a weight of 1 (unit 1 in the

figure). To compute the numerators we include two units with links to every gate unit (units 2 and

3). The weights from the i’th gate unit to each of these two units are and , so units 2 and

3 compute  and , respectively. Two units (units 4 and 5) perform the division to

obtain  and .

3.5.2 Fine Tuning the Focus

As part of the control network, VISIT includes two mechanism for fine tuning, , and  to set-

tle on the center and size of the cluster of points within the current focus of attention (Figure 3.6).

The outputs of the center of mass network is fed to two units which compute the difference between

the center of mass and the attention parameters: . The units representingand

receive this difference as input. By adding their own output to this difference, they accurately

update the focus to center on the object within it.
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Figure 3.6. The units which continually fine tune the focus of attention.
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To get an estimate of the size of the object the unit representing continually adjusts the size of

the focus to match the object within it. In the current implementation, as long as remains con-

stant, the unit decreases by a small amount. If the sum decreases, indicating that the scale has

become too small, the unit increases slightly and stops. This works well for the relatively sparse

images in this thesis. For more complex images a more sophisticated system would be necessary

for detecting when the focus has become too small.

The two mechanisms described here allow the network to accurately compute the location and

scale of the object within the focus. It is interesting to compare the temporal behavior of these

mechanisms. The center of mass computation can be performed in a purely feed-forward manner

and only requires a single shift in the focus (assuming the scale of the focus is initially larger than

the object’s size). The scale computation however is an iterative process and is typically the slowest

aspect of the network. Although it may seem that VISIT has given up slow segmentation for a slow

fine tuning process this is not a limiting factor. For many tasks object scale is unimportant so it is

unnecessary to wait for the scaling mechanism to settle. At least one psychophysical study on atten-

tion (Kramer & Johnson, 1991) shows that the scale of an object does have an impact on perfor-

mance. It would be interesting to perform experiments on human subjects to directly compare the

time for computing object locations and scale.

3.5.3 Sequencing

There is another issue to consider: as the network fixates on successive objects, we would like dif-

ferent sets of binding networks to be instantiated. To do this we need some sort of a sequencing

mechanism which will send control signals to successive binding networks. This is accomplished

by the network shown in Figure 3.6. The signal unit fires when the focus of attention has stabilized

for three iterations. The first time it fires, Cntrl-1 is activated; Cntrl-2 fires if Cntrl-1 has firedand

the signal unit has gone from 0 to 1, and so on. In VISIT, the unit “Cntrl-i” in the figure corresponds

to the control signal for thei’ th binding network. Thus on successive firings of the signal unit, suc-

cessive binding networks are frozen. The sequencing network is robust in the sense that it is insen-

sitive to delays in the signal unit’s firing pattern.

3.5.4 Shifting the Focus

In order to shift focus, the network must select the next location. This operation can be done using

top-down or bottom-up information, or some combination of the two. It is important that compu-

Ar

ai∑
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tation time is kept as short as possible. In many situations it requires a mechanism for selecting the

maximally active priority unit. This task has been studied extensively in the connectionist literature

and there are several ways to do it. The current implementation of VISIT contains a unit with a

built in max function, and assumes that the operation can be done in more or less constant time.

This is not an unreasonable assumption. Given the complex analog processing that occurs within

neuronal dendritic branches, it is quite possible that a function as complex as maximum can be

computed very quickly.

An alternate way to do this is to construct awinner-take-all network (Feldman & Ballard, 1982) a

-∞

Figure 3.6. A detailed diagram of a portion of the sequencer. The units shown above sends control signals to
the appropriate binding networks. The signal unit fires when all of its inputs are equal. The first time it fires,
cntrl-1 starts firing. The next time, cntrl-2 fires, and so on. This structure is used to send control signals to
successive binding networks.
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network in which each unit has mutually inhibitory links. If configured properly, such a network

will settle into a state where only the maximal unit is active. However these networks can take a

long time to settle, especially when the competing values are larger and very similar. It is also

seems to be quite difficult to find the correct set of inhibitory weights to create a robust solution.

With an analog VLSI implementation it may be possible to overcome some of these limitations

(Lazzaroet. al, 1989).

A more robust alternative is to construct a log-depth pyramid shaped network as in (Koch and Ull-

man, 1985) where each node computes the maximum of node values “below” it. However, since

the human visual system is dealing with a very high resolution image (about 106 pixels), there just

isn’t time for a binary log-depth network. It might be feasible if every level computed the max over

a large number of neurons. For digital implementations, an attractive possibility is the mechanism

described in (Srinivas and Barnden, 1989). Their network selects the maximum in time logarithmic

in the number ofactive units, and not the total number of units. Given that top-down mechanisms

can often eliminate many of the locations in parallel, this scheme is likely to provide a fast response

time.

Incorporating Top Down Knowledge

In a realistic system, choosing the next location will be modulated by top-down knowledge. As

mentioned before, error vectors allow a fair amount of flexibility. It is possible to pick the nearest

relevant location, locations only to the left, etc. Prior knowledge about absolute locations in the

image may also be important and should override all bottom-up information. This level of flexibil-

ity is not currently implemented, but a simple system for doing this is diagrammed in Figure 3.7.

A sub-network receives inputs specifying some general criterion for selecting the next bottom-up

Figure 3.7. A flexible architecture for selecting new locations.
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location (nearest, to-the-left-of, etc.). Based on this information it selects one of the error vectors.

This vector is fed to two more units. If top-down location information is present, then these units

will transmit it, otherwise the bottom-up error vector is used.

3.5.5 Inhibition of Return

In order to avoid oscillations, the network must have some means of preventing the focus from

shifting back to a location that was just attended. An easy way to do this is to inhibit the priority

units corresponding to the object currently being visited. A similar scheme is believed to exist in

people and has been termedinhibition of return (Posner, Cohen, & Rafal, 1982). To implement this,

we include an additional control signal that fires just before attention shifts to a new location. All

the units that are within the focus of attention shut themselves off until a subsequent reset signal.

There’s one drawback to this: sometimes the system is attending to a large portion of the image, or

even the entire scene. With the above scheme, if the network is in this state and shifts to a new loca-

tion, it might inhibit all the priority units. This is clearly undesirable and suggests that the control

signal should not be sent purely automatically, but instead should depend on the context. Interest-

ingly, recent psychophysical studies confirm this behavior in people - inhibition of return doesn’t

seem to be purely automatic but is task dependent (see Section 6.1.4).

This chapter has described a number of connectionist networks for implementing a fast and flexible

attentional mechanism. The model scales well in that the number of connections and units is linear

in the number of pixels. The model requires a small constant number of iterations to shift focus.

The next few chapters explore applications of this architecture and its relevance to biological sys-

tems.
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4. Computing Spatial Relations

This chapter describes the application of VISIT to the computation of spatial relations. Consider

the visual task of determining whether a set of three points form an equilateral triangle (Figure 4.1).

People are very good at solving this kind of problem. Standard feed-forward networks for solving

this task would not scale well to realistic image sizes. One reason for this is that local information

does not contribute to the solution: there’s no helpful information in the vertices themselves. In Fig-

ure 4.1, note that the only difference between the two images is that the top vertex has moved down

and to the right. If each vertex was a single pixel, then the Hamming distance between the images

is only two. To solve this problem, the network must extract relational information such as the dis-

tances between the vertices. The difficulties posed by this problem are common to a wide variety

of visual tasks and makes it a useful touchstone problem.

The most straightforward neural representations assign a distinct unit to each pattern that must be

classified. Unfortunately, the space of possible triangles is much too large for this kind of approach

to be biologically possible. The optic nerve consists of about a million fibers from each eye, and so

it is reasonable to consider square images which are a thousand pixels on a side. Since each of the

three vertices can occupy any of these pixels, the total number of possible triangles in such an

image is about 10006=1018. A brute force representation would require about a million times as

many neurons as we have in our entire brain for just this one task. Restricting the units to represent

just the set of equilateral triangles would still require about 1012 units. If coarse coded representa-

tions are used, these numbers can be reduced somewhat but it is still unappealing due to is lack of

generality.

Techniques have been proposed for introducing translation and rotational invariance into networks

(Giles et. al., 1987) which eliminate the need for independent feature detectors at every location.

Unfortunately these methods require that every unit have a large (quadratic) number of connections

with complicated weight linkages between them. Furthermore, positional information is lost in

these representations - one cannot directly retrieve the location and orientation of the objects in the

image.

These difficulties would disappear if we could directly extract the real valued coordinates of the

vertices, say in the activations of6 units. Using this representation it would be easy to construct



20

units which compute the distance between a pair of points. The following sections describe a sim-

ple implementation of this technique using VISIT.

4.1 VISIT and Equilateral Triangles

Figure 4.2 shows a schematic of VISIT as used to solve the equilateral triangle problem. The basic

structure of the network is as described in the previous chapter. For this simple problem, the prior-

ity map just ranks local patches according to size. The working memory consists of sets of 3 bind-

ing networks arranged in succession. Each set stores the center and radius of the focus after each

fixation. The sequencer determines which set of binding networks should store the current location.

The system starts off with the focus of attention covering the entire image plane. The fine tuning

mechanism shrinks the focus until it is wrapped around the triangle. Once it stabilizes, a control

signal is generated to store the current parameters. The error vector corresponding to the highest

priority location is chosen to shift the focus to one of the vertices. The sequencer uses successive

control signals to store the locations of the three vertices in the next three binding networks. As the

network visits each location, the corresponding error units are inhibited, preventing the system

from visiting the same location twice.

After every location has been visited, the first set of binding networks will contain the position and

scale of the triangle. The next three bindings encode the positions and scales of the three vertices

in the order that they were processed. These values are made available to a set of units each of

Figure 4.1. The left triangle is equilateral.The right one is not.
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which compute the distance between two of them. The outputs of the distance units are used to

determine equilateralness.

4.1.1 The Simulator

The simulations in this chapter used images with 256 by 256 pixels, or a total of 65,536 inputs. The

complete network consisted of 131,912 units, or a little more than twice the number of pixels.

131,072 of these were the input and gate units; the exact number of units in the priority map varied

depending on the coarseness of the map. The total number of weights was approximately 700,000,

or about 10.7 times the number of pixels. This compares rather favourably against methods which

scale quadratically where about 2564, or 4,294,967,296 weights would be required. Conversely,

given a limit of 700,000 weights, such a scheme would be restricted to 29 by 29 pixel images.

Figure 4.3 shows the graphical output of the simulator. In each display, the lower left quadrant dis-

plays the current input image (three point clusters). The upper left quadrant displays the output of

the gated image. The circle shows the implicit focus of attention represented by the three parame-

ters. In Figure 4.3(a) note that only the activity within the focus is allowed to propagate. The upper

Figure 4.2. Overall architecture of the network.

Input units

Gate units

Priority map

Working Memory

R X Y

 Attention Control

Ax, Ay, Ar

Sequencer

Distance units

Ax, Ay, Ar

R
ecognition

Binding Networks



22

Figure 4.3. Examples of the system behavior for 256x256 bitmaps of point clusters. In both displays, the lower
left quadrant shows the image; the upper left quadrant shows the output of the gate units. The error vectors are
displayed in the upper right and the outputs of selected units are shown in the lower right. (a) shows a snapshot of
the system with the focus of attention near one of the clusters. (b) shows the dynamic scaling behavior as the focus
tries to fit the cluster of points within it.

(a)

(b)
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right quadrant displays the error vectors. Each arrow represents the error vector for that location.

The shaded square represents the priority value - the darker the square the higher the priority.

Figure 4.3 (b) illustrates the fine tuning scheme on the simulator. The focus of attention is initial-

ized to a wide circle, slightly off center (dotted circle). The set of concentric bands show successive

steps as the focus of attention decreases in size and shifts its location to fit the cluster inside. Note

that the correct center is found in one step, whereas the scale computation requires several itera-

tions. Figure 4.3(b) also demonstrates the sequencer and binding networks. The bottom left quad-

rant shows the output of the sets of three binding units. The first set of units has been frozen to

(167,128,59) whereas the rest of them are still free to follow the attention parameters. If a control

signal were to be generated now, the second set would be frozen at(180,126,8) to represent the cur-

rent parameters.

4.1.2 Learning Spatial Relations

It is clear that VISIT can compute equilateralness with a linear number of weights, but there is an

additional important advantage. The system has the ability to transfer the image representation

from a pixel based representation to a highly compact one involving only locations and distances.

This allows spatial relations to belearned easily. A system using just an image based representation

will need a large number of examples to learn the correct relation. The spatial relationships that

define equilateralness will have to be discovered for each position, scale, and orientation of the tri-

angles. With a compact representation, the network can easily learn the correct function with very

few training examples.

This was demonstrated by feeding the outputs of the working memory to a backpropagation net-

work (McClelland & Rumelhart, 1986) which was used to learn to classify equilateral triangles.

The training images consisted of random triangles, approximately50% of which were equilateral.

Some noise was added around each vertex. For each image the focus of attention was initialized to

cover the entire image plane. The system was allowed to run until all the units in the priority map

were processed. The outputs of the working memory were then used to train the backprop net. The

teacher signal was generated according to:

(4.1)

where  is the length of the i’th side. This is a function which is 1 for equilateral triangles and

degrades gradually to 0 as the triangles deviate from equilateralness.

1
l1 l2− l2 l3− l1 l3−+ +

l1 l2 l3+ +
−

li
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Essentially, the network just had to learn the equality function of three of its inputs. With a training

set of only 100 triangles the network score was consistently greater than 0.9 for equilateral triangles

on independent test sets. This would be quite remarkable for a feed forward network considering

the size of the input space. Furthermore, note that due to the compact representation, the number

of required training examples is independent of the image size.

Figure 4.4 shows the state of the network after parsing two different triangles. The system correctly

classified the left triangle as being equilateral and the right one as not being equilateral. The outputs

of the binding networks show the vertex coordinates that were discovered by the network. Figure

4.5 shows a series of images from our simulator at several stages of a typical recognition sequence.

4.2 Discussion

Determining the relative locations of objects is a basic visual computation and shows up in numer-

ous tasks. These relations are inefficiently represented in a feed forward network. The point of this

chapter has been to demonstrate that with an attentional mechanism, one can efficiently extract

Figure 4.4. Results after parsing an equilateral triangle and a non-equilateral triangle. (Only the first four binding
units are used here.)
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Figure 4.5. Four steps in a typical run. (a) Determining the size and location of the whole triangle. (b) - (d) Net-
work after fixating on each of the three vertices. Note that the binding networks are updated correctly. Once all
four positions are available, the network correctly classifies the triangle to be equilateral (bottom right of (d)).

(a) (b)

(c) (d)
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such relations. The solution presented here is efficient in three different ways. The number of

weights used to solve the task is linear in the image size. The number of sequential steps is on the

order of the number of vertices and independent of the image size. Finally, the number of training

exemplars necessary to learn the function is very small and is again independent of the image size.
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5. Visual Search

What is the best way to search for an object in a cluttered scene? Consider images of the type shown

in Figure 5.1. The goal is to search for a target object specified by a combination of features (e.g.

a shaded horizontal figure). The task is a natural one for people, and for the last two decades psy-

chologists have studied visual search in detail. Their experiments have shown that even in rela-

tively simple scenes, some form of visual attention is required for the task. In fact, a significant

fraction of the psychological knowledge on attention comes from visual search experiments.

There are good computational arguments to support this evidence. Suppose the image contains one

object: a red horizontal bar. It is easy to construct a parallel network which detects this bars’ fea-

tures. With a setup as in Figure 5.2, the “red” and “horizontal” feature units will be activated at the

Figure 5.1. Sample images for visual search. In both figures, the task is to detect the
shaded horizontal rectangle.

(a)

(b)
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desired locations. We simply add one output unit per feature map. Each output unit computes a glo-

bal OR of the activity in the corresponding feature map. Since there is a single object, any activity

in the feature map must correspond to properties of that object. The values of the output units must

correspond to the features of the object.

It is also possible to recover the location of a single object in a feed-forward manner. We can simply

use the center of mass computation that was used in Chapter 4. The scheme is simple, efficient, and

works well when there is a single object.

The above methods break down for scenes containing multiple objects since features from different

objects can interfere with each other. An image containing one red object and one horizontal object

would cause the global red and horizontal detectors to both light up. For example, both Figure

5.3(a) and Figure 5.3(b) would produce the same activity. The central problem is the inability to

bind the features “red” and “horizontal” to the same location. Locations are also difficult to com-

pute due to the crosstalk between two objects. The center of mass network would simply compute

the center of mass of the whole scene.

A partial solution might include a separate detector for every possible combination of features at

every location. In addition to the basic feature detectors, every location would also contain a blue-

horizontal detector, a red-horizontal detector, and so on. A global OR of all the red-horizontal

detectors would correctly signal the presence of a red-horizontal object. This scheme has a major

Figure 5.2. Feature maps with global OR’s.
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problem - the number of units grows combinatorially. For more complex search tasks, such as

determining whether a red object appears next to a blue object, the number of units quickly become

infeasible. A second problem with this scheme is that one still cannot recover the locations of indi-

vidual objects.

Using visual attention, the natural solution is to temporarily inhibit all the activity in the image

except at a single object. In this way, the single object method described above will work. Global

red and horizontal detectors are now sufficient to detect feature conjunctions since only one object

is active at a time. The cluster detection scheme can also be used to compute the object’s location.

Such a system would attend to each object in turn until the red and horizontal detectors both fire.

5.1 Augmenting VISIT for Visual Search

Several refinements to VISIT are necessary to perform visual search. These are discussed in the

following sections. Figure 5.4 shows an overview of the network. There are two separate pathways

from the image. The left pathway contains the gating network and makes decisions local to each

object. The right pathway prioritizes image locations using top down information about the target

and bottom-up information from the image. The control network mediates the information flow

between the two. In the following sections we discuss each of the components in detail.

Figure 5.3. Both figures would induce the same activity on the global OR units.

(a) (b)
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5.1.1  The Feature Maps

Feature maps in VISIT correspond to the topographic maps computed early in the visual system.

A set of basic features (orientation, color, etc.) are detected for every location in the image in par-

allel (Figure 5.5). There is one unit for each feature at every location, organized topographically in

layers. The activity of each unit within the layer represents the presence of a basic feature in the

image at the corresponding image location. The activity of nearby units represents the presence of

the feature at nearby locations. Each feature detector transmits its signal to the gating network and

the priority network (described below). We also include a unit for each feature that computes a glo-

bal sum of the corresponding map (Figure 5.2). In the current implementation of VISIT, two colors

(red, blue) and two orientations (horizontal, vertical) are represented by feature maps. The issue of

exactly which features should be computed in this way is an active area of research. For our pur-

poses, any local feature can be included. (See Section 5.3 for more discussion on this topic.)

Figure 5.4. An overview of VISIT for visual search.
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5.1.2 The Gated Feature Maps

To recognize the individual objects, VISIT must bind the presence of features with one image loca-

tion. One possibility would be to inhibit the feature maps themselves: given(x,y,r), only the feature

units within the circle should be active. There is a problem with this scheme: when attention is nar-

rowly focussed, most of the image will be inhibited. As a result, the system will be unable to make

global decisions based on the features. This facility is critical in VISIT for efficient search. All we

really need to inhibit is the transmission of features to the recognition stage, not the entire feature

map. We accomplish this by including a gated feature map for each primitive feature. Each unit

within a gated feature map receives activation from the corresponding feature detector and inhibi-

tion from a gate unit (Figure 5.6). The net effect is that if the gated feature units fall within the circle

they mimic the output of the feature detectors. Otherwise they are inhibited.

As with regular feature maps, the network computes a global OR for each gated feature map. Thus,

to check whether an object has a certain feature combination, the network can focus on that location

and check the global OR units of the corresponding gated feature maps. Using this configuration

the network can efficiently access both local and global feature information simultaneously. There

is some psychological evidence to support this. Even when attention is highly focused, people are

able to report primitive features of objects appearing outside the focus of attention, but not combi-

nations of features (Rocket. al, 1990).

Figure 5.6. Gated feature maps.
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5.1.3 The Priority Network

The job of the priority network is to rank image locations in order of relevance. As with the equi-

lateral triangle network, a coarse coded error map encodes the saliency of image locations as well

as an error vector for updating the focus of attention. As the focus of attention shifts to successive

locations, the corresponding error units are inhibited. This prevents the focus of attention from vis-

iting the same location twice.1

The main enhancement lies in the way priorities are assigned. In the previous chapter larger point

clusters were always given higher priority than small ones. This was sufficient for sparse dot-

images, but for cluttered, realistic scenes this simple model will result in very inefficient search

sequences. Several psychophysical experiments have pointed out other possibilities. (Yantis &

Jonides, 1990) have shown that stimuli which appear abruptly are attended to sooner than persis-

tent stimuli. This can be overriden by explicitly instructing the subject to concentrate on a partic-

ular location. Experiments on visual search by (Egeth et al, 1984) suggest that objects with the

same features or form as the target object can get higher priority than other objects. (See Chapter6

for more detail.) All of this suggests a much more dynamic and flexible priority system than one

which simply ranks the locations based on pixel density.

This sort of flexibility can be incorporated into the priority and control networks without any loss

of efficiency. Within the priority network, we allow each feature map to have an independent

weight. This value represents the importance of the feature map to the current task and can be

dynamically adjusted by the control network (see below). The weights are represented as the acti-

vations of a set of units. The saliency at location(x,y), , is computed as the weighted sum:

(5.1)

where  is the weight assigned to featuref, and  is the activation of the feature unit at location

(x,y). A coarse coded saliency unit,i, in the error map computes its output as:

(5.2)

 denotes the receptive field of uniti, andF is a monotonically increasing function of its input (in

our implementation we use a sigmoid). When is 0, featuref has no effect on the locations which

are attended. This allows the system to completely shut off the effect of any feature map in parallel.

1. In a continually running system, the inhibition should decay over time so that the system can return to the
location later. In our system we simply reset the inhibition after each search.
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5.1.4 The Working Memory

The working memory is augmented to store the features of the target object once it is selected.

These features are used to set the priority levels (see below) and for recognition. Each set of bind-

ing networks now store the four feature values as well as the location. VISIT stops when the global

OR values of the current gated feature maps match these stored values exactly.

5.1.5 SWIFT: A Strategy for Setting the Priority Levels

The main difference in the control network is the sub-system, named SWIFT, which controls the

search process. The main function of SWIFT is to integrate top-down and bottom-up knowledge

to efficiently guide the search process. Since we are performing directed visual search, the network

can use previously stored information about the target object to prune the search space. Specifi-

cally, we rely on the observation that the desired object must containall the features of the target

object. Let  be the set of features attributed to the target object. Using the ability to weight feature

maps differently, the SWIFT network can, in parallel, remove the influence of all but one of the

featuresf ’  in . By setting  to 1, and all others to0, the system will only visit those locations

which contain this feature. (Hence the name SWIFT: Search WIth Features Thrown out.)1

We use a second observation to selectf ’ : since we are free to choose any feature in asf ’ , we

should setf ’ to be that feature which corresponds to the least number of objects, thus minimizing

search time. In the current simulation we use boolean feature maps, so the map with the minimal

total activity is most likely to contain the smallest number of objects. (If real valued features are

used, outputs should be thresholded before totaling.)

SWIFT, then, goes through the following sequence in guiding the search. When presented with the

target object, the network first stores all the features which belong to it. Once the image is pre-

sented, the total activity of all the feature maps are computed in parallel. The system then chooses

f ’  and sets  to be1 and all others to be0. Search then proceeds by sequentially visiting locations

in order of their saliency. As the focus of attention stabilizes on each location, an independent net-

work checks the features of the current object against the stored target representation. This contin-

ues until a match is found or there are no more active error units.

1. SWIFT was inspired by the experiments in (Egethet. al, 1984). See Chapter7.
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5.2 Network Simulations

In this section we discuss the performance of VISIT on search tasks. Figure 5.7 shows the output

of our simulator. The graphics display on the left shows various portions of the network. The bot-

tom left window depicts the image. Black regions indicate blue objects and the shaded regions indi-

cate red objects. The circle depicts the current focus of attention. In the figure, the system is

currently attending to the whole image. In the current simulations, there are four features repre-

sented. The top left window shows the outputs of the four gated feature maps. In clockwise order

from the top left they are: blue, red, horizontal, and vertical. When the focus of attention narrows

(Figure 5.8), only those gated feature units within it will respond.

The priority network is shown in the right half of the display. The bottom right window depicts

those feature maps which currently influence the priority network. In Figure 5.7 all the feature

maps are currently affecting the priority network. The top right window shows the error map. As

with the equilateral triangle network, each location in the error map contains two units for the error

Figure 5.7. Output of the simulator.
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vector and one unit for the saliency of the location. The arrows indicate the direction and magnitude

of the error vector. In Figure 5.8 note that the error vectors have compensated for the change in

focus of attention. The saliency is computed as described in Section 5.1.3 above. As the focus of

attention visits each object, the saliency unit at that location is inhibited. (Only those locations

whose saliency value is greater than .2 are shown in the display.)

The buttons on the right control various aspects of the simulation, such as loading images, stepping

through the simulation, etc. The three sliders allow the user to explicitly set Ax,Ay, and Ar using

the mouse.

When first started up, the system displays an image containing an instance of each object. The user

narrows the focus of attention to the desired target object using the sliders. The gated OR’s now

correspond to its features. The user then clicks on the “Select Object” button which causes these

values to be stored in working memory. During a search, when the network attends to an object,

the values of the memory units are compared to the outputs of the gated OR’s. If they match, then

the target has been found, otherwise the network continues searching until there are no more can-

Figure 5.8. The initial display showing all possible target objects. The user is
about to select the black vertical object as target.
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didate objects.

5.2.1 An Example Search

Figure 5.9, Figure 5.10, and Figure 5.11 demonstrate a sample search sequence for a blue vertical

item. Once the target object has been selected, the red and horizontal feature maps do not affect the

priority network (Figure 5.9). Once the search starts, only the vertical feature map continues to

influence the priority network, since there are fewer vertical objects than blue objects (Figure 5.10).

In Figure 5.11 the target has been detected.

5.2.2 Computing Search Time

Note that, with SWIFT, search times do not depend on thetotal number of objects. Since SWIFT

always searches the minimal feature map, the critical variable,M, that determines search time is:

(5.3)

Figure 5.9. Start of the search.

M min f T∈ O f( ){ }=
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wheref ranges over all the target object’s features, andO(f) is the number of objects with featuref.

In our architecture, search will always be linear inM. Note that the above equation correctly pre-

dicts the time required for the original single and conjunctive feature searches. In conjunctive fea-

ture searches (Treisman & Gelade, 1980), if the features of the distractors are chosen randomly, on

average , thus the model predicts search time that is linear inD. The interesting case occurs

during a conjunction search whenM is not related toD, in which case search time will not be linear

in D. Figure 5.12 and  Figure 5.13 illustrate this. In the four images in Figure 5.12,D remains con-

stant butM increases gradually. In Figure 5.14,M remains constant butD increases gradually.

SWIFT predicts that in the first situation reaction time should increase linearly whereas it should

remain constant in the second case.

Figure 5.14 and Figure 5.15 plot the average search time (number of fixations per image averaged

over several trials) for various combinations ofM andD. In Figure 5.14, the number of distractors

is fixed at 40 asM is gradually increased. As expected, mean search time increases linearly, with

an approximately 2:1 ratio in the slopes. In Figure 5.15, the graphs show that search time can

remain relatively flat asD increases, as long as M is held constant. Again, search times for images

Figure 5.10. A step in the search sequence.

M
1
2

D=
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with targets are approximately half that of images with no targets.

5.3 Optimizing Visual Search

5.3.1 Optimal Features for Visual Search

What are the best set of features for visual search? If SWIFT is used as a constraint, then we want

the set of features that minimizeM over all possible images and target objects, i.e. that best dis-

criminate objects.  It is easy to see that the optimal set of features should be maximally uncorrelated

and that the distribution of feature values should be uniform over the space of possible objects. In

other words, the optimal features should be the principal components of the distribution of images.

Figure 5.11. The final step in the search sequence.
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Figure 5.12. The target object in the above images is a black vertical rectangle. SWIFT predicts a linear
increase in search time from image (a) M=1, (b) M=5, (c) M=10, to (d) M=20. The total number of objects is
the same in all figures.

(a) (b)

(c) (d)
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(a) (b)

(d)(c)

Figure 5.13. The target object is again a black vertical object. In (a)-(d), M remains constant at 5 but the total
number of objects increases from 10 to 40. Target detection times should remain constant.
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It is interesting to note that a single Hebb neuron extracts the largest principal component of the

input distribution and with inhibition, sets of Hebbian neurons can extract successively smaller

components (Becker, 1991). Moreover, as some researchers have demonstrated (e.g.

Linsker1989), simple Hebbian learning can lead to features that look very similar to the features

in the visual cortex. If the early features in visual cortex are in fact the principal components, then

SWIFT is a simple strategy that takes advantage of it.

5.3.2 Detecting Feature Combinations in Constant Time

It turns out that, in this architecture, it is possible to implement a strategy which detects some con-

junctions of features in constant time. The way to do this is simple: if the task is to search for a

blue-horizontal feature, inhibit all the maps except blue and horizontal. Let the activity of the

saliency units increase monotonically as the sum of all the active feature detectors within its recep-

tive field. Then, the location with the highest activity will be the one with both blue and horizontal

detectors active. Thus, if search proceeds according to highest saliency, the network should always

discover the blue-horizontal object first, regardless of the distractors. This does not imply however

that the binding problem can be solved in a feed-forward network. The above method still requires

Figure 5.14. Search time vs M, with D=40.

M

Time
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(a)

(b)

D

Time

Time

D

Figure 5.15. Search time vs D for various values of M. (a) Target absent.
(b) Target present.
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top-down feedback to inhibit the irrelevant feature maps and still requires selective attention to

recover the object’s location. In any case, it seems possible to have an efficient, implementable

scheme which detects feature combinations in constant time.

A problem with the above scheme is that it is not very general. It does not work if the relevant

object features are not physically close together. For example, consider Figure 5.16. The target is

the trapezoid with both sides at an angle. The distractors either have the left or right side at an angle.

In this example, the distance between the relevant features may be arbitrarily increased. A strategy

which tried to determine the co-ocurrence of the two features in parallel, would need to know the

feature separation ahead of time. This can get to be quite a complex task. Note that in the figure,

the separation between the objects can be smaller than the separation between the features.

5.4 Discussion

VISIT is an implemented model and makes several strong predictions about human visual attention

and visual search. These predictions could be easily tested by appropriate experiments.

Figure 5.16. An example of conjunction search where the two features are not nearby. The target is
the trapezoid with two oriented sides. In this case, one can arbitrarily increase the distance between
the two features (the orientation of the left and right hand sides) by increasing the size of the object.

(a) (b)
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The model describes precisely how long search should take in different circumstances. In particu-

lar, when a target has at least one unique basic feature (when compared to the distractors), then

search time should be constant. It doesn’t matter whether the search is for a conjunction of several

features or for a single feature. For example searching for a blue-vertical object should always take

constant time if the distractors are all red and green horizontal objects. When the target does share

features with the distractors, then the search time should be linear in M, the number of objects

which share the least active feature in the image. Experiments which control M and D should be

able to determine whether people also use the same strategy.

To my knowledge the above experiment has not been carried out. However VISIT plus SWIFT can

help account for a large portion of the existing experimental results on attention and visual search.

In the next chapter we discuss this and other relationships with human attention.
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6. Visual Attention In People: Implementation

Much of VISIT was inspired by the psychological, and biological knowledge on attention. The next

two chapters review some of this work and its relationship to VISIT. To facilitate comparison the

text is divided into two broad topics: the mechanics of visual attention (how it is implemented), and

its use.

6.1 Psychophysical Insights Into the Implementation

6.1.1 Evidence that Attention Exists

The first experimental evidence for covert visual attention was obtained from reaction time studies

(for a review see Posner, Cohen, & Rafal, 1982). In a typical experiment, subjects are shown a dis-

play consisting of three squares. The task is to press a button as soon as the target object appears

in one of the boxes and the reaction time of the subject is measured. In some of the trials, the target

is preceded by a cue, such as one of the boxes becoming brighter (Figure 6.1). Valid cues predict

target location with a probability of 0.8; invalid cues do so with probability 0.2. The basic result is

that reaction time is significantly faster in trials consisting of a valid cue than in trials with no cue.

Figure 6.1. The subject is asked to press a button as soon as the target (in this case an “X”) appears in one
of the boxes. Response times are facilitated in trials where a predictive cue appears (i.e. in the form of a
darkened square) some time before the target.

Delay
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Reaction time is significantly slower when the cue is invalid. Saccadic eye movements are ruled

out in these experiments. This clearly demonstrates that an internal change in processing efficiency

occurs and that the effect is spatially localized.

6.1.2 How Long Does Attention Take?

By varying the delay between the presentation of the cue and the target, (Posner, Cohen, & Rafal,

1982) were able to study the speed with which attention can work. With a delay of0 msecs, there

is no cued-side advantage, but changes in reaction time can begin as soon as50 msecs after cue

presentation. By150 msecs, there is a marked improvement in efficiency. (Julesz & Bergen, 1987)

have reported similar figures - they claim that attention only takes about40 msecs. In tasks that

require multiple shifts of attention, such as visual search, figures as low as20-30 msecs have been

reported (Treisman, 1988). Given that individual neurons can only fire once every5-10 msecs, this

leaves at most4-10 sequential steps per shift. These values are quite astonishing considering that

each shift entails disengaging attention from the current location, deciding which location to visit

next, and performing the actual shift. Given these temporal constraints, each of the operations is

probably performed by separate parallel modules. In VISIT, once the location is selected, the shift

itself takes about2 or3 time steps. During visual search, new locations are selected in parallel with

the shifting process. The network’s behavior therefore is quite consistent with the above timing

results.

6.1.3 Determining which Location to Attend Next

One of the basic components of an attentional mechanism is the task of deciding which locations

to visit. There are two possible sources of information which can affect this decision: bottom-up

and top-down information. In this section I review existing knowledge about these different

sources.

Bottom Up Processing

Bottom-up information refers to the information obtained solely from the image. The literature

shows that several types of bottom up cues can attract attention. For example, an object containing

a distinctive feature often attracts attention. In addition, changes in image features are often pow-

erful cues for attracting attention. For example, in (Posner, Cohen, & Rafal, 1982), both increases

or decreases in edge intensity resulted in a cued-side advantage. (Yantis & Jonides, 1990) show that
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stimuli appearing suddenly are more likely to attract attention than persistent stimuli. Follow-up

experiments suggest that after a delay, stimuli which had appeared abruptly have the same priority

as non-abrupt stimuli, suggestive of a priority value that decays with time (Yantis & Jones, 1990).

Top Down Processing

Top down information can also have a large influence on attended locations. In (Posner, Cohen, &

Rafal, 1982), a high-level cue (such as a central arrow indicating direction) could serve to attract

attention. In addition, if a cue appears consistently on the wrong side, the subject learns through

experience to shift attention automatically to the opposite box (this takes about 300 msecs). The

experiments in (Egeth, Virzi, & Garbart, 1984) suggest that attention can be restricted to objects

containing a particular feature if the subject is told about the feature in advance. (Yantis & Jonides,

1990) provide further evidence along these lines. They report that, although abrupt stimuli seem to

have higher priority over non-abrupt stimuli, this can be overridden if the subject is already focused

on another task.

Integrating Top Down and Bottom Up Information

These experiments together illustrate a highly flexible system for deciding on the next location.

Both top-down and bottom-up information must play a role. (Yantis & Jonides, 1990) suggest a

hierarchical priority system that assigns variable priorities to spatial locations. In their scheme,

locations which are currently being attended to have higher priority than abrupt onsets which in

turn have higher priority than non-onsets.

VISIT implements a generalized version of the above hypothesis. The model has the ability to

include a default weighting of the feature maps. For example, the motion and abrupt onset maps

could be given higher priority than static maps. As in SWIFT, these weights can be dynamically

adjusted according to the situation. The actual priority levels can depend both on the target object

and the image. If top-down location information is available, the control network is free to ignore

the priority map. The default weights are used in the absence of other information. Currently there

is no mechanism for decaying priority values, but it could be added easily.

An interesting twist to these effects is discussed by (Johnston, Farnham, & Hawley, 1991). There

is a well-known phenomenon that subjects respond faster to familiar words than unfamiliar words.

In these experiments, a set of four words are flashed briefly (durations ranged from 33 msecs to 200
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msecs), masked, and a word is presented centrally; the subject’s task is to identify the location in

the first display of the cued word. It is assumed that the subject must attend to the word in the first

display in order to accurately localize it. They find that subjects are most accurate at localizing the

cued word if it is a unique novel word in the presence of familiar words, or a unique familiar word

in the presence of novel words. This effect was found even at the extremely brief duration of 33

msecs! These results suggest that a SWIFT type search strategy might even play a role for very

high-level features, such as “novelty” or “familiarity”.

6.1.4 Inhibition of return

(Posner, Cohen & Rafal, 1982) have compared the efficiency of cued locations against other loca-

tions of equal eccentricity after initial cue onset. The results suggest that attention shifts tempo-

rarily decrease the priority of locations after the initial visit. Termed “inhibition of return”, such a

mechanism is clearly useful to prevent oscillations, such as continual shifts between the two high-

est priority locations.

Interestingly, this mechanism seems to be quite selective. Inhibition of return does not occur with

central locations but seems to co-occur only with shifts to peripheral locations (Posner, Cohen &

Rafal, 1982). Experiments reported in (Rafalet. al, 1989) show that the inhibition does not occur

with endogenously generated shifts of attention (e.g. one induced by a high-level stimuli such as

an arrow) unless the subject is about to make a saccade to that location. In fact, inhibition of return

always seems to accompany a saccade. Experiments in (Klein, 1988) suggest that it is active during

serial visual search.

Although the exact conditions under which inhibition of return operates is not completely known,

overall it seems to be used in quite a sensible manner and only when the conditions require it.

Clearly it is useful for visual search. Why should it be active so predominately with eye saccades?

One answer is that saccades take much longer than covert attention (about 200-300 msecs), so the

cost of executing a saccade is relatively high. Also, due to the high resolution of the fovea, once

we have saccaded somewhere, we have a lot of information about that location. Hence there is

almost never a need to attend to such a location immediately afterwards. In fact recent experiments

indicate that the inhibition may even be relative to some external frame of reference and not the

retinal frame (Rafal, personal communication). This would allow the mechanism to integrate

smoothly with eye saccades.

VISIT currently implements a very straightforward inhibition of return, i.e. it always inhibits the
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priority units during the shift. The above rules could easily be added to the control networks.

6.1.5 The Shape of the Focus

The exact size and shape of the focus of attention is a matter of extensive debate. Spatial theories

of attention argue that attention operates on a single convex region in visual space. An example is

the “zoom-lens” model (Eriksen & Yeh, 1985). Eriksen and Yeh suggest that only one region can

be attended to at a time. This region can vary continuously in size, from being distributed over the

entire visual field to being narrowly focussed on one object. Moreover, they propose that the num-

ber of “units of information” that can be processed per unit time remains constant. Like zoom

lenses on cameras, there is an inverse relationship between the resolving power and the area of

focus.

In contrast to spatial theories, object based theories of attention argue that attention is allocated to

perceptual groups, or high-level objects, rather than a single spatial region. Thus the shape would

be determined completely by the shape of the object that is attended. As evidence to support this,

Lappin (1967) reports experiments where subjects are faster at reporting multiple properties

belonging to the same object than to different objects. This is true even when the objects are over-

lapping (Duncan, 1984), a fact that cannot be explained by a purely location based theory.

Although a detailed review of the object-based theories is beyond the scope of this thesis, it should

be pointed out that object-based theories and spatial theories of attention do not necessarily conflict

with each other. It is possible to explain all the results by postulating attentional mechanisms at the

level of both spatial representations as well as higher-order object representations (e.g. as in the

object-file model (Kahneman, Treisman, & Gibbs, 1991)). The effectiveness of high-level cues in

attracting attention (in the absence of any image cues) seems to strongly argue for the existence of

some sort of a spatial mechanism. Recent experiments show that, with appropriate controls, both

spatial proximity and grouping effects can be demonstrated (Kramer & Jacobson, 1991). The

nature of the interaction between the two forms of attention is an interesting question and currently

an open one.

6.1.6  Does Attention Move Continuously or Does it Jump?

Another area of controversy involves the question of how shifts of attention take place. (Shulman,

Remington, & McLean, 1979) reports evidence that attention moves continuously across the visual
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field. In their experiment subjects were to indicate when any one of 4 LED’s lit up. An arrow point-

ing left or right would appear, indicating that either the far-left or the far-right LED had a high

expectation of being lit. After 200-300 msecs, the responses to the far LED on the expected side

were facilitated. The main result is that responses to the near LED on the expected side were also

facilitated about 150-200 msecs after the cue appeared. This facilitation was reduced after about

300msecs. The authors suggest that the spotlight of attention starts at the location of fixation and

moves in an analog fashion towards the next fixation.

In (Remington & Pierce, 1984) however, the authors present contradictory evidence. In this paper,

they attempt to directly measure the time required to perform this shift of attention. They did this

by varying the time between the cue-onset and stimulus-onset. Their central result is that the time

seems to be constant and independent of the distance. These findings imply that, either attention

does not move in a continuous fashion or that the speed of the shift somehow increases with the

distance. Recently, Garvin Chastain (1991, personal communication) has provided further evi-

dence that attention does not move in a continuous fashion. In his experiments subjects attended to

stimuli which moved from one location to another. Response times to random probes throughout

the process was used as a measure of response efficacy at different locations. The results suggest

that during a shift, the efficacy gradually dies down at one location and simultaneously increases

in the other. The average efficacy at any time remains approximately constant suggesting that atten-

tion does not move continuously from one spot to another.

In summary, the evidence seems to favor a focus that jumps from one spot to another, although it

is by no means definitive. It is quite possible that both types exist. It is well known that eye move-

ments have two forms: continuous pursuit when the eye is following a moving object, and jumpy

saccades as when the eye fixates on a novel object (Wurtz & Goldberg, 1989). There has been

recent preliminary evidence indicating that covert attention is also used in motion computations

(see Section 7.2.4) so it is quite plausible that covert attention contains analogous smooth pursuit

and saccadic movements. VISIT currently implements a focus that jumps, although the gating net-

work is fast enough to implement either mechanism by appropriately controlling the attention

parameters.
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6.2 Physiological Insights Into the Implementation

The last ten years have witnessed an explosion in the knowledge on the physiology of vision and

visual attention. The following sections review some of this work and its relationship to VISIT1.

After visual information is processed in the retina, it is routed to two different areas of the brain

(Figure 6.5). Long axons from retinal ganglion cells form the optic nerve which terminates at the

1. A detailed review of the biology of vision is beyond the scope of this thesis. Two good books dealing with
the topics covered here are (Spillman & Werner, 1990) and (Wurtz & Goldberg, 1989). For shorter reviews
see (Van Essen & Anderson, 1990) and (Schiller, 1985).

Figure 6.2. Some of the major connections between the various visual areas. Those connections without an
arrow are known to be bi-directional.
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LGN. The optic radiation proceeds to the primary visual cortex. The LGN is part of the thalamus

(Figure 6.3 and Figure 6.4) and is the primary target of retinal axons. There are approximately one

million fibers in the optic nerve and about the same number of neurons in the LGN. There is a sec-

ond path from the retina directly to the superior colliculus. This pathway plays an important role

in orienting behaviors such as eye saccades and there is a good chance that it is also used for covert

attention.

6.2.1 LGN, V1, and V2

Each of the areas LGN, V1, and V2 form a topographic map of retinal activity, although the details

vary from area to area. The layers are connected in a roughly hierarchical fashion, with the recep-

tive field sizes increasing as one moves up the hierarchy. It is not a strict feed-forward hierarchy,

since there are pathways which skip layers (e.g. V1 to MT). Connections with other cortical areas

also tend to be bi-directional and topographic. The targets of each neuron send back projections to

the same neuron. In the LGN, some estimates place the number of returning fibers at about10 times

the number of outgoing fibers. Each cortical area also sends significant (reciprocal) projections to

the pulvinar (see below).

These areas are analogous to the set of early feature maps in VISIT. Neurons sensitive to the ori-

entation of stimuli, as well as cells selective to spatial frequency, velocity, binocular disparity,

color, length, end-stops, curvature, texture, and motion have been found in both V1 and V2 (Hubel

& Wiesel, 1968; Van Essen & Anderson, 1990). The complete set of features has yet to be deter-

mined. V1 contains about1000 times as many neurons as the LGN. Since the LGN has a roughly

Figure 6.3. A schematic of the relative locations of the various visual areas. (Adapted from (Spillman
& Werner, 1990)).
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1:1 mapping with retinal ganglion cells, there may exist hundreds of different features maps in V1

alone. It is appealing to compare physiological properties of cells with the perceptual features stud-

ied by psychophysicists. Unfortunately the mapping between the two is not always clear. For exam-

ple, some cells code for a combination of spatial frequency and orientation (De Valois & De Valois,

1988) which seems to be perceptually unnatural. There are also some discrepancies between psy-

chological and physiological findings (Treisman & Sato, 1990). Nevertheless perceptual features

are almost certainly derived from the responses of cells in V1 and V2. There are many correlations

between perceptual features and V1 cell properties, so as a first approximation VISIT models the

two as being identical.

There are a number of details which may be important in the computation of the early features but

may not have much relevance to the attention process itself. VISIT does not depend on the exist-

ence feed-back links, lateral connections, magno vs. parvo cells, or an explicit feature hierarchy.

The visual areas have many other complex tasks to perform - many of which may require these

distinctions. Examples include stereo and motion computations, segmentation, and possibly mental

imagery and learning. VISIT makes no commitments to the actual computation of the early fea-

tures - the network structure can easily utilize more complex models incorporating the above fea-

tures.

The structure of VISIT does impose the following restriction - focussed attention should not have

any local effects on the early features. VISIT relies on the ability to simultaneously access both

Figure 6.4. Enlarged view of the thalamus. (Adapted from (LaBerge, 1990)).

Pulvinar

Lateral
Geniculate
Nucleus

Reticular
Nucleus



54

global and local feature information. In particular, global information is critical in determining the

location to shift to next. As far as I am aware, this restriction is consistent with the physiological

knowledge. There have been some non-local eye-saccade related effects reported in V1 and V2

such as an overall increase in activity just before saccades (Goldberg & Segraves, 1989). No local

attentional effects have yet been seen, although people have actively looked for it (Moran & Des-

imone, 1985);

6.2.2 Areas V4 and IT

In the traditional hierarchical view of the visual system, areas V4 and IT (inferotemporal cortex)

would represent levels4 and5, after LGN, V1, and V2. There is some evidence in favor of this

viewpoint. In V4 and IT receptive field sizes continue to increase such that in IT each cell responds

to more than half of the visual field. Furthermore, as predicted by the theory, cells in IT are much

more selective in their preferred stimulus than cells in earlier areas (Desimone, 1991). For exam-

ple, some cells respond only to hands (Grosset. al, 1972) whereas some respond only to faces

(Bruceet. al, 1981), or even profiles of faces (Desimoneet. al, 1984). However, contrary to the

strictly feed-forward view, there exists strong evidence that spatial attention begins to play a major

role in these areas.

The primary evidence for this stems from Moran & Desimone (1985) who report evidence that the

effective sizes and locations of the receptive fields of neurons in area V4 and IT can change accord-

ing to the task that the animal is trying to perform. It was found that cells in V4 whose receptive

fields encompassed an attended stimulus, did not respond to unattended stimuli. They showed a

normal response to attended stimuli indicating that attention does not enhance activity but tends to

suppress unattended regions. However, the cells did respond to unattended stimuli if the attended

stimulus was outside its receptive field. Cells in IT showed similar characteristics except that they

never responded to unattended stimulus.

Lesion studies also point to a similar conclusion. Schiller and Lee (1991) examine effects of lesions

in V4 on visual capacities. Five monkeys were first trained on detection and discrimination tasks.

The tasks tested brightness discrimination, size, shape, color, pattern, motion, and stereoscopic

depth perception. These were tested in two ways: the target object could either be more salient than

the rest along the relevant dimension, or less salient. For example, the task could be to detect a

bright target among dimmer distractors, or a dim target among bright distractors. After lesions to

area V4 corresponding to the lower half of the visual field, performance was checked in regions
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that were intact and also those that were affected by the lesions. They found that the monkeys

responded much faster and with more accuracy to the more salient target than to the less salient

target when stimuli were presented in the lesioned field. With salient targets the effect was mild

and dropped off at the same rate as the normal field (as discriminability decreased). This occurred

with bright targets among dim ones, large among small, and moving among non-stationary. Sepa-

rate experiments established that there were almost no deficits in detecting singly presented targets

of any type. The authors conclude that area V4 is involved in detecting less salient stimuli, a task

that is thought to require attention.

6.2.3 Pulvinar

The pulvinar is a located in the dorsal part of the thalamus (Figure 6.3) and is strongly connected

to just about every visual area, including the areas discussed so far, the superior colliculus (SC),

frontal eye fields (FEF), and posterior parietal cortex (PP) (Robinson & McClurkin, 1989; Jones,

1985). For each projection from the pulvinar there is a corresponding reverse projection. The pro-

jections are topographic and for the most part non-overlapping. As a result the pulvinar contains

several high resolution maps of visual space. Due its central location in the network of connections,

several researchers have argued that this area of the thalamus must be involved in attention (Crick,

1984; LaBerge, 1990).

There is some fairly convincing evidence now that the pulvinar is in fact directly involved in the

gating operation. Recordings of cells in the lateral pulvinar of awake, behaving monkeys have

demonstrated a spatially localized enhancement effect tied to selective attention (Petersenet. al,

1985). When presented with a stimulus in their receptive fields, these cells show an increase in their

firing rate when the animal attends to it. This enhancement is seen regardless of whether the animal

is about to make an eye saccade to that location.

The above studies have support from alternate experimental methods. Lesion studies and PET

scans suggest that the pulvinar is involved in covert attention, particularly in the gating operation.

Patients with thalamic lesions have difficulty engaging attention and inhibiting crosstalk from other

locations (Petersenet. al, 1987). In particular, these patients responded slower to cued targets even

though there was sufficient time to attend. Lesioned monkeys give slower responses when compet-

ing events are present in the visual field (Posner & Petersen, 1990). LaBerge (1990) presents PET

scans of human subjects taken during a letter discrimination task. By varying the difficulty of the

discrimination he was able to regulate the amount of attention required. The resulting PET scans
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suggested that activity within the pulvinar is significantly increased during tasks which require

attention. LaBerge concludes that the pulvinar is involved in a filtering operation.

The above experiments are consistent with VISIT’s gating system. The pulvinar contains separate

maps representing each area it is connected to, and these areas are most active when covert atten-

tion is directed to that location. These maps could be the equivalent of VISIT’s gated feature maps.

If this is true, VISIT makes some strong predictions. If the pulvinar is damaged, then the ability to

perform feature binding should be diminished. This is supported by the above experiments. There

should also be a deficit in determining the locations of objects and computing spatial relations. In

addition, VISIT predicts that if a map in the pulvinar corresponding to a particular cortical area is

damaged, then there should be a corresponding deficit in the ability to bind those specific features

in the presence of distractors. In the absence of distractors, the performance should remain

unchanged.

6.2.4 Superior Colliculus

Like the pulvinar, the superior colliculus (SC) is a structure with converging inputs from several

different areas (Figure 6.5). The SC can be split up into two distinct sets of layers: the superficial

and deep layers. The superficial layer receives the bulk of its input directly from the retina (Huerta

& Harting, 1984; Sparks, 1986). The deep layer receives input from a variety of different sensory

modalities including visual, auditory, somatosensory, etc. There are maps for each of these modal-

ities. It is generally believed that the SC is involved in integrating location information from these

different modalities and in general orienting behavior. This is supported by the fact that the differ-

ent maps are always in spatial register, i.e. that neighboring neurons in different maps are always

referring to the same absolute spatial location (Jay & Sparks, 1984).

The deep layers of the superior colliculus contain error maps for eye saccades (Sparks, 1986).

These neurons are laid out retinotopically in clusters, but at each location the cluster activity rep-

resents a value in motor coordinates. That is, they code the direction and amplitude of the eye sac-

cade that would foveate on that spot. Thus the saccadic system just has to chose one of these

locations and transmit the corresponding vector to the oculomotor system. VISIT uses the same

representation as the error maps in superior colliculus to assist in bottom-up attentional shifts.

The superior colliculus is primarily involved in the generation of eye saccades (Wurtz & Goldberg,

1989) but it does have some relationship with covert attention. In (Posner, Cohen, & Rafal, 1982)

the authors studied patients with a particular form of Parkinson’s disease where the SC is damaged.
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These patients are able to make horizontal, but not vertical eye saccades. The experiments showed

that although the patients were still able to move their covert attention in both the horizontal and

vertical directions, the speed of orienting in the vertical direction was much slower. In addition

(Posner & Petersen, 1990) mention that patients with this damage shift attention to previously

attended locations as readily as new ones, indicating a deficit in the inhibition of return mechanism.

The deficits are consistent with the functionality of the priority map in VISIT. Psychophysical

experiments strongly suggest a linkage between the saccadic and covert attention systems (see Sec-

tion 7.3.1). Since covert attention almost always shifts to a location just prior to an eye saccade

(Posner & Petersen, 1990), it is possible that the same neural hardware serves as the basic priority

maps for both the covert attentional and saccadic mechanisms.

6.2.5 Posterior Parietal Cortex

The posterior parietal cortex contains neurons responsive to visual stimuli. It receives a significant

projection from superior colliculus and is thought to be involved in the production of voluntary eye

saccades (Andersen & Gnadt, 1989). Experiments show that it is also involved in covert shifts of

attention. Lesion studies have provided further evidence along these lines. (Posneret. al, 1984)

found that damage to posterior parietal lobe led to deficits in the ability to disengage covert atten-

tion away from a target. These functions are consistent with portions of the control network in

VISIT.

In (Mountcastleet. al, 1981) the authors tested the effect of behavioral state on light-sensitive neu-

rons in the posterior parietal cortex (area 7) in monkeys. They found that the activity of these neu-

rons increased when the animal was in a state of attentive fixation. In an earlier paper, in the context

of eye saccades they show that these neurons start firing about55 msecs before an actual saccade

(Mountcastleet. al, 1975). They proposed that the posterior parietal cortex incorporated a general

command center for oculomotor responses. (Mountcastleet. al, 1975) also found cells in posterior

parietal areas that were sensitive to thedirection of voluntary saccades, but not to spontaneous sac-

cades. One possibility is that these areas also encode a high-level priority map and that the superior

colliculus is responsible only for spontaneous shifts of attention. If these maps really are used as

priority maps for covert attention, experiments should show that they fire in the same way for vol-

untary covert shifts as for eye saccades.
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6.2.6 Other Areas

There is evidence that the frontal eye fields (FEF in Figure 6.5) are involved in saccade generation.

It is thought to have a role analogous to the superior colliculus, and is particularly sensitive to high-

resolution color stimuli (Schiller, 1985). It may also be involved in saccades to complex stimuli

(Goldberg & Segraves, 1989). The role of the FEF in covert attention is not known. However, given

the close correspondence between saccades and covert attention, a reasonable conjecture is that it

plays the same role for attention.

There is also some evidence that the pre-frontal cortex is involved in saccades (Leichnetz & Gold-

berg, 1988). Boch and Goldberg (1987) have demonstrated cells which anticipate the appearance

of stimuli. They suggest that pre-frontal cortex is involved in general goal-directed behavior. Gold-

man-Rakic (1991) has argued that pre-frontal cortex behaves as a temporary working memory for

spatial tasks. Since there is a significant projection from posterior parietal areas to pre-frontal cor-

tex, it is possible that the area is used in a similar fashion as the working memory in VISIT.

6.3 Discussion

In summary, I have tried to relate aspects of VISIT to the biological literature. For the most part

there is a nice mapping between the functionality of the various modules and the known physiology

of covert attention. Figure 6.5 displays the various visual areas again together with the proposed

relationship to VISIT’s modules. The literature is consistent with having the pulvinar as the gating

system, the superior colliculus, frontal eye fields, and posterior parietal areas as a bottom-up prior-

ity map, the posterior parietal areas as the locus of the control networks, and the prefrontal cortex

as working memory. The role of V4 and IT is not quite clear since it also seems to gate activity. It

is possible that it is an additional gating system imposed on top of the early features.

(Posner & Petersen, 1990) have proposed a slightly different hypothesis. They suggest that neurons

in parietal lobe disengage attention from the present focus, those in superior colliculus shift atten-

tion to the target, and neurons in pulvinar engage attention on it. It is interesting to compare the

two. Their hypothesis looks at the time course of an attentional shift (disengage, move, engage)

and assigns three different areas to the three different intervals within that temporal sequence. An
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implemented model such as VISIT allows us to examine the underlying computations involved.

The prediction is that all the areas are operating concurrently, and that all of them are involved dur-

ing the shift. They just have differing computational responsibilities (i.e. compute the next loca-

tion, gating, add error vector, etc.). For example, the same part of the control network is responsible

for sending the disengage, move, and engage signals to the gating system. (Actually it is just one

operation - transmit a new update vector.) While the gating network is being updated to a new loca-

tion, the priority network and portions of the control network are already computing the next

desired location. At this point the experimental work seems to be consistent with both points of

Figure 6.5. Proposed attentional functions of the different visual areas.
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view, but experiments could be designed to distinguish between the two.

By no means is VISIT intended to be a detailed physiological model of attention. Precise modeling

of even single neuron can require large amounts of computational resources. There are many phys-

iological details that are not incorporated. However, at the macro level there seems to be a reason-

able fit between the individual modules in VISIT and the known functionality of the different areas.
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7. Visual Attention In People: Function

Understanding when visual attention is needed is as important as understanding its implementa-

tion. As yet there is no rigorous theory for predicting which tasks require attention, but in general

there is good agreement between computational complexity arguments and the experimental

results. The following sections review experimental work on determining which tasks require

attention in people.

7.1 Visual Search

Over the past decade, visual search has been one of the most active areas of psychophysical

research. There is strong evidence that a serial search using covert attention is required for some

search tasks, whereas others require no such effort. This dichotomy makes visual search an ideal

domain for studying how and why attention is used. Most of the experiments are aimed at uncov-

ering the boundary conditions for these two modes. The following sections review some of this lit-

erature and its relationship to VISIT.

7.1.1 Single vs. Conjunctive Feature Search

In (Treisman & Gelade, 1980) the authors suggested that search for a target defined by a conjunc-

tion of features requires serial search, whereas single feature search does not. In their experiments,

subjects were shown displays as in Figure 7.1 and Figure 7.2 and asked to detect the presence of a

pre-defined target object (e.g. a shaded horizontal bar). They found that if the target is different

from the distractor objects by a single feature (as in Figure 7.1), reaction times did not increase with

the total number of objects. Conversely if a combination of two features is required (as in Figure

7.2), then reaction times did increase linearly with the total number of objects. In addition for con-

junctive feature search, the slopes for target absent trials were approximately twice that of target

present trials. They concluded that this was evidence for a search process that terminated as soon
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as the target was detected.

VISIT together with SWIFT accounts for the above results. When a feature of the target is not

present in any of the other objects, SWIFT will always pick that feature map as the minimal feature.

The target object will always be found on the first fixation, regardless of the number of objects in

the image.  (This corresponds to the case where M=1 in Figure 5.15). In conjunction search, if the

distractors are chosen randomly, then on average each feature map will contain the same number

of objects. Regardless of the map chosen by SWIFT, M will be about one half of the number of

distractors, so the search time will increase linearly with the number of objects.  Since the search

is self-terminating, the ratio of the slopes for the target absent and target present cases will be

approximately2:1.

7.1.2 Search Asymmetries

There is another search paradigm where constant and linear time searches have been reported.

Searching for a line oriented18o among vertical lines can be done in constant time, but searching

(a)

(b)

Figure 7.1. Single feature search. Target is a red (shaded) rectangle.



63

for a vertical line among these oblique lines takes linear time (Treisman & Gormican, 1988). This

asymmetry is explained by assuming that the early representation includes a finite number of ori-

entations that are coarse coded, with units for vertical and some orientation greater than18o. Each

oblique line is represented as a combination of activity in the vertical map and the map coding the

successive orientation. Consider Figure 7.3(a), a pattern containing a single oblique line among a

field of vertical lines. This image will cause several regions of activity in the vertical map but only

a single region of activity in the other map. The presence of the oblique line can therefore be

detected in constant time by computing a global OR. The opposite is true in Figure 7.3(b), an image

of a vertical line among several oblique lines. This will generate several active regions in both maps

except at one location, where only the vertical map is activated. In this case, the network must bind

the presence of activity in one map with the absence of activity at the same location in another map.

This requires serial search.

Similar asymmetries are present when detecting curvature, circles vs. ellipses, single vs. paired

lines, etc. These can be explained as search for the presence of a feature vs. search for the absence

of a feature. In fact, Treisman and Gormican (1988) argue that search asymmetries can be used as

(a)

(b)

Figure 7.2. Conjunctive feature search. Target is a rectangle that is red
(shaded) and horizontal.
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a litmus test for features. In all of these cases, a central question is: how does the brain know what

to do? The subject has no knowledge about his/her internal representations. Just knowledge about

the target object is insufficient - the map that is searched depends on the particular image. The

answer is simple if SWIFT is used: searching the map with the least total activity will always pro-

duce the correct results.

7.1.3 Evidence for an Efficient Search Strategy

Restricting Search to Objects with a Single Feature

In (Egeth, Virzi, & Garbart, 1984) the authors contest the claim that for conjunctive search, atten-

tion must be directed serially to each stimulus in the display. They argue that subjects can restrict

search to those objects that have the same color or form as the target object. In the main experiment,

subjects had to search for a red O among black O’s and red N’s. The number of red objects was

held constant at 3 while the number of black O’s was varied, analogous to Figure 5.13. The subjects

were either told to attend to red objects or to O’s. Reaction times for the attend-to-red subjects were

flat in the number of total distractors for both target-present and target-absent conditions. In the

attend-to-O case, the reaction times were flat for the target-present case.

These results are consistent with VISIT’s ability to weight individual feature maps. SWIFT search

suggests that these results would hold even if the subjects were not explicitly informed of the cor-

Figure 7.3. It takes less time to detect an oblique line among vertical lines (a) than to detect a vertical line
among oblique lines (b).

(a) (b)
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rect feature. Some evidence for this was found in a second experiment in the paper, although it was

not designed to test this strategy. Experiments along the lines of the simulations in Figure 5.14 and

Figure 5.15 would help to clarify this issue.

Triple Conjunction Search

Search for an object defined by a conjunction of three features results in several different search

slopes (Quinlan and Humphreys, 1987). There were two situations that were tested: (a) every dis-

tractor shares exactly one feature with the target object, or, (b) every distractor shares exactly two

features with the target. Both cases resulted in sequential search, but the slope in (b) was always

steeper than the slope in case (a). The same results would be obtained by SWIFT. In case (a), on

average the minimal feature will eliminate of the distractors. In (b), only would be eliminated

on average. Thus SWIFT predicts that the slope in (a) should be about half that of (b).

Effect of Irrelevant Features

Treisman (1988) has tested single feature search where the distractors are not homogeneous. In one

case the distractors varied in the relevant dimension (e.g. searching for a red target among multi-

colored objects). In the second case the distractors varied along irrelevant dimensions (e.g. search-

ing for a red target among objects of differing orientations and size, but constant color). The main

result was that the first case resulted in serial search whereas the second case resulted in constant

time search. This is consistent with the network. Feature maps are likely to be coarse coded, so

variation within a dimension will cause the minimal feature map to have more than one spot of

activity. This would necessitate a scan through the objects. Variation in irrelevant dimensions how-

ever should cause no activity in the relevant feature map, so SWIFT search will always locate the

target in one step.

7.1.4 Fast Conjunction Search

Large Variances in Search Slopes

In (Cave & Wolfe, 1990) and (Treisman & Sato, 1990) the authors reported that search slopes could

vary by a large amount across subjects. Conjunction searches of color and form produced wide

variances. The slopes for some subjects were almost flat, whereas others were quite steep. Single

feature searches produced consistently flat slopes. A difficult search task (such as search for a ran-

2
3

1
3
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domly oriented T among randomly oriented L’s) produced consistently steep slopes.

Conjunction Search in Constant Time

Some authors have reported conjunctive searches which always result in flat slopes. (McLeod,et.

al, 1988) report that the detection of a moving X among static X’s and moving O’s can be done in

parallel.1 (Nakayama and Silverman, 1986) tested conjunction searches using the features color,

motion, and depth. They found that motion-color conjunctions required serial processing, whereas

depth-color and depth-motion conjunctions could be processed in parallel.

Recently (Treisman & Sato, 1990) and (Wolfe, Cave & Franzel, 1989) have suggested models

where conjunctions can be detected in constant time with top-down information. Treisman and

Sato suggest that if the features that arenot present in the target inhibit the priority map then a loca-

tion containing the conjunction of two features would retain the highest priority. Wolfe, Cave, and

Franzel suggest an analogous mechanism using excitation instead of inhibition (see Section 10.1.2

for a review). Both of these suggestions can be modeled in VISIT by setting the feature weights

appropriately (as discussed in Section 5.3.2). As mentioned before, this strategy is not very general.

An equally serious problem is that it cannot explain serial search. If people can use such a general

strategy for detecting feature combinations, why don’t we get constant time search for all feature

conjunctions? People only produce constant time search for very specific feature combinations, a

fact that cannot be explained by the above mechanisms. (Cave & Wolfe, 1990) have suggested that

this is due to varying amounts of noise in the system. There is no adequate explanation for the

source of this noise, or why it should vary across individuals and across features.

Both of the above sets of results can be explained by VISIT with two assumptions: 1) that certain

feature combinations are in fact represented explicitly, and 2) that these feature combinations are

learned through experience. If such combinations are present, then the relevant map would have a

single spot of activity so SWIFT would select it as minimal and locate the target in a single step.

Since the features can be learned through experience, the particular combinations represented

would vary from individual to individual.

1. Although, in what seems to be a direct contradiction to this result, (Treisman and Sato, 1990) report that
conjunctions of motion and orientation produced thesteepest slopes in their subjects.
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Both assumptions have some evidence to support it. For example, it is known that area MT contains

cells which are tuned to both direction of motion as well as orientation (Van Essen & Anderson,

1990). Karni & Sagi (1990) have shown that through training, adults can learn to improve their dis-

crimination of certain features, and that this learning is retinally localized. (Shiu & Pashler, 1991)

have further shown that learning of features is sometimes dependent on the cognitive state of the

individual, and not just on the retinal inputs. Thus it is quite plausible that certain feature combi-

nations are partially hard-wired in some people but not in others. For example, someone who is

active in outdoor sports may well encode different high-level visual features than someone who

spends most of their time indoors.

7.1.5 Effect of Perceptual Grouping on Search

A more puzzling phenomenon is the effect of perceptual groups on visual search. It is quite clear

that the overall scene organization can have a dramatic impact on reaction time (Humphreys, Quin-

lan, & Riddoch, 1989; Treisman & Sato, 1990). A simple example of this can be seen in Figure 7.4,

where the distractors clearly form a coherent group, separate from the target. Even though the task

is a conjunction search, the total number of distractors have no effect on search time.

There is no explicit mechanism in VISIT to deal with these situations. In the current implementa-

tion, once the minimal feature is chosen, objects are just prioritized based on their size. Presented

with the image in Figure 7.4, VISIT will simply go through its usual search sequence. To account

for the perceptual grouping results, the system needs a smarter strategy for ranking image loca-

tions. As a first approximation, one might use multiple-scale spatial frequency detectors. (Neurons

coding for spatial frequency are known to exist in V1 (De Valois & De Valois, 1988).) In Figure

7.4, a low frequency feature map would have less activity in the right half of the image, indicating

Figure 7.4. Example of grouping effects in visual search. Even though this is a con-
junction search, people will find the target (shaded horizontal bar) in constant time.
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that the region probably contains a smaller group. A modified SWIFT strategy might therefore pick

locations based on low activity in low-spatial frequency maps. The prediction based on such a strat-

egy would be that people always check the smallest group first. This would predict that search

should be hindered if the target isnot in the smaller group (as in Figure 7.5). Although it is unlikely

that this specific search strategy is used by people, experiments which control for some of these

factors can help pin down the underlying computations.

7.2 Recovering General Scene Properties

7.2.1 Feature Binding

As the binding problem suggests, one of the basic tasks that should require attention is the associ-

ation of a combination of features with one object. The visual search experiments provide some

support for this argument. In addition (Treisman & Schmidt, 1982) present some direct evidence.

Subjects were shown an image containing two letters of different colors. When the exposure time

was very short, subjects would often switch the colors of the two objects. These “illusory conjunc-

tions” did not occur when there was sufficient time to focus. It has also been shown that prior

expectations can eliminate these effects (Treisman, 1988). For example subjects do not switch fea-

tures if it leads to a nonsense assignment. VISIT is consistent with this. When attention is diffused

over more than one object, the network cannot associate the active features with any one object. If

Figure 7.5. The target is now  part of the larger group. The prediction is that search should
now be hindered by elements in the smaller group of objects.
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a higher level system tried to force such an association, then illusory conjunct errors would occur.

7.2.2 Computing Location

The binding problem also suggests that in the presence of multiple stimuli, computing the locations

of individual objects should be affected. There is some evidence for this in the literature. In a

review article (Wise & Desimone, 1988) mention that, even with voluntary effort, when presented

with multiple targets simultaneously, the first eye saccade lands at an intermediate position. This is

consistent with the notion that attention is required to individuate the locations of multiple objects.

As further support, studies on visual search have shown that identification of a target is highly cor-

related with its accurate localization (Treisman & Gelade, 1980; Johnston & Pashler, 1990).

7.2.3 Computing Spatial Relations

Complexity arguments outlined in Chapter 4 suggest that computing spatial relations should

require attention. The experimental evidence for this is not completely clear. (O’Connell & Treis-

man, 1991) have recently done some experiments along this line. They show that oriented dot pairs

can pop out in a field of horizontal dot pairs. The result holds even if the dots are of different colors.

On the other hand, oriented bi-constrast dot-pairs (pairs of black and white dots on a grey field) do

not pop out. In this experiment, all the dot-pairs were close together in space. Computationally it

may not be too expensive to explicitly represent some small number of relations formed by nearby

objects. The fact that bi-contrast pairs do not pop out indicates that all such relations are not com-

puted in parallel.

What about relations formed over arbitrary spatial scales? The equilateral triangle arguments

suggestthat attention is required to detect equilateralness with dot-triangles. This is due to the lack

of local information. Interestingly, this argument predicts that detecting equilateralness for trian-

gles made up of solid lines (Figure 7.6 (a)) can be done in parallel. This is because one simply has

to check whether all angles are 60o. If angles are represented pre-attentively, then solid line trian-

gles should not require attention. The prediction would be that triangles as in Figure 7.6 (b) should

take a longer time to process than those in Figure 7.6(a). Dot-squares (Figure 7.6 (c)) should take

longer still, since one needs to attend to all four points.

Recovering more complex relations clearly requires some form of sequential processing, probably

utilizing attention. Good examples are tasks like determining, in an image containing squares and
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circles, whether there is a square next to the second largest circle (Mahoney, 1987). It is highly

unlikely that we have feed forward networks for computing such predicates.

7.2.4 Computing Motion

There has been some recent evidence that covert attention is involved in the computation of

motion. A simple demonstration of this is outlined in Figure 7.7. A black dot is drawn on the

screen, and then, after some delay a line is flashed up. If the delay is long enough (100 msecs is

plenty), then there is a clear perception that the line was drawn from the box outwards (in this case

from the left to the right). With no delay, the line appears to be drawn instantaneously. The expla-

nation in terms of visual attention is simple: when the black box is flashed up, it naturally attracts

attention. When the line is subsequently drawn, attention is shifted to the opposite side. The per-

ception that we have of a line being drawn from left to right is due solely to therightwards shift in

attention. When there is no delay, attention does not have time to operate exclusively on the black

dot. The perception of the moving line is quite compelling and difficult to dismiss. (This sequence

is easy to implement on a computer and makes an interesting demonstration of visual attention.)

An interesting hypothesis has been proposed by Cavanagh (1990). We often track a moving object

by following it with our eyes and head. Although the retinal image of the object is fairly constant,

the global motion of the object can be recovered by accumulating the motor commands to the eye

and head. Of course, we can also sense the motion of objects while our eyes remain fixed. How is

this motion perceived? There are two possibilities: 1) the perception may be due to the signals gen-

erated by low-level motion detectors or, 2) if a moving focus of attention is used to track the object,

motion perception may be obtain from the signals generated by the attention system itself.  (Cavan-

Figure 7.6. It should take longer to detect equilateralness in images like (b) than like (a). It should take
even longer to detect whether a figure is square vs rectangular (c).

(a) (b) (c)
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agh, 1990) describes evidence to support the second view. It is known that low-level motion detec-

tors are highly sensitive to luminance but not color (Livingstone & Hubel, 1988). A circular

counterfeit grating (two identical circular gratings moving in opposite directions, clockwise and

anti-clockwise) was used. The key finding is that even when the two gratings were equi-luminant,

subjects were still able to track their motion. This seems to rule out the low-level motion detectors

since no motion information is present in the luminance channels.

If Cavanagh’s hypothesis is true, it imposes an interesting constraint. The actualmovement of the

focus of attention should be recoverable. The task is made more complex by the fact that multiple

shifts may be necessary in the course of tracking an object. In VISIT this operation would be simple

to implement. Higher stages always have access to the attentional parameters, hence a trace of

these parameters can be used to recover the motion. The focus is always updated using shifts rela-

tive to the current position. Temporal integration of the update vectors would give an accurate esti-

mate of the net direction of motion from some reference point. By keeping track of the time as well

as the updates, it is possible to recover the speed.

7.3 Interfacing with Other Forms of Attention

The above experiments suggest that covert attention is necessary for a wide range of visual tasks.

Recent experiments have shown that the covert attention system seems to be related to other forms

of attention as well. In this section we review some of the research which discusses this relation-

Figure 7.7. A black dot is flashed, followed by a delay, followed by a horizontal line. With a delay
of 60 msecs, there is a clear impression of a line being drawn from left to right.

Delay
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ship.

7.3.1 Relationship to Eye Saccades

Covert attention seems to be very closely related to eye saccades. The experiments described in

(Posneret. al, 1982) show that covert attention almost always moves to the intended target of an

eye saccade about 200msecs before the eyes begin to move. Clearly the converse is not true: atten-

tion movements do not always result in eye movements. In (Posneret. al, 1982) patients unable to

saccade in the vertical direction were also slower at shifting attention vertically. Section 6.2 dis-

cussed various areas of the brain that seem to be involved in covert attention. It is interesting to

note that all of these areas are also involved in eye saccades (Wurtz & Goldberg, 1989).

These experiments imply that the two systems are highly related but can be decoupled. There might

be a good computational reason for this relationship. The covert attention system is much faster

than eye saccades. Covert attention shifts can occur as often as 25 times a second (Julesz & Bergen,

1987) whereas eye saccades only occur about 5-7 times per second. Since eye saccades are a more

expensive operation (in terms of computation time), it makes sense to use the covert attention sys-

tem to prune out candidate target locations for an eye saccade. Yarbus (1967) describes experi-

ments where saccadic targets were highly dependent on the instructions given to the subject. For

example, when asked to describe the expressions of people in a picture, the eyes fixated only on

the faces. When asked to describe the furniture subjects avoided the people. Given the visual search

results, it is highly unlikely that the visual system can saccade to complex features without first

covertly attending to it.

7.3.2 Relationship to Auditory Attention

There is some preliminary evidence that the auditory attention system and the visual attention sys-

tem are also quite related. In (Posneret. al, 1987) the authors investigate whether spatial attention

mechanism uses the same system as auditory attention. In the first experiment subjects were asked

to perform two attention-requiring tasks simultaneously. The primary task was a standard visual

attention task (as described in Section 6.1.1). The secondary task was linguistic: the subject had to

count the number of nouns in a list of spoken words that started with the letter “p”. They found that

the cued-side advantage for the visual attention task disappeared. They argued that this was proof

that the two forms of attention shared some common mechanisms. (Jay & Sparks, 1984) have pro-

vided further proof of this hypothesis. They looked at cells in superior colliculus that were respon-
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sive to auditory stimuli as well as cells responsive to visual stimuli. Both the auditory and visual

cells were topographically arranged, but since the eyes can move relative to the head, each should

handle a different frame of reference. In fact, they found that the receptive fields of both types of

cells were tuned to eye-centered coordinates. In other words, the receptive fields of auditory cells

shifted coordinates dynamically to compensate for changes in eye position.
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8. Extending VISIT

8.1 A More Flexible Gating Network

A fast gating network is central to VISIT. The following sections discuss various extensions to the

gating network. These extensions allow a richer class of phenomena to be modeled within the same

framework as VISIT.

8.1.1 A General Framework for Focus of Attention

This section describes a general mechanism for implementing attention in arbitrary input spaces.

The gating network in VISIT is an example within this framework. The framework is used to dem-

onstrate the robustness of the gating function. It is modified to include foci of different shapes, the

ability to dynamically change this shape, and foci with smooth boundaries.

Locally Tuned Receptive Fields in N Dimensions

I first present a simple scheme for implementing static localized receptive fields using linear thresh-

old units. The scheme relies on the following fact: if one maps the points in onto the parabo-

loid defined by , then the intersection of a hyperplane in with this paraboloid projects

onto a sphere in . Thus there is a mapping between planes in and spheres in . To select

a set of points which lie within a sphere in some space one just has to project the points onto the

paraboloid and slice it with the plane corresponding to the sphere. Points which lie “beneath” the

plane are within the sphere. Figure 8.1 illustrates this for. Notice that the computation of a

threshold unit is exactly that of deciding on which side of a hyperplane an input point lies. To

encode circular receptive fields with threshold units, you just need to include an extra input: the

sum of the squares of all the other inputs. An equation of the form:

(8.1)

will be positive only if  lies within a spherical volume determined by the weights and constant.

ℜn 1−

z xi
2

i 1=
n 1−∑= ℜn

ℜn 1− ℜn ℜn 1−

ℜ2

wixi∑ xi
2∑ const+ +( )− 0>

x



75

Dynamic Receptive Fields

In addition to being able to select a portion of the input space, we need the ability to shift the loca-

tion and size of the receptive field around quickly in response to changing demands. In the figure

there are two ways to do this. The first method involves changing the slope of the hyperplane. In

Figure 8.1(a) note that as the slope increases the center of the projected circle will shift to the right.

For any sphere it is possible to compute the coefficients of the hyperplane which produces that

sphere. Given a plane  where  and  are real-valued vectors, the projection of the inter-

section of the plane with the paraboloid is a sphere whose center is:

(8.2)

and whose radius is:

(8.3)

In a threshold unit, changing the slope of the hyperplane corresponds to changing the weights of

the inputs. So, with appropriate training one of these units can learn the correct position of its recep-

tive field.

Since learning in neural networks typically involves several iterations, the time scale for weight

changes is normally too slow to allow dynamic computations. An alternate method is to fix the

plane but shift the paraboloid, by computing:

(8.4)

This moves it a distance along dimension (changing the location of the sphere) and a distance

Figure 8.1(a) The plane intersects the paraboloid in a curve which projects to a circle. (b) Architecture of threshold
unit computing the intersection in n dimensions.
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 along the z-axis (changing the radius of the sphere). If the’s and  are available as input then

the receptive field can be changed an arbitrary amount in one time step. Figure 8.1(b) shows how

such a unit would be configured. The net effect is that the threshold unit will respond only when

the input vector  lies within the spherical receptive field determined by and .

Focus of Attention with Value Coded Units

So far we have assumed ann-dimensional input space that is encoded asn analog signals. In VISIT

a circular focus is implemented on a2-dimensional retina. The units in this representation are laid

out on a flat sheet, with each unit explicitly encoding a local region in the space. In effect the gating

layer encodes thex-y subspace in the figure (Figure 8.2). The inputs to the gating network represent

the amount the parabola has to be shifted in order to arrive at the correct circle.

8.1.2 A Non-circular Focus

The above geometric interpretation has a number of advantages. It points out how to obtain non-

circular receptive fields. By altering the non-linearity, one can obtain cross-sections with different

shapes. For example, elliptical foci may be obtained by using the paraboloid:  where

 denotes the amount of stretching along each axis. In principle arbitrary shapes can be obtained

by appropriately choosing the non-linearity. The shapes can be dynamically adjusted by including

the appropriate parameters as additional inputs to the gate units (e.g. the’s in the ellipse example).
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Figure 8.2. The gating layer encodes thex-y subspace.
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8.1.3 A Smooth Decision Boundary

VISIT currently implements a circular focus with a hard boundary: pixels are either in or out of the

focus. For some computations it may be important to incorporate a gradually decaying border. Such

a focus may be obtained by using s sigmoidal output function in place of the threshold:

(8.5)

wherez is the same as in Equation(8.4). This function results in a focus with a flat top, circular

cross-section, and decaying boundaries. The gain parameter G controls the sharpness of the bound-

ary. Figure 8.3 illustrates these properties in the one-dimensional case. The figure plots the func-

tion:

(8.6)

for three different values of G. By including G as an input to each gate unit, it is even possible to

dynamically control the sharpness of the boundary.

8.1.4 Ease of Implementation

One concern with the gating network is its ease of implementation, both in silicon and biological

hardware. It is quite likely that in the near future, special purpose analog chips will be manufac-

tured to perform the tasks required by early vision1. It would be natural to include the gating net-

work as part of such a chip but it is unclear whether exact quadratic computations can be performed
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Figure 8.3. Effect of gain on locally tuned receptive fields.
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in this media. The above framework demonstrates that the gating computation is actually quite

robust. Exact parabola’s are not necessary. If we just want some sort of a localized response in the

projected space,any upward pointing, roughly cone like function will suffice. For example, an

upward pointing Gaussian will do the job. The exact slope of the hyperplane is also not important,

as long as it remains relatively stable. This robustness also makes a biological implementation of

a similar gating operation more plausible.

8.2 Focus of Attention in Other Representations

The ability to extend the gating network to arbitrary dimensions allows a natural way to transfer

the entire structure of VISIT to other value coded representations. This ability may prove to be

quite useful in modeling other attentional phenomena. The literature on object based attention sug-

gests that even when two objects are overlapping, people can attend to a single one (Section 6.1.5).

One possible explanation is that the attention system attends to depth as well as two-dimensional

regions (Duncan, 1984). For example in Figure 8.4(a) such a system would be able to segregate the

horizontal object from the vertical one by attending to the near depth plane. The explanation pre-

1. For examples of current research in this direction see (Mead, 1989; Bair & Koch, 1991; and Horiuchi, et.
al, 1991).

Figure 8.4. Attending to perceived depth planes would allow the system to segregate the two
objects in (a), but not the objects in (b).

(a) (b)
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dicts that if the objects are intertwined (as in Figure 8.4(b)), one cannot attend to each one individ-

ually. Note that since the two images are single two-dimensional images, the system must be able

to gate perceived depth as well as stereoscopic depth. So a second prediction of such a system is

thatperceived depth maps exist in the visual cortex. Psychophysical experiments by (Ramachan-

dran, 1988; Enns & Rensink, 1991) provide some preliminary evidence for this. Their experiments

show that search for targets distinguished by complex 3D features such as shape from shading or

orientation of simple cubes can be performed in constant time. The actual images they used were

2D images, so a disparity based feature map cannot account for the results.

Motion is another feature that seems to have similar characteristics. Preliminary experimental evi-

dence along these lines is found in (McLeodet al, 1988) who show that conjunction targets defined

by motion and form can be detected in constant time. (McLeodet. al, 1991) argue for the existence

of a motion filter that can segregate moving objects by direction of motion.

Attention is also useful in non-visual modalities as well. A good example is audition, where atten-

tion is often necessary to distinguish individual sounds. Topographic maps representing frequency,

amplitude, and phase are known to exist in auditory cortex (Konishi, 1983). If appropriate coordi-

nates can be specified in these dimensions then a network like VISIT can easily implement an audi-

tory attentional mechanism. Such a network could be used to model some of the results dealing

with auditory attention (Gray & Wedderburn, 1960; Posneret. al, 1987). One can even imagine

attentional mechanisms operating at the high level of structured representations. Any space that is

value-coded is faced with the binding problem. The only requirements for VISIT are the existence

of some notion of location plus a similarity metric. As long as these two conditions are met, the

same network architecture can be used to implement attention in these spaces.
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9. Learning To Focus Attention

Early in development, the primary visual areas self-organize to form retinotopic maps. There is evi-

dence that only part of this process is genetically specified: the final maps are also dependent on

the specific images that are experienced during development (Bear & Cooper, 1989). Network sim-

ulations with unsupervised learning rules have been used to model aspects of this developmental

process (Kohonen, 1984; Obermayeret. al, 1991). Typically these networks are presented with an

ensemble of images. Each unit learns to represent a local region such that the entire network best

covers the set of input images. If a gating network exists in biological attention, it is likely to be

also learned although the learning process will be more complex. In addition to forming a retino-

topic map, each gate unit must learn its global position within the image. It must also learn to use

this information to respond properly to its(x, y, r) inputs. The following sections describe a series

of experiments aimed at understanding how this process might take place.

9.1 Adaptive Gate Units

First I describe how the behavior of individual gate units can be modified. Recall that in the gating

network, each unit receives three inputs corresponding to the current circle of interest and responds

with a “1” if it is outside it. The computation was implemented by units which exactly computed

the equation for a circle:

(9.1)

whereXi andYi denotes the position of uniti. If this sum is greater than 0 then the unit is outside

the circle defined by(x,y,r) and turns on. This quadratic computation can be modeled by second

order units, a generalization of the semilinear units used in standard back propagation. The output

of such a unit is given by:

(9.2)
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wherek andj range over all the inputs to the gating network ands is the sigmoid function:

(9.3)

We also include a bias unit (a unit whose output is always1) as additional input to each unit in order

to generate the low order terms1. By expanding Eq.(9.1), we get:

(9.4)

SinceXi andYi are constant for each gate unit, by setting the weights in Eq.(9.2) appropriately the

unit can compute Eq.(9.4). The only difference is that the unit uses a sigmoid instead of a threshold

which results in a soft decision boundary instead of a hard one (Section 8.1.3).

It is simple to modify back propagation to deal with second order units (Rumelhart & McClelland,

1986). Given a second order unit and an error signal, the update rule for each weight is:

(9.5)

where  is computed as in standard back propagation. Given appropriate teacher signals, second

order threshold units using back propagation learning are capable of learning the correct mapping.

The central issue is to generate in a biologically plausible fashion. In the following sections, we

discuss some methods for doing this.

9.2 Using a Perfect Teacher Signal

The first and simplest scenario assumes the existence of a perfect teacher. That is, given a gating

layer, for each(x,y,r) input there is a signal available for each gate unit that specifies whether it

should be on or off. With this type of a training signal, each unit receives direct information about

its correct state and should rapidly learn to implement the correct mapping.

Simulation results verify this intuition. The particular network used consisted of four input units

corresponding to (x,y,r) and a bias unit, plus a10x10 array of second order units. The net input to

the unit was a second order weighted sum with one weight for every pair-wise conjunction of its

1. Second order units in turn are a special case of sigma-pi units (Rumelhart & McClelland, 1986). Such units
have been proposed as a model of computation in cortical neurons (Mel & Koch, 1990).
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inputs.

The weights were initialized to uniform random numbers in the range [-.5,.5]. The training con-

sisted of presenting the network with randomly selected input triples. For each training pattern, the

correct desired output was explicitly computed for each gate unit and used as the teacher signal.

Back propagation using the update rule in Eq.(9.5) was used to update the weights after each pat-

tern presentation. Figure 9.1 shows the output of the network after12,000 weight updates. The fig-

ure displays the patterns of activity for several different values of(x, y, r). The gating network has

learned to exhibit a circular pattern of activity and correctly learned to shift it according to the

input. This demonstrates that if a perfect teacher signal is available, the gating network can learn

to focus attention.

Figure 9.1. A 10X10 gating layer after being trained on a perfect training signal. Numbers
below each figure are the corresponding (x,y,r) input values. The circular outline is the
desired boundary. The shading represents the strength of each output signal.

(1,8,5) (5,8,5) (8,8,5)

(1,5,3)

(1,3,3) (5,3,3) (8,3,3)

(5,5,3) (8,5,3)
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9.3 Reinforcement Teacher Signals

The above scenario leads to efficient learning but is biologically implausible. It requires detailed

knowledge about the internal structure of the network. In particular, the teacher must already know

the locations of each of the gate units and the network must be able to propagatedifferent error sig-

nals to each one. It would be more realistic to use a signal that is globally available and constant

for each gate unit. This way, the same error signal can be broadcast to each gate unit from some

other part of the system responsible for evaluation. A natural candidate for such a signal is the

result of some general task that the network is involved in. Under this scenario, if the network com-

pletes the task correctly, then it receives positive reinforcement otherwise it receives negative rein-

forcement.

Visual search is a good domain for this sort of a reinforcement signal, since we know it requires

attention. It is possible to generate a plausible error signal for the gating network within this

domain. During a search sequence the gating network is responsible for tasks of the following sort:

“in the current image, determine the activity of a given set of features at a given location”. If the

success and failure of this task is used to train the gating network, then the teacher signals no longer

depend on the internal structure of the network but can instead be derived from the results of

actions on the external world. In addition, the same error signal can now be used for each gate unit.

Since the task requires a focus of attention, gate units trained with it should learn the correct map-

ping.

9.3.1 Simulation Results

To test the above hypothesis, simulations were performed using a simplified version of visual

search. The structure of the network is shown in Figure 9.2. It consists of an image, a gating layer,

a single gated feature map, and a global OR. The gated feature map receives inhibition from the

gating layer and positive connections from the image. The feature map simply signals the presence

of activity in the corresponding locations. A global OR is computed from the activity in the gated

feature map and represents the output of the network. All the weights to the gating layer are adap-

tive. The rest of the weights are pre-specified and kept fixed to reduce the number of free parame-

ters (the weights to the gated feature map are all the same negative number, so there is no real need

to learn them). As in the previous scenario, the gating network consists of second order units con-

taining a weight for pair-wise conjunctions of the inputs. For this task, only those connections that
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are strictly necessary for the task are included. Note that some of the second order connections are

unnecessary for implementing Eq.(9.4). In particular the weights for the termsr, xy, rx, andry can

be set to zero, which eliminates four degrees of freedom from each gate unit. This weight elimina-

tion is not necessary but makes the learning proceed much faster.

A 6x6 image was used. The weights to the gating network were initialized to uniform random val-

ues in the range [-.5,.5]. The network was trained with patterns consisting of an image and an(x,y,r)

triplet (see Figure 9.3 for two examples). There were5000 such training images, each with a ran-

domly sized rectangle placed randomly within the image. The desired output of the global OR was

set to“1”  if there is any activity in the image in the region specified by the input triple,“0”  oth-

erwise. The error between this value and the value of the global OR was back propagated and used

Figure 9.2. Architecture of the network. (a) The general network structure. (b) The connections at
a single location.
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as the error signal for the gating network.

Although in principle the task constraints should force the gate units to learn to focus attention, in

practice this is a very difficult learning task. The reinforcement signal is extremely noisy with

respect to each gate unit. For a given training pattern, a correctly behaving gate unit can still receive

negative reinforcement if some of the other gate units are performing incorrectly. For example,

consider a gate unit, g, in the lower left corner of the training pattern shown in Figure 9.3(a). An

object is in the upper left corner and the current focus of attention is in the lower right. Since the

focus does not intersect the object, the desired output is0. However, if any of the gate units cover-

ing the object turn on (incorrectly), then the output of the network will be incorrect andg will

receive a negative error. Similarly, a unit with incorrect output can receive positive reinforcement

if some of the other units perform correctly. For example, ifg were to turn on incorrectly, the gated

feature map output at that location will still be off since the corresponding image pixel is off. If

none of the gate units within the object turn on, then the network will still produce the correct out-

put, andg would receive positive reinforcement. During the initial learning phase, when the gate

unit weights are random, the first of these two situations is quite likely to occur for large objects.

The second situation may occur quite often with small objects. Due to this the teacher signal pro-

vides very little information, if any, to each unit.

Despite these problems, a significant amount of learning did take place. Figure 9.4 shows the

behavior of the network after250,000 iterations. It can be seen from the figures that asx, y, andr

varied, the output of the gate units resembles a blob-like shape moving around. The output is not a

Figure 9.3. Two example training patterns for the reinforcement learning scenario, and
their desired outputs. The circle represents the focus of attention implied by the(x,y,r)
inputs.

Desired output = 0 Desired output = 1

(a) (b)
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perfect circle. There is some spurious activity, but it is possible that a smarter learning rule (e.g.one

which exploited spatial regularities) could increase performance. Considering the problems men-

tioned above, it is quite astonishing that the network managed to learn anything at all. The resulting

network can still act as a reasonable focus of attention provided the activity is blurred a little.This

clearly shows that, on average, the reinforcement signal used does contain more information than

noise and can be used to train the gating network.

It is interesting to examine the performance of the gating network during the training process. Ini-

tially the outputs are random and there is no relationship between the input and output signals. In

the course of training, the network first learned the relevance ofr. Figure 9.5 shows the output of

the gate units for various values ofr after50,000 iterations. By this time the network has learned

that forr near the maximum value, most of the gate units should be on whereas forr near0, most

of the gate units should be off. This is reasonable since there is a direct correlation between the size

Figure 9.4. Output of a 6x6 gating network with link constraints after training with a reinforcement teacher
signal.

(3,3,2) (5,3,2)(1,3,1.5)

(3,1,2) (5,1,2)(1,1,2)

(3,5,2) (5,5,2)(1,5,2)
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of the focus and the probability that the output is1. However, as the figure shows, the gate units

have not yet learned anything about a circle. After250,000 iterations (Figure 9.4), the network has

learned that there is a correlation between(x, y) and the activity of the gate units. It has learned that

asx increases, the activity should move from left to right. As y increases the activity should move

from top to bottom. In effect, each gate unit has learned its global position within the image.

9.4 Discussion

Since retinotopic feature maps are learned in biological systems, the spatial attention system must

also be learned. To study how this might happen, this chapter has discussed methods for training

the gating network in VISIT. Experiments show that a rough blob-like focus of attention can evolve

through learning using a simple, global reinforcement signal, even if that signal is quite noisy.

Ideally all aspects of the model should be learned. The learning of early visual features is getting

to be well understood. There is an extensive computational literature on the development of such

features. Several people have shown that unsupervised learning rules, such as the Hebb rule, can

lead to units with response characteristics similar to neurons in V1 (Linsker, 1989; Becker, 1991).

Recent psychophysical studies suggest that this learning continues in adults. (Karni & Sagi, 1990)

showed that adult subjects can improve feature discrimination through repeated presentations and

that this improvement is retinally localized. (Ling-po & Pashler, 1991) have further showed that

this learning is not completely unsupervised: the subject must be actively attending to that feature

Figure 9.5. Output of a 6x6 gating network early in the learning process. Numbers below are the (x,y,r)
inputs.

(3,3,0) (3,3,3)
(3,3,5)
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for the learning to take place.

Apart from the early feature maps and the gating network, it is unclear at present how the other

modules in VISIT might be learned. The strategy used for the gating network should be applicable

to some of them as well. For example, the priority map essentially acts as a feed forward system,

i.e. units receive input (output of feature maps, feature weight values, plus the three attention

parameters) and compute some outputs (error vectors, priority value). There are no dynamics

involved, so with a perfect teacher signal, the priority map should be easy to learn. It should also

be possible to construct a reinforcement learning scenario so that a global signal can be used to train

the map.

A more difficult problem is training the control networks. This system is characterized by feedback

pathways, interesting dynamics, and not much regularity. (Williams & Zipser, 1988) describe

experiments showing how some simple control structures can be learned in recurrent networks. In

general however this type of learning is not well understood. For example, it is not all clear how a

search strategy such as SWIFT could evolve. There has been some research on the development of

attention in people which might prove relevant (Johnson, 1990), but it is not yet at the point where

detailed computational models can be formed. Methodologically, it is hard to test attentional

behavior in infants which are only a few days old. Both the computational and psychophysical

aspects of this issue is difficult and so this is one area where the future interaction between theory

and experimental results is certain to be beneficial.
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10. Related Models

VISIT builds upon, and has been inspired by, the work of a number of researchers. This chapter

describes some of the work on building explicit models of attention, highlighting some of the com-

mon ground and differences with VISIT.

10.1 Two Psychological Models

There have been several psychological theories of attention in the literature. Some have been spec-

ified in more detail than others. Here I describe two: feature integration theory and guided search.

Feature integration theory was chosen because it was the original model used to explain visual

search, and it still seems to be the “standard” model of attention. Guided search was chosen

because it has been implemented as a computer model of visual search and accounts for some of

the more interesting visual search results. For additional models see (Bundesen, 1990; Duncan &

Humphreys, 1989).

10.1.1 Feature Integration Theory

Feature Integration Theory was proposed by Treisman and Gelade (1980) to explain the different

reaction time results for visual search. The model is outlined in Figure 10.1. The model makes use

of separate feature maps which are gated by a single spotlight of attention. The spotlight is used

when a conjunction of features must be detected. The location map contains all the objects in the

image. The original model predicted that all conjunction searches would require a serial, self-ter-

minating scan of every object in the image. There was no notion of priority, so conjunction searches

would always result in linear search times. The model managed to unify many of the results under

a single framework. This included single vs. conjunctive feature search, 2:1 search ratios, search

asymmetries, and illusory conjuncts. However it was not consistent with some of the newer results,

such as search within a feature, the parallel processing of conjunctions, etc. The theory has since

been modified to include a notion of priority similar to that discussed in Section 5.3.2 (Treisman &
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Sato, 1990), but the mechanisms for setting the priority levels have not yet been specified clearly.

10.1.2 Guided Search

Guided Search was proposed by Cave and Wolfe (1990) to account for the results obtained in visual

search experiments that conflict with Feature Integration Theory. The significant contribution of

Guided Search is an explicit mechanism for computing the priorities using a combination of top-

down and bottom-up information. A bottom-up priority is computed by comparing the feature val-

ues of each object against the feature values of every other object. This is done for every feature

independently and summed up. This process can explain single feature search times since the target

(which differs in one feature with every other object) will always have significantly higher priori-

ties than the distractors (which only differ from the target). The top-down process adds another

component which favors features belonging to the target object. This process is very similar to the

scheme discussed in Section 5.3.2 and always assigns a conjunctive search target the highest pri-

ority. The model explains differing search slopes by assuming the existence of inherent noise in the

priority calculations.

The authors present simulations showing that triple conjunction search, search within a feature,

Figure 10.1. A sketch of feature integration theory.

Feature Maps

Location Map

Global OR

High Level Recognition
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effects of irrelevant distractors, constant time search for conjunctions, and varying search slopes

can all be explained by Guided Search. As a model of visual search, Guided Search explains a large

set of results, but cannot explain search asymmetries or the2:1 search slopes. Furthermore, it can-

not explain why only some feature conjunctions result in parallel slopes but not others. There are

also three problems with implementing Guided Search as a connectionist network. The model

assumes that objects have already been segmented and available in an array, with one slot per

object. Second, the bottom-up computation is inefficient. It compares every location with every

other location which requiresO(fn2) connections wheref is the number of feature maps, andn is

the maximum number of elements. This is clearly not feasible for high resolution images. Finally,

the model is very sensitive to the noise parameter. In order to explain the different search results,

Guided Search must assume that different amounts of noise are present at different times and in

different subjects.

10.2 Computational Models

Among the psychological theories of attention and visual search, Feature Integration Theory and

Guided Search are notable in that they consider some of the underlying operations in some detail.

They do not, however, model the implementations of these operations. There exist very few imple-

mented models of attention. Other than VISIT, none implement every aspect within a connectionist

network. The existing implementations can be partitioned into two classes: pyramid models and

iterative models. The models are described below.

10.2.1 Pyramid Models

Koch and Ullman (1985) introduced the idea of a pyramid model of attention which has since been

implemented by Chapman (1990) in a system called SIVS. In this model a log-depth tree is placed

above a saliency map (Figure 10.2). At each level nodes receive activation from nodes below and

transmit the maximum of these values to the next level. The top node of the tree computes the

address and value of the most salient location. In addition, SIVS implements a fixed set of visual

routines which use the tree to access image features. The main difficulty with this approach is that

the focus is not continuously variable. As a result the scheme cannot handle real pixel based images
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but must assume a prior mechanism for segmenting the objects and normalizing their sizes. As with

Guided Search, each object must occupy exactly one location in the saliency map. Chapman briefly

discusses a way to reduce this restriction a little by overlapping several trees in a single network,

but no details are specified. A further difficulty is that the time required to focus is logarithmic in

the maximum number of elements. Depending on the degree of the nodes, focussing time can be

relatively slow. Nevertheless, this scheme was the first concrete suggestion for implementing an

attentional mechanism. The visual routines implementation, though not connectionist, represents

the first attempt at modeling Ullman’s framework.

Anderson and Van Essen (1987) discuss a mechanism for implementing attention using a pyramid-

like structure that represents the sequence of visual areas from LGN up to IT. Each level can do

one of several actions depending on some control inputs. Each level compresses the input by a fac-

tor of two. Each level can also send its input straight through, or shift it by one position to the left

or right. To focus attention on a region, a series of micro-shifts are used to bring it into register with

one of several discrete chunks at the bottom of the pyramid. Control signals are then used to route

this region to the uppermost level. The main advantage of this scheme is that an entire region is

routed to the top, so the spatial relations of objects within that region are preserved. There are a

number of disadvantages. 1) It is unclear how a continuous focus of attention would be imple-

mented. 2) The shifting operation is quite complex and time consuming. It is unclear whether this

sort of a strategy can account for the extremely fast response times of human attention. 3) The

scheme predicts that shifting operations occur at all levels of the hierarchy. There is as yet no phys-

iological evidence for any sort of attentional effects below level V4.

Figure 10.2. Koch and Ullman’s attention pyramid.

High Level Recognition

Saliency Map

Feature Map

Winner-take all pyramid
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10.2.2 Iterative Models

In contrast to the pyramid based models, (Mozer, 1988; Mozer, 1991) describes AM, a model based

on iterative relaxation. In AM (as in VISIT) a region of activity in a layer of retinotopic units gates

the activity from feature maps to higher levels. The current focus is determined by an iterative rule.

At each time step units compare their activity with their neighbors and adjust their values according

to a locally competitive update rule. In time the network selects a single region of maximal activity.

The main advantage of this scheme over the pyramid models is a continuously variable region. AM

also incorporates the ability to weight individual feature maps, although this capability was not

used in the simulations. Sandon (1990) describes a model which also uses an iterative rule but per-

forms the computation at several spatial scales simultaneously.

One problem with iterative models is that the settling time is quite sensitive to the size of the image

as well as to specific images. It can be quite high if there are similar regions of activity that are

widely separated. In simulations, AM with a 36x6 image array took anywhere from 20 to 100 iter-

ations to settle (Mozer, 1991). A second issue is that the region selection is based completely on

local information. There is no explicit mechanism for using top-down location information to shift

attention. AM has been used as a model of word recognition and can model many of the perceptual

effects associated with reading. Some of the visual search results can be explained under suitable

noise assumptions, as in Guided Search.

(Fukushima, 1986) describes a model combining a log-depth hierarchical network and iterative

relaxation. The output level of the network contains one unit per pattern to be recognized. Given

an image the output nodes corresponding to the different patterns will each respond to some degree.

The unit with the largest response is selected and a signal is transmitted back through the pathways

activated by the input pattern. This creates a positive feedback loop which sharpens the detection

of this pattern. The pathways corresponding to the other patterns gradually attenuate in the absence

of this facilitation. In time the network attends to one of the input patterns. A unique property of

this scheme is that the shape of the focus of attention depends only on the shape of the input pat-

terns and thus can be arbitrary. However the process is quite slow since many iterations are required

for the network to settle, and for each iteration the activity has to flow up and down a fairly deep

hierarchy. The network has been used recently in the recognition of Chinese Kanji characters

(Fukushima, Imagawa, & Ashida, 1991).
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10.3 Discussion

VISIT incorporates a number of features of other models. The notion of a gating network and

weights associated with feature maps is similar to the ideas in AM. The priority map is similar in

spirit to Feature Integration Theory’s location map, and Koch and Ullman’s priority map. As in

Guided Search, VISIT makes use of a combination of top-down and bottom-up information for the

search process. The underlying constraints in VISIT are computational efficiency and the ability to

work with high-resolution images. Due to this, the implementations of the above features have

been very different. VISIT is the first model to separate the gating and priority computations and

this results in fast run times. VISIT is also the first model to make every aspect of the control pro-

cess explicit as a connectionist system. Finally, VISIT is the only system that deals well with high-

resolution images.
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11. Concluding Remarks

This thesis has presented a model of attention derived from computational principles and biological

data. The overall design is simple, and should be easily implementable on a massively parallel

computer. As far as I’m aware, VISIT is the first fully connectionist model of spatial attention

(including implementation of the control processes). It is also the first model that is a useful com-

putational model as well as being a reasonable psychological, physiological, and anatomical model

of human attention.

The initial goal of this project was to build a neural bridge between early and late vision. I feel

VISIT represents a step towards that goal but there is still much more to be done. It should be rel-

atively easy to include more realistic feature maps and implement the model on parallel hardware.

It should be simple to incorporate most connectionist theories of object recognition. Such a system

should, for example, be able to search a sparse image for fairly complex objects in real-time. It will

be more challenging to extend the system to deal with overlapping objects. Extending the system

to handle multiple visual tasks will require the ability to dynamically decide what sequence of

actions must be executed to complete the current task.

We are far from building a visual system with anything near the complexity of human vision. What

is the best way to proceed? I personally believe that the major breakthroughs will come from those

who keep both computational efficiency and biological plausibility in mind. As constraints for a

model, these two might seem contradictory. What do the constraints faced by a chemical system

have to do with the efficiency constraints faced by an electronic computer? My own experience

argues that the interaction between the two can be extremely useful. For example, the priority map

in VISIT was inspired by the existence of similar maps in monkeys for controlling eye saccades.

Later I realized that error units were actually a very efficient and flexible encoding scheme. Con-

versely, some of the design decisions were made purely for reasons of efficiency. Examples include

partitioning the network into the specific modules, and the SWIFT search strategy. I found out later

that these features also matched the biological data well.

I don’t believe these incidents are coincidence. At this point I am not even convinced that the two

are distinct at the macro level. It seems clear to me that as our knowledge of both fields increase,

the interaction between the two will lead to a remarkably rich set of models in the near future.
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