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Abstract

One of the challenges for models of cognitive phenomena is the development of ef-
ficient and flexible interfaces between low level sensory information and high level
processes. For visual processing, researchers have fuedahat an attentional
mechanism is required to perform many of the tasks required by high level vision.
This thesis presents VISI& connectionist model of covert visual attention that has
been used as a vehicle for studying this interface. The moddicisrdf flexible,

and is biologically plausible. The complexity of the network is linear in the number
of pixels. Efective parallel strategies are used to minimize the number of iterations
required. The resulting system is able ficefntly solve two tasks that are particu-
larly difficult for standard bottom-up models of vision: computing spatial relations
and visual search. Simulations show that the netwdy&havior matches much of

the known psychophysical data on human visual attention. The general architecture
of the model also closely matches the known physiological data on the human at-
tention system. &fious extensions to VISIT are discussed, including methods for
learning the component modules.
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1. Introduction

Every minute we are awake, we move our eyes in a series of rapid movements known as eye sac-
cades. Although we are usually unaware of them, saccades can occur as often as 5 to 7 times a sec-
ond. Since the fovea has a much higher resolution than the perighergdes let us scrutinize
interesting objects everywhere in the scene. If our retina could represent every portion of the visual
field with equal resolution, saccades would be unnecesaaryould save processing time but

would need an order of magnitude more neurons, so there is a tréddwiden time and space.
Evolution has settled on saccades as a compromise.

A somewhat surprising (but experimentally well established) fact is that an analogous phenomenon
occurs within our brain. Even when there are no overt movements of eye, head,, avébady
continually attending to diérent regions of the visual field. Experiments show that these covert
shifts of attention can occur as often as 15 to 20 times a second. As with saccades, there are com-
pelling eficiency aguments that explain the need for such a mechanism. This thesis presents a
computational model of this second form of attention.

| first discuss the guments that covert attention will be a crucial component in any realisitc visual
system. | then discuss VISIa model of visual attention and describe a highly parallel connection-

ist network for implementing each of its component operatibims.model is applied to two basic
visual tasks: the computation of spatial relations, and recognition based on feature combinations.
Attention is required to perform both of these tasks accurately in the presence of multiple objects.
To understand these processes in detail VISIT is tested on two specific tasks: computing spatial
relations among point clusters, and searching for a combination of features in cluttered scenes. The
resulting system is gfient and flexible. The complexity of the network is linear in the number of
pixels. Parallel strategies limit the number of sequential iterations required. For visual search, an
efficient search strateg@WIFT, is used to minimize the number of fixations. As a result, the net-
work is able to solve these tasks with high resolution images.

Although the primary advantage of VIS$§Tdesign is computationalfiefency, the main inspira-

tion for the structure and function have been biological. The general architecture of VISIT matches
the known physiological data on the human attention system reasonably well. The setwork’
behavior is consistent with much of the known psychophysical experiments on human attention.



For example, there is a large body of psychological literature on visual search. VISIT combined
with SWIFT is able to account for many of the interesting recent results in this domain. | discuss
these aspects and review the literature within the framework of VISIT. | aso describe possible
extensions to the architecture, mechanisms for learning aspects of the architecture, and relation-
ships to existing computational models of attention.



2. Why Pay Attention?

“There are two criticisms of many of these neural net models. The first is that they
don't act fast enough. Speed is a crucial requirement for animals like ourselves.
Most theorists have yet to give speed the weight it deserves. The second concerns
relationships. An example might help us here. Imagine that two letters - any-letters
are flashed briefly on a screen, one above the.dthertask is to say which is the
upper one. This is easily done by older models, using the processes commonly
employed in modern digital computers, but attempts to do it with parallel
distributed processing appear to me to be very cumbersome. | suspect that what is
missing may be a mechanismatfention. Attention is likely to be a serial process
working on top of the highly parallel PDP processes.”

- Francis CrickWhat Mad Pursuit, 1988.

This chapter outlines the primaryggaments for implementing an attentional mechanism. There are
two such lines of reasoning. Computational complexgyiarents suggest that too much hardware
would be required for high level vision without attention. There is alsge berdy of psychophys-

ical evidence demonstrating that people need visual attention for certain tasks. In many cases the
complexity aguments accurately predict the experimental results, suggesting that attention should
be a fundamental component of any realistic vision system.

2.1 Computational Complexity Reasons

It is popular in the connectionist literature to use feed forward network models for vision (Goggin
et. al, 1991; Keelekt. al, 1991; Le Curet. al, 1990; Pomerleau, 1991; Zenstlal, 1990). Ypi-

cally the input layers are clamped with an image (sometimes a pre-processed image), with each
input unit representing one pixel. The networks contain one output unit per item to be recognized.
The output unit corresponding to the object in the image should be the most active. This general
approach has certain advantages in restricted domains but breaks down when multiple objects exist
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Figure 2.1. The typical feed-forward connectionist model of visual processing. A set of basic featurt
computed locally in parallel at every image location. Higheel features are computed in a hierarchice
fashion by explicitly combining lower levels features.

in the image, when the image has high resolution, or when the taskaestly complex.

To see this, consider the nature of massively parallel visual processing. In the brain, early stages
contain individual neurons dedicated to computing local features at every image location in parallel
(see Figure 2.1). There are neurons for detecting orientation, owdtion, depth, spatial fre-
guency etc. (\&n Essen & Anderson, 1990). In terms of computation time this is a Viergref
strategy Due to the laye number of pixels in realistic images, most researchers agree that similar
parallel processing is required for computational vision. Howévernot dificult to see that this

kind of encoding quickly becomes intractable at higher levels. It is not possible to explicitly repre-
sent every possible combination of features at every location. A better strategy would be to have
one central process for detecting complex features that can be directed towards any region in the
image.

As early as 1969, Minsky and Papert presented formal proofs for these intgjtiveeats (Minsky

& Papert, 1969). They showed that several simple visual predicates canrfmi¢retlgfcomputed

by feed forward threshold networks. For example, they proved that the connectivity predicate (the
task of determining whether a curve is connected) requires an exponential number of weights. On
the other hand, it is easy to envision a sequential solution using curve tracing. Minsky and Papert’
arguments prove that, in general, vision cannot be perfornfieceefly with a strictly bottom-up
system. More recentlyfsotsos (1990) has shown that general visual search is NP-complete without
the use of top-down information and has suggested using visual attention to render the task tracta-
ble.



2.1.1 The Binding Problem

A basic goal of vision is to identify objects based on combinations of features (e.g. a red-horizontal
bar). An immediate consequence of the complexguments outlined above is that this is di-dif

cult operation to perform fiently. Since objects can appear anywhere in the image, in any size
and shape, it is infeasible have an explicit parallel representation for every possible combination
of features at every location and scale. This dilemma is callduirtieg problem and appears in
several diferent forms. Sejnowski refers to it as one of the fundamental open problems in neural
computation and writestle binding problemisa touchstone for testing network modelsthat claim

to have psychological validity” (Sejnowski, 1986).

Obviously people can associate feature combinations with objects, so there must be a way around
the binding problem. Wknow of some operations that can be performfeadesdtly in parallel. For
example it is possible to compute a global OR of each feature map. This operation identifies the
particular features that are present in an image. If a single object were present in the image, this
information would be stitient to form the association. Howeyavhen multiple objects are
present this setup will sefr from interference. If two objects are present and the red global OR is
active, the system cannot identify which object is red.

Due to this interference, it is alsofditilt to identify the locations of individual objects when mul-

tiple objects are present. A natural solution is based on a mechanism that inhibits the representation
everywhere except at the location of interest. If such a mechanism can be constficaatyef

then the binding problem can be solved. A system using this mechanism can attend to individual
objects to determine their feature combinations (Figure 2.1). The location of the object can then be
determined by computing the center of mass of the active pixels.

2.2 Psychophysical Evidence

There is a lage body of psychological literature on visual attention supporting the abgwe ar
ments. Perhaps the most pertinent to the binding problem is the work on visual sesasthafT

& Gormican, 1988). The basic experiments show thgetardefined by a single feature can be
detected in constant time but thagets defined by a combination of two or more features require
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Figure 2.1. Inhibiting the feature maps everywhere except at a single region solves the binding
problem.

time linear in the total number of obje&tSaccades are ruled out suggesting that internal processes
are responsible for the sequential behavibere have also been some physiological findings rel-
evant to these experiments. The most convincing demonstration of attention is the experiment
reported in (Desimone & Moran, 1987). They recorded from cells in the visual cortex of awake,
behaving monkeys. They found that when monkeys were attending to a location in visual space,
cells in the inferotemporal cortex (IT) responded only when stimuli were presented within that
region. Cells in IT are retinotopically ganized and normally respond to agmportion of the

visual field. This experiment shows that thieetive receptive field of these cells can shrink to
cover only attended locations. There is agdarbody of research along these lines and
Chapters and7 discuss these experiments in much more detail. Nevertheless the basic message
is clear: visual attention exists in people and is required to perform a variety of visual tasks.

2.3 Interfacing Low and High Level Processing

The early stages of visual processing can be performed in parallel. Due to complexity reasons, later
stages seem to require a sequential component. What is the nature of the interface between the two
levels? The ease of our everyday visual experience suggests thatfitientefflexible, and

1. There are some exceptions - see Chapter



includes mechanisms for top-down control. Ullman (1987) has proposed an elegant framework
along these lines. Hegares for the existence of a small fixed set of visual control primitives. Given

a task specification, an intermediate system dynamically creates a sequsudialoutine for

solving it. This would involve initiating the primitives in some ordée proposed five specific
primitives, including primitives for focusing attention, for marking locations, for spreading activa-
tion, for curve tracing, and for indexing. (Jolicaduliman, & Mackay1986) describe some direct
psychophysical evidence in support of this framework. They find that the time required to report
whether two stimuli lie on the same curve increases linearly with the distance between them. The
distance is not the physical distance between the stimuli on the image, but rather the distance along
the curve. The authors propose that this is due to a process which searches sequentially along the
curve.

As a step towards a neurally plausible realization of the full visual routines framework, the rest of
this thesis describes a model of visual attention and associated control structures.



3. Implementing VISIT

The aguments favoring attention are relatively clear but constructing a feasible mechanism is non-
trivial. How can a parallel connectionist network, with its fixed set of units and interconnections,
implement attention &€iently and flexibly? The final network must be able to inhibit a topo-
graphic representation everywhere except at a single region. The size of the focus of attention
should be continuously variable to accomodate stimuli ¢éreift sizes. The network should be

able to shift the attended location dynamicallgere should be a reasonable way to choose the
locations which are attended - both bottom up and top down information should be incorporated.
Mechanisms should exist for handling the control issues. The resulting system should also provide
a flexible interface to higher level recognition systems. This chapter addresses these questions and
describes VISIF, a network for implementing visual attention.

3.1 Global Network Structure

The above requirements can be clumped into three distinct taskBcemegating scheme, a flex-

ible method for choosing interesting locations, and sequential control. In VISIT separate networks
are responsible for each operation (Figure 3.1.). This makes it possible to optimize each one with-
out compromising étiency Thegating network is responsible for suppressing all activity except

that at a given region. The region is continuously variable and is used to limit the extent of high
level processing in the image. The locations of interest are determined separaf@lptyanet-

work which is free to use top-down and bottom-up information.cbh&ol network is responsible

for sequencing and for mediating the information flow between the gating and priority networks.
The model also incorporatesvarking memory for the temporary storage of relevant information.
These four systems are described in the following sections.

1. A loose acronym for a network that performs Visual Searetatively
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Figure 3.1. General architecture of VISIT

3.2 The Gating Networ k

The gating network actually implements the focus of attenion. It is responsible for restricting sub-

sequent processing to an arbitrary circular region. The design is simple. The network is imple-
mented as a retinotopic layer of units, with one gate unit per pixel. Each unit encodes its position
within the image. Each unit also receives input from three external units which represent the center
and radius of the current circle of attention,,(Ay, A;). Each unitj, computes the equation for a

circle and turns on if it isutside the circle, i.e. if the following inequality is true:

(X =A)Z+ (v, —A)2>A? (3.1)

where(x; y;) refers to the position of the unit. The output of the gating network is used to inhibit
subsequent gated layers (Figure 3.2). The network continually updates the circle to reflect changes
in the activity of the 3 external units. Thdegt is a layer of units which filters the input image
according to a global control signal. The above scheme is simple fasidngéf The hardware
required to implement it is minimal: 3 input connections per gate unit. Once the location of the cir-
cle is known, it takes one time step to update the focus.
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Figure 3.2. The gating network inhibits subsequent layers, restricting activity to a single circular
region.

3.3 ThePriority Network

The gating network relies on a good mechanism for selecting interesting locations to visit. Psycho-
physical experiments show that in general, this computation is highly context dependent. In some
situations a bottom up method such as choosing the brightest image location is appropriate. At
other times top-down information such as prior knowledge of an important location must be used.

In VISIT, the priority network is responsible for this computation. The general idea is to create a
retinotopic map where activity is proportional to the “relevance” or priority of locations. Each loca-
tion in the priority map corresponds to a small circular region of the image. There are three units
for each location. The output of the first unit represent a priority value from 0 to 1. The priority
computation can vary with the task. The only constraint is computatiofigiemty.
Chapterst and5 describe two possible schemes for computing priority

The remaining two units are used to help the control network shift attention (Figure 3.3). These
units encode the vector flifence between the center of mass of the cluster of points within their
receptive fields and the poink,, A) . In this way each grid location encodes an “error vector” for
adjusting the focus of attention. These vectors are continually updated to compensate for changes
in A, anda, . By adding the vector with the highest priority valuatanda , the focus of attention

can be shifted to the location of the most salient cluster in a single step.

The error vector representation is quite flexible. The control network has several options available
to it, depending on the requirements of the current task. It can decide to move the focus of attention

10



Priority map

Error units

Figure 3.3. Error units. At each location, afsef vector is computed relative to the current
center of attention.

to the most salient or the least salient location. It can select the location nearest the current focus
by selecting the smallest error vecfto choose locations to the right, it can select a vector whose
first component is positive. Cthe control network can decide to ignore the error map completely
and move the focus according to some independent top-down inforrhation.

It is important to note that locations in the priority map do not represent individual objects, but a
fixed small region in the image. The former requires a segregation step that in general can be quite
complex and time consuming. Since objects can vary in size and shape, it is highly unlikely that
segmentation can be performed in a simple feed-forward network. (Several psychophysical studies
suggest that even some simple aspects of object segregation may asquayattention (Teis-

man & Schmidt, 1982).) Howevidhe representation does impose some restrictions. An object that

is lamger than the receptive fields of the individual priority units could cause several of them to
become active. As a consequence, the location information provided by the error map is somewhat
coarse. ® circumvent this problem we include a fine tuning mechanism as part of the control net-
work (Section 3.5.2).

1. The error vector representation was inspired by discoveries of a similar mechanism in the monkey superior
colliculus for controlling eye saccades (see Cha@tdhe output of the confidence units is similar to the
saliency map in (Koch & Ullman, 1985) (see Chafi@y, although in general many factors may contribute

to the saliency of a given location.

11
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Figure 3.4. Schematic of a binding network. The network continually tracks its input :
nal until a control signal is sent, at which point the output is frozen to be the current si

3.4 The Working Memory

One of the primary motivations for visual attention is the ability to compute locations of individual
objects. In our system, the location and scale can be obtained directly from the values of the units
representing,, A, anda, . Since retrieving locations is now a sequential process, we need a mech-
anism for capturing and temporarily storing these valuesa®omplish this with small recurrent
networks for each value that needs to be stored. Each of these “binding” networks continually
tracks a particular unit (one af, A, anda,) until a control signal is sent, whereupon it freezes the
output to be the current value of the unit.

The network for doing this is shown in Figure 3.4. The two hidden units have a positive linear acti-
vation function (O if the weighted sum of its inpufss negativel otherwise). The output unit is

linear While the control unit is &fthe hidden units compute thefdifence between the value of

the assigned unit and the current output, and sends it to the output unit. The left hidden unit indi-
cates when the output should be decreased whereas the right unit indicates when it should be
increased. An inhibitory connection is included from each hidden unit to itself to ensure that after
it fires, it stays dflong enough to allow the output unit to adjust itself. When the control unit is
turned on, the hidden units are shityflarge negative weights. An excitatory link from the con-

trol unit to itself ensures that once the control unit has fired, it stays on, preventing further adjust-
ments. Three of these “binding networks” are used for each set of parameters that are stored.

12



1 X(i) Y(i)

Gated Image

Image

Figure 3.5. A network for computing center of mass.

3.5 The Control Network

One of the most interesting aspects of visual attention is the control process. How does the system
focus on an object? How does it shift from location to location? How is it prevented from visiting
the same location twice? These issues deal with the sequential aspects of attention and are often
ignored in models. One of the contributions of this thesis is to make these processes explicit. There
are several possible approaches, but not all of them willflmgeatfly implementable in neural
hardware. Therefore | have tried to enforce the constraint that every aspect of the control must be
implementable as a connectionist network. This section describes the function and implementation
of these networks.

3.5.1 Computing L ocation

Although it is not possible to compute the locations of every object in the scene in a feed forward
network, it is possible to compute the center of mass of the entire image. When attending to a single
object, this computation will accurately localize it. This is the scheme used in VISIT (see Figure
3.6). The center of masgg,, c)), is defined as the average of the x and y coordinates of the active

13
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Figure 3.6. The units which continually fine tune the focus of attention.

points:

zx(i)ai ZY(i)ai
= andc, = - (3.2)

3o 3o

CX

wherex (i) andy(i) denote the x and y coordinates of thie tinit anda, denotes its activityz a

can be computed by a unit which receives input from all gate units with a weight of 1 (unit 1 in the
figure). To compute the numerators we include two units with links to every gate unit (units 2 and
3). The weights from theth gate unit to each of these two units age andy (), so units 2 and

3 compute) X()& and Y Y(i)a;, respectivelyTwo units (units 4 and 5) perform the division to
obtainc, andc,.

3.5.2 Fine Tuning the Focus

As part of the control network, VISIT includes two mechanism for fine tLAjrA , anda, to set-

tle on the center and size of the cluster of points within the current focus of attention (Figure 3.6).
The outputs of the center of mass network is fed to two units which computdehendi¢ between

the center of mass and the attention parametefsa, c -A) . The units representinganda,

receive this dference as input. By adding their own output to thifedéhce, they accurately
update the focus to center on the object within it.

14



To get an estimate of the size of the object the unit representeuntinually adjusts the size of

the focus to match the object within it. In the current implementation, as I@gi asmains con-

stant, the unit decreasasby a small amount. If the sum decreases, indicating that the scale has
become too small, the unit increageslightly and stops. This works well for the relatively sparse
images in this thesis. For more complex images a more sophisticated system would be necessary
for detecting when the focus has become too small.

The two mechanisms described here allow the network to accurately compute the location and
scale of the object within the focus. It is interesting to compare the temporal behavior of these
mechanisms. The center of mass computation can be performed in a purely feed-forward manner
and only requires a single shift in the focus (assuming the scale of the focus is inigalyHan

the objects size). The scale computation however is an iterative process and is typically the slowest
aspect of the network. Although it may seem that VISIT has given up slow segmentation for a slow
fine tuning process this is not a limiting factéor many tasks object scale is unimportant so it is
unnecessary to wait for the scaling mechanism to settle. At least one psychophysical study on atten-
tion (Kramer & Johnson, 1991) shows that the scale of an object does have an impact on perfor-
mance. It would be interesting to perform experiments on human subjects to directly compare the
time for computing object locations and scale.

3.5.3 Sequencing

There is another issue to consider: as the network fixates on successive objects, we would like dif-
ferent sets of binding networks to be instantiateddd this we need some sort of a sequencing
mechanism which will send control signals to successive binding networks. This is accomplished
by the network shown in Figure 3.6. The signal unit fires when the focus of attention has stabilized
for three iterations. The first time it fires, Cntrl-1 is activated; Cntrl-2 fires if Cntrl-1 hasfided

the signal unit has gone from O to 1, and so on. In ViBEunit “Cntrl-i” in the figure corresponds

to the control signal for thiéth binding network. Thus on successive firings of the signal unit, suc-
cessive binding networks are frozen. The sequencing network is robust in the sense that it is insen-
sitive to delays in the signal urstfiring pattern.

3.5.4 Shifting the Focus

In order to shift focus, the network must select the next location. This operation can be done using
top-down or bottom-up information, or some combination of the two. It is important that compu-
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cntrl-1 fires cntrl-2 fires cntrl-3 fires

Figure 3.6. A detailed diagram of a portion of the sequefiberunits shown above sends control signals t
the appropriate binding networks. The signal unit fires when all of its inputs are equal. The first time it
cntrl-1 starts firing. The next time, cntrl-2 fires, and so on. This structure is used to send control sign
successive binding networks.

tation time is kept as short as possible. In many situations it requires a mechanism for selecting the

maximally active priority unit. This task has been studied extensively in the connectionist literature

and there are several ways to do it. The current implementation of VISIT contains a unit with a

built in max function, and assumes that the operation can be done in more or less constant time.

This is not an unreasonable assumption. Given the complex analog processing that occurs within

neuronal dendritic branches, it is quite possible that a function as complex as maximum can be

computed very quickly

An alternate way to do this is to construetianer-take-all network (Feldman & Ballard, 1982) a
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Figure 3.7. A flexible architecture for selecting new locations.

network in which each unit has mutually inhibitory links. If configured propsdgh a network

will settle into a state where only the maximal unit is active. However these networks can take a
long time to settle, especially when the competing values ayerland very similant is also

seems to be quite iifult to find the correct set of inhibitory weights to create a robust solution.
With an analog VLSI implementation it may be possible to overcome some of these limitations
(Lazzaroet. al, 1989).

A more robust alternative is to construct a log-depth pyramid shaped network as in (Koch and UlI-
man, 1985) where each node computes the maximum of node values “below” it. Haiveeer

the human visual system is dealing with a very high resolution image (a@mikets), there just

isn't time for a binary log-depth network. It might be feasible if every level computed the max over
a lage number of neurons. For digital implementations, an attractive possibility is the mechanism
described in (Srinivas and Barnden, 1989). Their network selects the maximum in time logarithmic
in the number o&ctive units, and not the total number of units. Given that top-down mechanisms
can often eliminate many of the locations in parallel, this scheme is likely to provide a fast response
time.

I ncorporating Top Down Knowledge

In a realistic system, choosing the next location will be modulated by top-down knowledge. As
mentioned before, error vectors allow a fair amount of flexibilitig possible to pick the nearest
relevant location, locations only to the left, etc. Prior knowledge about absolute locations in the
image may also be important and should override all bottom-up information. This level of flexibil-
ity is not currently implemented, but a simple system for doing this is diagrammed in Figure 3.7.
A sub-network receives inputs specifying some general criterion for selecting the next bottom-up
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location (nearest, to-the-left-of, etc.). Based on this information it selects one of the error vectors.
This vector is fed to two more units. If top-down location information is present, then these units
will transmit it, otherwise the bottom-up error vector is used.

3.5.5Inhibition of Return

In order to avoid oscillations, the network must have some means of preventing the focus from
shifting back to a location that was just attended. An easy way to do this is to inhibit the priority
units corresponding to the object currently being visited. A similar scheme is believed to exist in
people and has been termekibition of return (PosnerCohen, & Rafal, 1982).dlimplement this,

we include an additional control signal that fires just before attention shifts to a new location. All
the units that are within the focus of attention shut themsel¥esitifa subsequent reset signal.
Theres one drawback to this: sometimes the system is attending geatation of the image, or
even the entire scene itWWthe above scheme, if the network is in this state and shifts to a new loca-
tion, it might inhibit all the priority units. This is clearly undesirable and suggests that the control
signal should not be sent purely automatic¢dliyt instead should depend on the context. Interest-
ingly, recent psychophysical studies confirm this behavior in people - inhibition of returntdoesn’
seem to be purely automatic but is task dependent (see Section 6.1.4).

This chapter has described a number of connectionist networks for implementing a fast and flexible
attentional mechanism. The model scales well in that the number of connections and units is linear
in the number of pixels. The model requires a small constant number of iterations to shift focus.

The next few chapters explore applications of this architecture and its relevance to biological sys-
tems.
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4. Computing Spatial Relations

This chapter describes the application of VISIT to the computation of spatial relations. Consider
the visual task of determining whether a set of three points form an equilateral triangle (Figure 4.1).
People are very good at solving this kind of problem. Standard feed-forward networks for solving
this task would not scale well to realistic image sizes. One reason for this is that local information
does not contribute to the solution: thened helpful information in the vertices themselves. In Fig-

ure 4.1, note that the only tfence between the two images is that the top vertex has moved down
and to the right. If each vertex was a single pixel, then the Hamming distance between the images
is only two. D solve this problem, the network must extract relational information such as the dis-
tances between the vertices. Thdidifties posed by this problem are common to a wide variety

of visual tasks and makes it a useful touchstone problem.

The most straightforward neural representations assign a distinct unit to each pattern that must be
classified. Unfortunatelyhe space of possible triangles is much tageléor this kind of approach

to be biologically possible. The optic nerve consists of about a million fibers from each eye, and so

it is reasonable to consider square images which are a thousand pixels on a side. Since each of the
three vertices can occupy any of these pixels, the total number of possible triangles in such an
image is about 10688108, A brute force representation would require about a million times as
many neurons as we have in our entire brain for just this one task. Restricting the units to represent
just the set of equilateral triangles would still require abot# anits. If coarse coded representa-

tions are used, these numbers can be reduced somewhat but it is still unappealing due to is lack of
generality

Techniques have been proposed for introducing translation and rotational invariance into networks
(Giles et. al., 1987) which eliminate the need for independent feature detectors at every location.
Unfortunately these methods require that every unit havgea(quadratic) number of connections

with complicated weight linkages between them. Furthermore, positional information is lost in
these representations - one cannot directly retrieve the location and orientation of the objects in the
image.

These dificulties would disappear if we could directly extract the real valued coordinates of the
vertices, say in the activations ®units. Using this representation it would be easy to construct
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units which compute the distance between a pair of points. The following sections describe a sim-
ple implementation of this technique using VISIT

4.1 VISIT and Equilateral Triangles

Figure 4.2 shows a schematic of VISIT as used to solve the equilateral triangle problem. The basic
structure of the network is as described in the previous ch&ptethis simple problem, the prior-

ity map just ranks local patches according to size. The working memory consists of sets of 3 bind-
ing networks arranged in succession. Each set stores the center and radius of the focus after each
fixation. The sequencer determines which set of binding networks should store the current location.

The system starts fofvith the focus of attention covering the entire image plane. The fine tuning
mechanism shrinks the focus until it is wrapped around the triangle. Once it stabilizes, a control
signal is generated to store the current parameters. The error vector corresponding to the highest
priority location is chosen to shift the focus to one of the vertices. The sequencer uses successive
control signals to store the locations of the three vertices in the next three binding networks. As the
network visits each location, the corresponding error units are inhibited, preventing the system
from visiting the same location twice.

After every location has been visited, the first set of binding networks will contain the position and
scale of the triangle. The next three bindings encode the positions and scales of the three vertices
in the order that they were processed. These values are made available to a set of units each of

Figure 4.1. The left triangle is equilateral.The right one is not.
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Figure 4.2. Overall architecture of the network.

which compute the distance between two of them. The outputs of the distance units are used to
determine equilateral ness.

4.1.1 The Simulator

The simulationsin this chapter used imageswith 256 by 256 pixels, or atotal of 65,536 inputs. The
complete network consisted of 131,912 units, or a little more than twice the number of pixels.
131,072 of these were the input and gate units; the exact number of unitsin the priority map varied
depending on the coarseness of the map. The total number of weights was approximately 700,000,
or about 10.7 times the number of pixels. This compares rather favourably against methods which
scale quadratically where about 256%, or 4,294,967,296 wei ghts would be required. Conversely,
given alimit of 700,000 weights, such a scheme would be restricted to 29 by 29 pixel images.

Figure 4.3 shows the graphical output of the simulator. In each display, the lower left quadrant dis-
plays the current input image (three point clusters). The upper left quadrant displays the output of
the gated image. The circle shows the implicit focus of attention represented by the three parame-
ters. In Figure 4.3(a) note that only the activity within the focusis allowed to propagate. The upper
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Figure 4.3. Examples of the system behavior for 256x256 bitmaps of point clusters. In both displays, th
left quadrant shows the image; the upper left quadrant shows the output of the gate units. The error ve
displayed in the upper right and the outputs of selected units are shown in the lower right. (a) shows a sn:
the system with the focus of attention near one of the clusters. (b) shows the dynamic scaling behavior as
tries to fit the cluster of points within it.
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right quadrant displays the error vectors. Each arrow represents the error vector for that location.
The shaded square represents the priority value - the darker the square the higher the priority

Figure 4.3 (b) illustrates the fine tuning scheme on the simuldterfocus of attention is initial-

ized to a wide circle, slightly b€enter (dotted circle). The set of concentric bands show successive
steps as the focus of attention decreases in size and shifts its location to fit the cluster inside. Note
that the correct center is found in one step, whereas the scale computation requires several itera-
tions. Figure 4.3(b) also demonstrates the sequencer and binding networks. The bottom left quad-
rant shows the output of the sets of three binding units. The first set of units has been frozen to
(167,128,59) whereas the rest of them are still free to follow the attention parameters. If a control
signal were to be generated naolne second set would be frozei(1®0,126,8) to represent the cur-

rent parameters.

4.1.2 Learning Spatial Relations

It is clear that VISIT can compute equilateralness with a linear number of weights, but there is an
additional important advantage. The system has the ability to transfer the image representation
from a pixel based representation to a highly compact one involving only locations and distances.
This allows spatial relations to bearned easily A system using just an image based representation
will need a lage number of examples to learn the correct relation. The spatial relationships that
define equilateralness will have to be discovered for each position, scale, and orientation of the tri-
angles. Vith a compact representation, the network can easily learn the correct function with very
few training examples.

This was demonstrated by feeding the outputs of the working memory to a backpropagation net-
work (McClelland & Rumelhart, 1986) which was used to learn to classify equilateral triangles.
The training images consisted of random triangles, approxin&a&d\of which were equilateral.

Some noise was added around each vertex. For each image the focus of attention was initialized to
cover the entire image plane. The system was allowed to run until all the units in the priority map
were processed. The outputs of the working memory were then used to train the backprop net. The
teacher signal was generated according to:

il =1y 1 -y 4.1)
L +1,+1g '

where|, is the length of the th side. This is a function which is 1 for equilateral triangles and
degrades gradually to O as the triangles deviate from equilateralness.
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Figure 4.4. Results after parsing an equilateral triangle and a non-equilateral triangle. (Only the first four
units are used heje.

Essentiallythe network just had to learn the equality function of three of its inputts a\aining

set of only 100 triangles the network score was consistently greater than 0.9 for equilateral triangles
on independent test sets. This would be quite remarkable for a feed forward network considering
the size of the input space. Furthermore, note that due to the compact representation, the number
of required training examples is independent of the image size.

Figure 4.4 shows the state of the network after parsing tfeyetit triangles. The system correctly
classified the left triangle as being equilateral and the right one as not being equilateral. The outputs
of the binding networks show the vertex coordinates that were discovered by the network. Figure
4.5 shows a series of images from our simulator at several stages of a typical recognition sequence.

4.2 Discussion

Determining the relative locations of objects is a basic visual computation and shows up in numer-
ous tasks. These relations areficedntly represented in a feed forward network. The point of this
chapter has been to demonstrate that with an attentional mechanism, orfeciesutiyeextract
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Figure 4.5. Four steps in a typical run. (a) Determining the size and location of the whole triangle. (b) - (
work after fixating on each of the three vertices. Note that the binding networks are updated.comeetall
four positions are available, the network correctly classifies the triangle to be equilateral (bottom right of
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such relations. The solution presented herefisi&iit in three diierent ways. The number of
weights used to solve the task is linear in the image size. The number of sequential steps is on the
order of the number of vertices and independent of the image size. Rimalhyimber of training
exemplars necessary to learn the function is very small and is again independent of the image size.
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5. Visual Search

What is the best way to search for an object in a cluttered scene? Consider images of the type shown
in Figure 5.1. The goal is to search for @y&trobject specified by a combination of features (e.g.

a shaded horizontal figure). The task is a natural one for people, and for the last two decades psy-
chologists have studied visual search in detail. Their experiments have shown that even in rela-
tively simple scenes, some form of visual attention is required for the task. In fact, a significant
fraction of the psychological knowledge on attention comes from visual search experiments.

There are good computationafjaments to support this evidence. Suppose the image contains one
object: a red horizontal hdkt is easy to construct a parallel network which detects this bars’ fea-
tures. Wth a setup as in Figure 5.2, the “red” and “horizontal” feature units will be activated at the

@ ] [ ]

(b)

Figure 5.1. Sample images for visual search. In both figures, the task is to detect the
shaded horizontal rectangle.
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desired locations. Wsimply add one output unit per feature map. Each output unit computes a glo-
bal OR of the activity in the corresponding feature map. Since there is a single object, any activity
in the feature map must correspond to properties of that object. The values of the output units must
correspond to the features of the object.

It is also possible to recover the location of a single object in a feed-forward ma&aman simply
use the center of mass computation that was used in Chapter 4. The scheme is aiepie aefd
works well when there is a single object.

The above methods break down for scenes containing multiple objects since featuresdrent dif
objects can interfere with each othén image containing one red object and one horizontal object
would cause the global red and horizontal detectors to both light up. For example, both Figure
5.3(a) and Figure 5.3(b) would produce the same actilitg central problem is the inability to

bind the features “red” and “horizontal” to the same location. Locations are disolib com-

pute due to the crosstalk between two objects. The center of mass network would simply compute
the center of mass of the whole scene.

A partial solution might include a separate detector for every possible combination of features at
every location. In addition to the basic feature detectors, every location would also contain a blue-
horizontal detectora red-horizontal detectoand so on. A global OR of all the red-horizontal
detectors would correctly signal the presence of a red-horizontal object. This scheme has a major

Vertical /—V©—>
OR

Horizontal - /—'©—> 1
OR

Red - /VQ——> 1
OR

Image

Figure 5.2. Feature maps with global GR’
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(@) (b)

Figure 5.3. Both figures would induce the same activity on the global OR units.

problem - the number of units grows combinatoriaflgr more complex search tasks, such as
determining whether a red object appears next to a blue object, the number of units quickly become
infeasible. A second problem with this scheme is that one still cannot recover the locations of indi-
vidual objects.

Using visual attention, the natural solution is to temporarily inhibit all the activity in the image
except at a single object. In this wé#lye single object method described above will work. Global
red and horizontal detectors are nowfisignt to detect feature conjunctions since only one object

is active at a time. The cluster detection scheme can also be used to compute tdamaeati.

Such a system would attend to each object in turn until the red and horizontal detectors both fire.

5.1 Augmenting VISIT for Visual Search

Several refinements to VISIT are necessary to perform visual search. These are discussed in the
following sections. Figure 5.4 shows an overview of the network. There are two separate pathways
from the image. The left pathway contains the gating network and makes decisions local to each
object. The right pathway prioritizes image locations using top down information abougtte tar

and bottom-up information from the image. The control network mediates the information flow
between the two. In the following sections we discuss each of the components in detail.
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5.1.1 The Feature Maps

Feature maps in VISIT correspond to the topographic maps computed early in the visual system.
A set of basic features (orientation, color, etc.) are detected for every location in the image in par-
alel (Figure5.5). Thereisone unit for each feature at every location, organized topographically in
layers. The activity of each unit within the layer represents the presence of a basic feature in the
image at the corresponding image location. The activity of nearby units represents the presence of
the feature at nearby locations. Each feature detector transmitsits signal to the gating network and
the priority network (described below). We a so include aunit for each feature that computes aglo-
bal sum of the corresponding map (Figure 5.2). In the current implementation of VISIT, two colors
(red, blue) and two orientations (horizontal, vertical) are represented by feature maps. Theissue of
exactly which features should be computed in this way is an active area of research. For our pur-
poses, any local feature can be included. (See Section 5.3 for more discussion on thistopic.)

?

Feature Map: ———  » Global sum

Red

Blue
Horizontal
Vertical

A

I magl;e

Figure 5.5. Four features are computed from the image.
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5.1.2 The Gated Feature Maps

To recognize the individual objects, VISIT must bind the presence of features with one image loca-
tion. One possibility would be to inhibit the feature maps themselves: @iyenonly the feature

units within the circle should be active. There is a problem with this scheme: when attention is nar-
rowly focussed, most of the image will be inhibited. As a result, the system will be unable to make
global decisions based on the features. This facility is critical in VISIT fiorezit search. All we

really need to inhibit is the transmission of features to the recognition stage, not the entire feature
map. W& accomplish this by including a gated feature map for each primitive feature. Each unit
within a gated feature map receives activation from the corresponding feature detector and inhibi-
tion from a gate unit (Figure 5.6). The ndeet is that if the gated feature units fall within the circle

they mimic the output of the feature detectors. Otherwise they are inhibited.

As with regular feature maps, the network computes a global OR for each gated feature map. Thus,
to check whether an object has a certain feature combination, the network can focus on that location
and check the global OR units of the corresponding gated feature maps. Using this configuration
the network can &tiently access both local and global feature information simultanedinsye

is some psychological evidence to support this. Even when attention is highly focused, people are
able to report primitive features of objects appearing outside the focus of attention, but not combi-

nations of features (Roek. al, 1990).
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5.1.3 ThePriority Network

The job of the priority network is to rank image locations in order of relevance. As with the equi-
lateral triangle network, a coarse coded error map encodes the saliency of image locations as well
as an error vector for updating the focus of attention. As the focus of attention shifts to successive
locations, the corresponding error units are inhibited. This prevents the focus of attention from vis-
iting the same location twice.

The main enhancement lies in the way priorities are assigned. In the previous chggtg@oiat

clusters were always given higher priority than small ones. This whsienf for sparse dot-
images, but for cluttered, realistic scenes this simple model will result in vefigigrgfsearch
sequences. Several psychophysical experiments have pointed out other possibaies.&Y
Jonides, 1990) have shown that stimuli which appear abruptly are attended to sooner than persis-
tent stimuli. This can be overriden by explicitly instructing the subject to concentrate on a partic-
ular location. Experiments on visual search by (Ege#d, 1984) suggest that objects with the
same features or form as thegetrobject can get higher priority than other objects. (See Cl@apter

for more detail.) All of this suggests a much more dynamic and flexible priority system than one
which simply ranks the locations based on pixel density

This sort of flexibility can be incorporated into the priority and control networks without any loss

of efficiency Within the priority network, we allow each feature map to have an independent
weight. This value represents the importance of the feature map to the current task and can be
dynamically adjusted by the control network (see below). The weights are represented as the acti-
vations of a set of units. The saliency at locatig, s, is computed as the weighted sum:

S(y = pr WfAfxy (51)

wherew, is the weight assigned to feattiranda,,, is the activation of the feature unit at location
(xy). A coarse coded saliency unitjn the error map computes its output as:

Ai = GD C 5.2
E)L'y;':iskyt (5.2)

RF, denotes the receptive field of uind@ndr is a monotonically increasing function of its input (in
our implementation we use a sigmoid). Whens o, featuref has no géct on the locations which
are attended. This allows the system to completely shilteoéfect of any feature map in parallel.

1. In a continually running system, the inhibition should decay over time so that the system can return to the
location laterIn our system we simply reset the inhibition after each search.
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5.1.4 The Working Memory

The working memory is augmented to store the features of et t@@ibject once it is selected.
These features are used to set the priority levels (see below) and for recognition. Each set of bind-
ing networks now store the four feature values as well as the location. VISIT stops when the global
OR values of the current gated feature maps match these stored values exactly

5.1.5 SWIFT: A Strategy for Setting the Priority Levels

The main diference in the control network is the sub-system, named SWilki¢h controls the

search process. The main function of SWIFT is to integrate top-down and bottom-up knowledge
to efiiciently guide the search process. Since we are performing directed visual search, the network
can use previously stored information about thgetaobject to prune the search space. Specifi-
cally, we rely on the observation that the desired object must caitdire features of the et

object. Letr; be the set of features attributed to thgeaobject. Using the ability to weight feature
maps diferently the SWIFT network can, in parallel, remove the influence of all but one of the
features’ in F;. By settingw;. to 1, and all others t0, the system will only visit those locations
which contain this feature. (Hence the name SW&&arch With Features Thrown otit.)

We use a second observation to sefectince we are free to choose any feature;iasf’, we

should set’ to be that feature which corresponds to the least number of objects, thus minimizing
search time. In the current simulation we use boolean feature maps, so the map with the minimal
total activity is most likely to contain the smallest number of objects. (If real valued features are
used, outputs should be thresholded before totaling.)

SWIFT, then, goes through the following sequence in guiding the search. When presented with the
target object, the network first stores all the features which belong to it. Once the image is pre-
sented, the total activity of all the feature maps are computed in parallel. The system then chooses
> and setsvy;. to be1 and all others to be Search then proceeds by sequentially visiting locations

in order of their saliencyAs the focus of attention stabilizes on each location, an independent net-
work checks the features of the current object against the stagetirgpresentation. This contin-

ues until a match is found or there are no more active error units.

1. SWIFT was inspired by the experiments in (Eggtlal 1984). See Chapt&r

33



YISUAL SEARCH

'

I
I
e

e ~.
"~
%,
Y,
|\ | Wpoints [11]
]\ Image file: </sim/searchfimages/®
I I - \ - Updating...done
|
|
|
/
/
-— f -—
/
/

Figure 5.7. Output of the simulator

5.2 Network Simulations

In this section we discuss the performance of VISIT on search tasks. Figure 5.7 shows the output
of our simulatarThe graphics display on the left shows various portions of the network. The bot-
tom left window depicts the image. Black regions indicate blue objects and the shaded regions indi-
cate red objects. The circle depicts the current focus of attention. In the figure, the system is
currently attending to the whole image. In the current simulations, there are four features repre-
sented. The top left window shows the outputs of the four gated feature maps. In clockwise order
from the top left they are: blue, red, horizontal, and vertical. When the focus of attention narrows
(Figure 5.8), only those gated feature units within it will respond.

The priority network is shown in the right half of the displ@ie bottom right window depicts
those feature maps which currently influence the priority network. In Figure 5.7 all the feature
maps are currently faicting the priority network. The top right window shows the error map. As
with the equilateral triangle network, each location in the error map contains two units for the error
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Figure 5.8. The initial display showing all possibley&drobjects. The user is
about to select the black vertical object agear

vector and one unit for the saliency of the location. The arrows indicate the direction and magnitude
of the error vectorin Figure 5.8 note that the error vectors have compensated for the change in
focus of attention. The saliency is computed as described in Section 5.1.3 above. As the focus of
attention visits each object, the saliency unit at that location is inhibited. (Only those locations
whose saliency value is greater than .2 are shown in the djsplay

The buttons on the right control various aspects of the simulation, such as loading images, stepping
through the simulation, etc. The three sliders allow the user to explicitly sey, Ané Ar using
the mouse.

When first started up, the system displays an image containing an instance of each object. The user
narrows the focus of attention to the desiredatiobject using the sliders. The gated ©OROW
correspond to its features. The user then clicks on the “Select Object” button which causes these
values to be stored in working memoBuring a search, when the network attends to an object,

the values of the memory units are compared to the outputs of the gatedf@y match, then

the taget has been found, otherwise the network continues searching until there are no more can-
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5.2.1 An Example Search

Y

Figure 5.9. Start of the search.

In Figure 5.1 the taget has been detected.

5.2.2 Computing Search Time

M = min;;{O(f)}
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Figure 5.9, Figure 5.10, and Figure bdemonstrate a sample search sequence for a blue vertical
item. Once the tget object has been selected, the red and horizontal feature maps éechtteaf
priority network (Figure 5.9). Once the search starts, only the vertical feature map continues to
influence the priority network, since there are fewer vertical objects than blue objects (Figure 5.10).

Note that, with SWIFTsearch times do not depend ontthtel number of objects. Since SWIFT
always searches the minimal feature map, the critical variabteat determines search time is:




VISUAL SEARCH

Figure 5.10. A step in the search sequence.

wheref ranges over all the @&t objects features, and(f) is the number of objects with feature

In our architecture, search will always be lineamirNote that the above equation correctly pre-
dicts the time required for the original single and conjunctive feature searches. In conjunctive fea-
ture searches (€isman & Gelade, 1980), if the features of the distractors are chosen raraomly
averagev = %D, thus the model predicts search time that is linear irhe interesting case occurs
during a conjunction search wheiris not related to, in which case search time will not be linear

in D. Figure 5.12 and Figure 5.13 illustrate this. In the four images in Figured5:dains con-

stant but™M increases graduallyn Figure 5.14M remains constant but increases gradually
SWIFT predicts that in the first situation reaction time should increase linearly whereas it should
remain constant in the second case.

Figure 5.14 and Figure 5.15 plot the average search time (number of fixations per image averaged
over several trials) for various combinationsvodndD. In Figure 5.14, the number of distractors

is fixed at 40 a1 is gradually increased. As expected, mean search time increases, linghrly

an approximately 2:1 ratio in the slopes. In Figure 5.15, the graphs show that search time can
remain relatively flat ab increases, as long as M is held constant. Again, search times for images
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Figure 5.1. The final step in the search sequence.

with taigets are approximately half that of images with ngets.

5.3 Optimizing Visual Search

5.3.1 Optimal Featuresfor Visual Search

What are the best set of features for visual search? If SWIFT is used as a constraint, then we want
the set of features that minimik& over all possible images andgat objects, i.e. that best dis-
criminate objects. Itis easy to see that the optimal set of features should be maximally uncorrelated
and that the distribution of feature values should be uniform over the space of possible objects. In
other words, the optimal features should be the principal components of the distribution of images.
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Figure 5.12. The tget object in the above images is a black vertical rectangle. SWIFT predicts a lir
increase in search time from image (a) M=1, (b) M=5, (c) M=10, to (d) M=20. The total number of objec
the same in all figures.
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Figure 5.13. Thetarget object isagain ablack vertical object. In (a)-(d), M remains constant at 5 but the total
number of objects increases from 10 to 40. Target detection times should remain constant.
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Figure 5.14. Search time vs M, with D=40.

It is interesting to note that a single Hebb neuron extracts testgorincipal component of the
input distribution and with inhibition, sets of Hebbian neurons can extract successively smaller
components (Becker1991). Moreover as some researchers have demonstrated (e.g.
Linsker1989), simple Hebbian learning can lead to features that look very similar to the features
in the visual cortex. If the early features in visual cortex are in fact the principal components, then
SWIFT is a simple strategy that takes advantage of it.

5.3.2 Detecting Feature Combinationsin Constant Time

It turns out that, in this architecture, it is possible to implement a strategy which detects some con-
junctions of features in constant time. The way to do this is simple: if the task is to search for a
blue-horizontal feature, inhibit all the maps except blue and horizontal. Let the activity of the
saliency units increase monotonically as the sum of all the active feature detectors within its recep-
tive field. Then, the location with the highest activity will be the one with both blue and horizontal
detectors active. Thus, if search proceeds according to highest sahenogtwork should always
discover the blue-horizontal object first, regardless of the distractors. This does not imply however
that the binding problem can be solved in a feed-forward network. The above method still requires
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Figure 5.15. Search time vs D for various values of M. (a) Target absent.
(b) Target present.
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Figure 5.16. An example of conjunction search where the two features are not Tikartaget is
the trapezoid with two oriendesides. In this case, one can arbitrarily increase the distance betwee
the two features (the orientation of the left and right hand sides) by increasing the size of the obje

top-down feedback to inhibit the irrelevant feature maps and still requires selective attention to
recover the objec’location. In any case, it seems possible to havefiareef, implementable
scheme which detects feature combinations in constant time.

A problem with the above scheme is that it is not very general. It does not work if the relevant
object features are not physically close together example, consider Figure 5.16. Thgeais

the trapezoid with both sides at an angle. The distractors either have the left or right side at an angle.
In this example, the distance between the relevant features may be arbitrarily increased. A strategy
which tried to determine the co-ocurrence of the two features in parallel, would need to know the
feature separation ahead of time. This can get to be quite a complex task. Note that in the figure,
the separation between the objects can be smaller than the separation between the features.

5.4 Discussion

VISIT is an implemented model and makes several strong predictions about human visual attention
and visual search. These predictions could be easily tested by appropriate experiments.
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The model describes precisely how long search should takéaredif circumstances. In particu-

lar, when a taget has at least one unique basic feature (when compared to the distractors), then
search time should be constant. It doesrédtter whether the search is for a conjunction of several
features or for a single feature. For example searching for a blue-vertical object should always take
constant time if the distractors are all red and green horizontal objects. Whegehddas share
features with the distractors, then the search time should be linear in M, the number of objects
which share the least active feature in the image. Experiments which control M and D should be
able to determine whether people also use the same strategy

To my knowledge the above experiment has not been carried out. However VISIT plus SWIFT can
help account for a Ige portion of the existing experimental results on attention and visual search.
In the next chapter we discuss this and other relationships with human attention.
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6. Visual Attention I n People: Implementation

Much of VISIT was inspired by the psychological, and biological knowledge on attention. The next
two chapters review some of this work and its relationship to VI®iTacilitate comparison the

text is divided into two broad topics: the mechanics of visual attention (how it is implemented), and
its use.

6.1 Psychophysical InsightsInto the Implementation

6.1.1 Evidence that Attention Exists

The first experimental evidence for covert visual attention was obtained from reaction time studies
(for a review see Posn&ohen, & Rafal, 1982). In a typical experiment, subjects are shown a dis-
play consisting of three squares. The task is to press a button as soon getlobjict appears

in one of the boxes and the reaction time of the subject is measured. In some of the triadgtthe tar
is preceded by a cue, such as one of the boxes becoming brighter (Figurel®l uas predict

target location with a probability of 0.8; invalid cues do so with probability 0.2. The basic result is
that reaction time is significantly faster in trials consisting of a valid cue than in trials with no cue.

Delay
] = |[=

Figure 6.1. The subject is asked to press a button as soon agehénahis case an “X”) appears in on
of the boxes. Response times are facilitated in trials where a predictive cue appears (i.e. in the fi
darkened square) some time before thgetar
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Reaction time is significantly slower when the cue is invalid. Saccadic eye movements are ruled
out in these experiments. This clearly demonstrates that an internal change in prodessimgyef
occurs and that thefett is spatially localized.

6.1.2 How Long Does Attention Take?

By varying the delay between the presentation of the cue anddkg {®osnerCohen, & Rafal,

1982) were able to study the speed with which attention can wattk aVilelay o0 msecs, there

is no cued-side advantage, but changes in reaction time can begin as Soomsass after cue
presentation. B¥50 msecs, there is a marked improvementficiehcy (Julesz & Begen, 1987)

have reported similar figures - they claim that attention only takes 4donsecs. In tasks that
require multiple shifts of attention, such as visual search, figures as B)aBAsnsecs have been
reported (Teisman, 1988). Given that individual neurons can only fire once Bxrynsecs, this
leaves at most-10 sequential steps per shift. These values are quite astonishing considering that
each shift entails disengaging attention from the current location, deciding which location to visit
next, and performing the actual shift. Given these temporal constraints, each of the operations is
probably performed by separate parallel modules. In VI&i€e the location is selected, the shift
itself takes abou or 3 time steps. During visual search, new locations are selected in parallel with
the shifting process. The netwakiehavior therefore is quite consistent with the above timing
results.

6.1.3 Deter mining which L ocation to Attend Next

One of the basic components of an attentional mechanism is the task of deciding which locations
to visit. There are two possible sources of information which daotdhis decision: bottom-up

and top-down information. In this section | review existing knowledge about thdseelif
sources.

Bottom Up Processing

Bottom-up information refers to the information obtained solely from the image. The literature
shows that several types of bottom up cues can attract attention. For example, an object containing
a distinctive feature often attracts attention. In addition, changes in image features are often pow-
erful cues for attracting attention. For example, in (Po$@hen, & Rafal, 1982), both increases

or decreases in edge intensity resulted in a cued-side advantages &Jonides, 1990) show that
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stimuli appearing suddenly are more likely to attract attention than persistent stimuli. Follow-up
experiments suggest that after a desdiynuli which had appeared abruptly have the same priority
as non-abrupt stimuli, suggestive of a priority value that decays with tiaméig¥ Jones, 1990).

Top Down Processing

Top down information can also have ayinfluence on attended locations. In (Pqs@ehen, &

Rafal, 1982), a high-level cue (such as a central arrow indicating direction) could serve to attract
attention. In addition, if a cue appears consistently on the wrong side, the subject learns through
experience to shift attention automatically to the opposite box (this takes about 300 msecs). The
experiments in (Egeth,ikZi, & Garbart, 1984) suggest that attention can be restricted to objects
containing a particular feature if the subject is told about the feature in advaartés &Jonides,

1990) provide further evidence along these lines. They report that, although abrupt stimuli seem to
have higher priority over non-abrupt stimuli, this can be overridden if the subject is already focused
on another task.

I ntegrating Top Down and Bottom Up Information

These experiments together illustrate a highly flexible system for deciding on the next location.
Both top-down and bottom-up information must play a rolan{ié & Jonides, 1990) suggest a
hierarchical priority system that assigns variable priorities to spatial locations. In their scheme,
locations which are currently being attended to have higher priority than abrupt onsets which in
turn have higher priority than non-onsets.

VISIT implements a generalized version of the above hypothesis. The model has the ability to
include a default weighting of the feature maps. For example, the motion and abrupt onset maps
could be given higher priority than static maps. As in SWtk&se weights can be dynamically
adjusted according to the situation. The actual priority levels can depend both ogeaheligact

and the image. If top-down location information is available, the control network is free to ignore
the priority map. The default weights are used in the absence of other information. Currently there
is no mechanism for decaying priority values, but it could be added.easily

An interesting twist to thesefetts is discussed by (Johnston, Farnham, & Hawll@91). There
is a well-known phenomenon that subjects respond faster to familiar words than unfamiliar words.
In these experiments, a set of four words are flashed briefly (durations ranged from 33 msecs to 200
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msecs), masked, and a word is presented centrally; the ssittgestt’is to identify the location in

the first display of the cued word. It is assumed that the subject must attend to the word in the first
display in order to accurately localize it. They find that subjects are most accurate at localizing the
cued word if it is a unique novel word in the presence of familiar words, or a unique familiar word

in the presence of novel words. Thifeet was found even at the extremely brief duration of 33
msecs! These results suggest that a SWIFT type search strategy might even play a role for very
high-level features, such as “novelty” or “familiarity”.

6.1.4 Inhibition of return

(PosnerCohen & Rafal, 1982) have compared tHeieihcy of cued locations against other loca-
tions of equal eccentricity after initial cue onset. The results suggest that attention shifts tempo-
rarily decrease the priority of locations after the initial vis#tzriied “inhibition of return”, such a
mechanism is clearly useful to prevent oscillations, such as continual shifts between the two high-
est priority locations.

Interestingly this mechanism seems to be quite selective. Inhibition of return does not occur with
central locations but seems to co-occur only with shifts to peripheral locations (Fismen &

Rafal, 1982). Experiments reported in (Ratakl, 1989) show that the inhibition does not occur

with endogenously generated shifts of attention (e.g. one induced by a high-level stimuli such as
an arrow) unless the subject is about to make a saccade to that location. In fact, inhibition of return
always seems to accompany a saccade. Experiments in (Klein, 1988) suggest that it is active during
serial visual search.

Although the exact conditions under which inhibition of return operates is not completely known,
overall it seems to be used in quite a sensible manner and only when the conditions require it.
Clearly it is useful for visual search. Why should it be active so predominately with eye saccades?
One answer is that saccades take much longer than covert attention (about 200-300 msecs), so the
cost of executing a saccade is relatively high. Also, due to the high resolution of the fovea, once
we have saccaded somewhere, we have a lot of information about that location. Hence there is
almost never a need to attend to such a location immediately afterwards. In fact recent experiments
indicate that the inhibition may even be relative to some external frame of reference and not the
retinal frame (Rafal, personal communication). This would allow the mechanism to integrate
smoothly with eye saccades.

VISIT currently implements a very straightforward inhibition of return, i.e. it always inhibits the
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priority units during the shift. The above rules could easily be added to the control networks.

6.1.5 The Shape of the Focus

The exact size and shape of the focus of attention is a matter of extensive debate. Spatial theories
of attention ague that attention operates on a single convex region in visual space. An example is
the “zoom-lens” model (Eriksen &eh, 1985). Eriksen ande¥ suggest that only one region can

be attended to at a time. This region can vary continuously in size, from being distributed over the
entire visual field to being narrowly focussed on one object. Morgibnsr propose that the num-

ber of “units of information” that can be processed per unit time remains constant. Like zoom
lenses on cameras, there is an inverse relationship between the resolving power and the area of
focus.

In contrast to spatial theories, object based theories of attergios @nat attention is allocated to
perceptual groups, or high-level objects, rather than a single spatial region. Thus the shape would
be determined completely by the shape of the object that is attended. As evidence to support this,
Lappin (1967) reports experiments where subjects are faster at reporting multiple properties
belonging to the same object than tdedi#nt objects. This is true even when the objects are over-
lapping (Duncan, 1984), a fact that cannot be explained by a purely location based theory

Although a detailed review of the object-based theories is beyond the scope of this thesis, it should
be pointed out that object-based theories and spatial theories of attention do not necessarily conflict
with each otheiit is possible to explain all the results by postulating attentional mechanisms at the
level of both spatial representations as well as highagr object representations (e.g. as in the
object-file model (Kahnemanydisman, & Gibbs, 1991)). Thefeftiveness of high-level cues in
attracting attention (in the absence of any image cues) seems to strgngljoauthe existence of

some sort of a spatial mechanism. Recent experiments show that, with appropriate controls, both
spatial proximity and grouping fetts can be demonstrated (Kramer & Jacobson, 1991). The
nature of the interaction between the two forms of attention is an interesting question and currently
an open one.

6.1.6 Does Attention Move Continuously or Doesit Jump?

Another area of controversy involves the question of how shifts of attention take place. (Shulman,
Remington, & McLean, 1979) reports evidence that attention moves continuously across the visual
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field. In their experiment subjects were to indicate when any one of SLED). An arrow point-

ing left or right would appeaindicating that either the tdeft or the farright LED had a high
expectation of being lit. After 200-300 msecs, the responses to the far LED on the expected side
were facilitated. The main result is that responses to the near LED on the expected side were also
facilitated about 150-200 msecs after the cue appeared. This facilitation was reduced after about
300msecs. The authors suggest that the spotlight of attention starts at the location of fixation and
moves in an analog fashion towards the next fixation.

In (Remington & Pierce, 1984) howey#re authors present contradictory evidence. In this paper
they attempt to directly measure the time required to perform this shift of attention. They did this
by varying the time between the cue-onset and stimulus-onset. Their central result is that the time
seems to be constant and independent of the distance. These findings imply that, either attention
does not move in a continuous fashion or that the speed of the shift somehow increases with the
distance. RecentlyGarvin Chastain (1991, personal communication) has provided further evi-
dence that attention does not move in a continuous fashion. In his experiments subjects attended to
stimuli which moved from one location to anothResponse times to random probes throughout

the process was used as a measure of respditseeht diferent locations. The results suggest

that during a shift, the &facy gradually dies down at one location and simultaneously increases

in the otherThe average Bfacy at any time remains approximately constant suggesting that atten-
tion does not move continuously from one spot to another

In summarythe evidence seems to favor a focus that jumps from one spot to aalbtioergh it

is by no means definitive. It is quite possible that both types exist. It is well known that eye move-
ments have two forms: continuous pursuit when the eye is following a moving object, and jumpy
saccades as when the eye fixates on a novel objertz\& Goldbeg, 1989). There has been
recent preliminary evidence indicating that covert attention is also used in motion computations
(see Section 7.2.4) so it is quite plausible that covert attention contains analogous smooth pursuit
and saccadic movements. VISIT currently implements a focus that jumps, although the gating net-
work is fast enough to implement either mechanism by appropriately controlling the attention
parameters.
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Figure 6.2. Some of the major connections between the various visual areas. Those connections without an
arrow are known to be bi-directional.

6.2 Physiological I nsights Into the Implementation

The last ten years have witnessed an explosion in the knowledge on the physiology of vision and
visual attention. The following sections review some of thiswork and its relationship to VISI T,

After visual information is processed in the reting, it is routed to two different areas of the brain
(Figure 6.5). Long axons from retinal ganglion cells form the optic nerve which terminates at the

1. A detailed review of the biology of vision is beyond the scope of thisthesis. Two good books dealing with
the topics covered here are (Spillman & Werner, 1990) and (Wurtz & Goldberg, 1989). For shorter reviews
see (Van Essen & Anderson, 1990) and (Schiller, 1985).
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Thalamus
Superior Colliculus

Figure 6.3. A schematic of the relative locations of the various visual areas. (Adapted from (Spilin
& Werner 1990)).

LGN. The optic radiation proceeds to the primary visual cortex. The LGN is part of the thalamus
(Figure 6.3 and Figure 6.4) and is the primarge#aof retinal axons. There are approximately one
million fibers in the optic nerve and about the same number of neurons in the LGN. There is a sec-
ond path from the retina directly to the superior colliculus. This pathway plays an important role

in orienting behaviors such as eye saccades and there is a good chance that it is also used for covert
attention.

6.21LGN, V1, and V2

Each of the areas LGN, V1, and V2 form a topographic map of retinal aaittitgugh the details

vary from area to area. The layers are connected in a roughly hierarchical fashion, with the recep-
tive field sizes increasing as one moves up the hieraltasynot a strict feed-forward hierarghy

since there are pathways which skip layers (e.g. V1 to MT). Connections with other cortical areas
also tend to be bi-directional and topographic. Thgetarof each neuron send back projections to

the same neuron. In the LGN, some estimates place the number of returning fibersléttabhest

the number of outgoing fibers. Each cortical area also sends significant (reciprocal) projections to
the pulvinar (see below).

These areas are analogous to the set of early feature maps inNé8Fdns sensitive to the ori-
entation of stimuli, as well as cells selective to spatial frequermdygcity, binocular disparity

color, length, end-stops, curvature, texture, and motion have been found in both V1 and V2 (Hubel
& Wiesel, 1968; ¥n Essen & Anderson, 1990). The complete set of features has yet to be deter-
mined. V1 contains abod000 times as many neurons as the LGN. Since the LGN has a roughly
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Figure 6.4. Enlayed view of the thalamus. (Adapted from (Ladgzr1990)).

1:1 mapping with retinal ganglion cells, there may exist hundredsfefeht features maps in V1

alone. Itis appealing to compare physiological properties of cells with the perceptual features stud-
ied by psychophysicists. Unfortunately the mapping between the two is not alwaySaexam-

ple, some cells code for a combination of spatial frequency and orientatioal{e&/De \alois,

1988) which seems to be perceptually unnatural. There are also some discrepancies between psy-
chological and physiological findingsréisman & Sato, 1990). Nevertheless perceptual features

are almost certainly derived from the responses of cells in V1 and V2. There are many correlations
between perceptual features and V1 cell properties, so as a first approximation VISIT models the
two as being identical.

There are a number of details which may be important in the computation of the early features but
may not have much relevance to the attention process itself. VISIT does not depend on the exist-
ence feed-back links, lateral connections, magno vs. parvo cells, or an explicit feature hierarchy
The visual areas have many other complex tasks to perform - many of which may require these
distinctions. Examples include stereo and motion computations, segmentation, and possibly mental
imagery and learning. VISIT makes no commitments to the actual computation of the early fea-
tures - the network structure can easily utilize more complex models incorporating the above fea-
tures.

The structure of VISIT does impose the following restriction - focussed attention should not have
any local effects on the early features. VISIT relies on the ability to simultaneously access both
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global and local feature information. In particulglobal information is critical in determining the
location to shift to next. As far as | am aware, this restriction is consistent with the physiological
knowledge. There have been some non-local eye-saccade refattsl fported in V1 and V2
such as an overall increase in activity just before saccades (Gp&lis&agraves, 1989). No local
attentional dkcts have yet been seen, although people have actively looked for it (Moran & Des-
imone, 1985);

6.2.2 AreasV4and IT

In the traditional hierarchical view of the visual system, areas V4 and IT (inferotemporal cortex)
would represent levels and5, after LGN, V1, and V2. There is some evidence in favor of this
viewpoint. In V4 and IT receptive field sizes continue to increase such that in IT each cell responds
to more than half of the visual field. Furthermore, as predicted by the,thelhsyin IT are much

more selective in their preferred stimulus than cells in earlier areas (Desimone, 1991). For exam-
ple, some cells respond only to hands (Getsal, 1972) whereas some respond only to faces
(Bruceet. al, 1981), or even profiles of faces (Desimeheal, 1984). Howevercontrary to the

strictly feed-forward viewthere exists strong evidence that spatial attention begins to play a major
role in these areas.

The primary evidence for this stems from Moran & Desimone (1985) who report evidence that the
effective sizes and locations of the receptive fields of neurons in area V4 and IT can change accord-
ing to the task that the animal is trying to perform. It was found that cells in V4 whose receptive
fields encompassed an attended stimulus, did not respond to unattended stimuli. They showed a
normal response to attended stimuli indicating that attention does not enhance activity but tends to
suppress unattended regions. Howethex cells did respond to unattended stimuli if the attended
stimulus was outside its receptive field. Cells in IT showed similar characteristics except that they
never responded to unattended stimulus.

Lesion studies also point to a similar conclusion. Schiller and Lee (1991) exafaats ef lesions

in V4 on visual capacities. Five monkeys were first trained on detection and discrimination tasks.
The tasks tested brightness discrimination, size, shape, paltern, motion, and stereoscopic
depth perception. These were tested in two ways: thettabject could either be more salient than

the rest along the relevant dimension, or less salient. For example, the task could be to detect a
bright taget among dimmer distractors, or a ding&ramong bright distractors. After lesions to

area V4 corresponding to the lower half of the visual field, performance was checked in regions
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that were intact and also those that wefecééd by the lesions. They found that the monkeys
responded much faster and with more accuracy to the more salgaitttean to the less salient
target when stimuli were presented in the lesioned fielith Yalient tagets the déct was mild

and dropped 6fat the same rate as the normal field (as discriminability decreased). This occurred
with bright tagets among dim ones, ¢gr among small, and moving among non-statiorisepa-

rate experiments established that there were almost no deficits in detecting singly pregetsed tar

of any type. The authors conclude that area V4 is involved in detecting less salient stimuli, a task
that is thought to require attention.

6.2.3 Pulvinar

The pulvinar is a located in the dorsal part of the thalamus (Figure 6.3) and is strongly connected
to just about every visual area, including the areas discussed swfauperior colliculus (SC),
frontal eye fields (FEF), and posterior parietal cortex (PP) (Robinson & McClurkin, 1989; Jones,
1985). For each projection from the pulvinar there is a corresponding reverse projection. The pro-
jections are topographic and for the most part non-overlapping. As a result the pulvinar contains
several high resolution maps of visual space. Due its central location in the network of connections,
several researchers havgwed that this area of the thalamus must be involved in attention (Crick,
1984; LaBege, 1990).

There is some fairly convincing evidence now that the pulvinar is in fact directly involved in the
gating operation. Recordings of cells in the lateral pulvinar of awake, behaving monkeys have
demonstrated a spatially localized enhancemdattetied to selective attention (Peterstral,

1985). When presented with a stimulus in their receptive fields, these cells show an increase in their
firing rate when the animal attends to it. This enhancement is seen regardless of whether the animal
is about to make an eye saccade to that location.

The above studies have support from alternate experimental methods. Lesion studies and PET
scans suggest that the pulvinar is involved in covert attention, particularly in the gating operation.
Patients with thalamic lesions havefidiflty engaging attention and inhibiting crosstalk from other
locations (Peterseat. al, 1987). In particulaithese patients responded slower to cuegttareven

though there was didient time to attend. Lesioned monkeys give slower responses when compet-
ing events are present in the visual field (Posner & Petersen, 1990)g&4B®290) presents PET

scans of human subjects taken during a letter discrimination task. By varyindfithatgiéf the
discrimination he was able to regulate the amount of attention required. The resulting PET scans
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suggested that activity within the pulvinar is significantly increased during tasks which require
attention. LaBege concludes that the pulvinar is involved in a filtering operation.

The above experiments are consistent with VISHEting system. The pulvinar contains separate

maps representing each area it is connected to, and these areas are most active when covert atten-
tion is directed to that location. These maps could be the equivalent of ¥ §aifEd feature maps.

If this is true, VISIT makes some strong predictions. If the pulvinar is damaged, then the ability to
perform feature binding should be diminished. This is supported by the above experiments. There
should also be a deficit in determining the locations of objects and computing spatial relations. In
addition, VISIT predicts that if a map in the pulvinar corresponding to a particular cortical area is
damaged, then there should be a corresponding deficit in the ability to bind those specific features
in the presence of distractors. In the absence of distractors, the performance should remain
unchanged.

6.2.4 Superior Colliculus

Like the pulvinarthe superior colliculus (SC) is a structure with cogiwey inputs from several
different areas (Figure 6.5). The SC can be split up into two distinct sets of layers: the superficial
and deep layers. The superficial layer receives the bulk of its input directly from the retina (Huerta
& Harting, 1984; Sparks, 1986). The deep layer receives input from a varietjeotnlifsensory
modalities including visual, auditgrgomatosensorgtc. There are maps for each of these modal-
ities. It is generally believed that the SC is involved in integrating location information from these
different modalities and in general orienting behavibis is supported by the fact that thedeti

ent maps are always in spatial registex. that neighboring neurons infdifent maps are always
referring to the same absolute spatial location (Jay & Sparks, 1984).

The deep layers of the superior colliculus contain error maps for eye saccades (Sparks, 1986).
These neurons are laid out retinotopically in clusters, but at each location the cluster activity rep-
resents a value in motor coordinates. That is, they code the direction and amplitude of the eye sac-
cade that would foveate on that spot. Thus the saccadic system just has to chose one of these
locations and transmit the corresponding vector to the oculomotor system. VISIT uses the same
representation as the error maps in superior colliculus to assist in bottom-up attentional shifts.

The superior colliculus is primarily involved in the generation of eye saccadet @/Goldbeg,
1989) but it does have some relationship with covert attention. In (P&ten, & Rafal, 1982)
the authors studied patients with a particular form of Parkiasheease where the SC is damaged.
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These patients are able to make horizontal, but not vegiyjeadaccades. The experiments showed
that although the patients were still able to move their covert attention in both the horizontal and
vertical directions, the speed of orienting in the vertical direction was much slovatdition
(Posner & Petersen, 1990) mention that patients with this damage shift attention to previously
attended locations as readily as new ones, indicating a deficit in the inhibition of return mechanism.

The deficits are consistent with the functionality of the priority map in VIBEychophysical
experiments strongly suggest a linkage between the saccadic and covert attention systems (see Sec-
tion 7.3.1). Since covert attention almost always shifts to a location just prior to an eye saccade
(Posner & Petersen, 1990), it is possible that the same neural hardware serves as the basic priority
maps for both the covert attentional and saccadic mechanisms.

6.2.5 Posterior Parietal Cortex

The posterior parietal cortex contains neurons responsive to visual stimuli. It receives a significant
projection from superior colliculus and is thought to be involved in the production of voluntary eye
saccades (Andersen & Gnadt, 1989). Experiments show that it is also involved in covert shifts of
attention. Lesion studies have provided further evidence along these lines. @aoalner984)

found that damage to posterior parietal lobe led to deficits in the ability to disengage covert atten-
tion away from a tget. These functions are consistent with portions of the control network in
VISIT.

In (Mountcastleet. al, 1981) the authors tested théeet of behavioral state on light-sensitive neu-

rons in the posterior parietal cortex (area 7) in monkeys. They found that the activity of these neu-
rons increased when the animal was in a state of attentive fixation. In an earlignghparontext

of eye saccades they show that these neurons start firing58bmsecs before an actual saccade
(Mountcastlest. al, 1975). They proposed that the posterior parietal cortex incorporated a general
command center for oculomotor responses. (Mountoaste 1975) also found cells in posterior
parietal areas that were sensitive todinection of voluntary saccades, but not to spontaneous sac-
cades. One possibility is that these areas also encode a high-level priority map and that the superior
colliculus is responsible only for spontaneous shifts of attention. If these maps really are used as
priority maps for covert attention, experiments should show that they fire in the same way for vol-
untary covert shifts as for eye saccades.
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6.2.6 Other Areas

There is evidence that the frontal eye fields (FEF in Figure 6.5) are involved in saccade generation.

It is thought to have a role analogous to the superior colliculus, and is particularly sensitive to high-
resolution color stimuli (Schillerl985). It may also be involved in saccades to complex stimuli
(Goldbeg & Segraves, 1989). The role of the FEF in covert attention is not known. Hogieeer

the close correspondence between saccades and covert attention, a reasonable conjecture is that it
plays the same role for attention.

There is also some evidence that the pre-frontal cortex is involved in saccades (Leichnetz & Gold-
berg, 1988). Boch and Goldlp(1987) have demonstrated cells which anticipate the appearance
of stimuli. They suggest that pre-frontal cortex is involved in general goal-directed beGaWibr
man-Rakic (1991) has@ued that pre-frontal cortex behaves as a temporary working memory for
spatial tasks. Since there is a significant projection from posterior parietal areas to pre-frontal cor-
tex, it is possible that the area is used in a similar fashion as the working memory in VISIT

6.3 Discussion

In summary| have tried to relate aspects of VISIT to the biological literature. For the most part
there is a nice mapping between the functionality of the various modules and the known physiology
of covert attention. Figure 6.5 displays the various visual areas again together with the proposed
relationship to VISITS modules. The literature is consistent with having the pulvinar as the gating
system, the superior colliculus, frontal eye fields, and posterior parietal areas as a bottom-up prior-
ity map, the posterior parietal areas as the locus of the control networks, and the prefrontal cortex
as working memoryThe role of V4 and IT is not quite clear since it also seems to gate adtivity

is possible that it is an additional gating system imposed on top of the early features.

(Posner & Petersen, 1990) have proposed a slightérelift hypothesis. They suggest that neurons

in parietal lobe disengage attention from the present focus, those in superior colliculus shift atten-
tion to the taget, and neurons in pulvinar engage attention on it. It is interesting to compare the
two. Their hypothesis looks at the time course of an attentional shift (disengage, move, engage)
and assigns three thfent areas to the threefdifent intervals within that temporal sequence. An
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Figure 6.5. Proposed attentional functions of the different visual areas.

implemented model such as VISIT allows us to examine the underlying computations involved.
The prediction isthat all the areas are operating concurrently, and that all of them areinvolved dur-
ing the shift. They just have differing computational responsibilities (i.e. compute the next loca-
tion, gating, add error vector, etc.). For example, the same part of the control network isresponsible
for sending the disengage, move, and engage signals to the gating system. (Actualy it isjust one
operation - transmit anew update vector.) While the gating network is being updated to anew loca-
tion, the priority network and portions of the control network are aready computing the next
desired location. At this point the experimental work seems to be consistent with both points of
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view, but experiments could be designed to distinguish between the two.

By no means is VISIT intended to be a detailed physiological model of attention. Precise modeling
of even single neuron can requirggamounts of computational resources. There are many phys-
iological details that are not incorporated. Howeaéethe macro level there seems to be a reason-
able fit between the individual modules in VISIT and the known functionality of teeedit areas.
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7. Visual Attention In People: Function

Understanding when visual attention is needed is as important as understanding its implementa-
tion. As yet there is no rigorous theory for predicting which tasks require attention, but in general
there is good agreement between computational complexjtyments and the experimental
results. The following sections review experimental work on determining which tasks require
attention in people.

7.1 Visual Search

Over the past decade, visual search has been one of the most active areas of psychophysical
research. There is strong evidence that a serial search using covert attention is required for some
search tasks, whereas others require no stioh.€fhis dichotomy makes visual search an ideal
domain for studying how and why attention is used. Most of the experiments are aimed at uncov-
ering the boundary conditions for these two modes. The following sections review some of this lit-
erature and its relationship to VISIT

7.1.1 Single vs. Conjunctive Feature Search

In (Treisman & Gelade, 1980) the authors suggested that search fgetadfined by a conjunc-

tion of features requires serial search, whereas single feature search does not. In their experiments,
subjects were shown displays as in Figure 7.1 and Figure 7.2 and asked to detect the presence of a
pre-defined tayet object (e.g. a shaded horizontal bar). They found that if tet tardiferent

from the distractor objects by a single feature (as in Figure 7.1), reaction times did not increase with
the total number of objects. Conversely if a combination of two features is required (as in Figure
7.2), then reaction times did increase linearly with the total number of objects. In addition for con-
junctive feature search, the slopes fogéarabsent trials were approximately twice that ajesr

present trials. They concluded that this was evidence for a search process that terminated as soon
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Figure 7.1. Single feature searcluget is a red (shaded) rectangle.
as the taget was detected.

VISIT together with SWIFT accounts for the above results. When a feature ofgheitanot
present in any of the other objects, SWIFT will always pick that feature map as the minimal feature.
The taget object will always be found on the first fixation, regardless of the number of objects in
the image. (This corresponds to the case wWilere in Figure 5.15). In conjunction search, if the
distractors are chosen randopntlyen on average each feature map will contain the same number
of objects. Regardless of the map chosen by SYWFWill be about one half of the number of
distractors, so the search time will increase linearly with the number of objects. Since the search
is self-terminating, the ratio of the slopes for thgearmbsent and @et present cases will be
approximately2:1.

7.1.2 Search Asymmetries

There is another search paradigm where constant and linear time searches have been reported.
Searching for a line oriented®® among vertical lines can be done in constant time, but searching
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for a vertical line among these oblique lines takes linear timgsfhan & Gormican, 1988). This
asymmetry is explained by assuming that the early representation includes a finite number of ori-
entations that are coarse coded, with units for vertical and some orientation great8é?.tBach

oblique line is represented as a combination of activity in the vertical map and the map coding the
successive orientation. Consider Figure 7.3(a), a pattern containing a single oblique line among a
field of vertical lines. This image will cause several regions of activity in the vertical map but only

a single region of activity in the other map. The presence of the oblique line can therefore be
detected in constant time by computing a global OR. The opposite is true in Figure 7.3(b), an image
of a vertical line among several oblique lines. This will generate several active regions in both maps
except at one location, where only the vertical map is activated. In this case, the network must bind
the presence of activity in one map with the absence of activity at the same location in another map.
This requires serial search.

Similar asymmetries are present when detecting curvature, circles vs. ellipses, single vs. paired
lines, etc. These can be explained as search for the presence of a feature vs. search for the absence
of a feature. In fact,féisman and Gormican (1988pae that search asymmetries can be used as
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Figure 7.3. It takes less time to detect an oblique line among vertical lines (a) than to detect a vert
among oblique lines (b).

a litmus test for features. In all of these cases, a central question is: how does the brain know what
to do? The subject has no knowledge about his/her internal representations. Just knowledge about
the taget object is insditient - the map that is searched depends on the particular image. The
answer is simple if SWIFT is used: searching the map with the least total activity will always pro-
duce the correct results.

7.1.3 Evidence for an Efficient Seah Strategy

Restricting Search to Objects with a Single Feature

In (Egeth, \rzi, & Garbart, 1984) the authors contest the claim that for conjunctive search, atten-
tion must be directed serially to each stimulus in the displagy ague that subjects can restrict
search to those objects that have the same color or form agjtitetgect. In the main experiment,
subjects had to search for a red O among blaska@®@d red Ns. The number of red objects was
held constant at 3 while the number of black @as varied, analogous to Figure 5.13. The subjects
were either told to attend to red objects or te. ®eaction times for the attend-to-red subjects were
flat in the number of total distractors for bothg&trpresent and tget-absent conditions. In the
attend-to-O case, the reaction times were flat for tigetgresent case.

These results are consistent with VISIability to weight individual feature maps. SWIFT search
suggests that these results would hold even if the subjects were not explicitly informed of the cor-
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rect feature. Some evidence for this was found in a second experiment in thelfapsgh it was
not designed to test this strategxperiments along the lines of the simulations in Figure 5.14 and
Figure 5.15 would help to clarify this issue.

Triple Conjunction Search

Search for an object defined by a conjunction of three features results in sefenahtdsdearch

slopes (Quinlan and Humphreys, 1987). There were two situations that were tested: (a) every dis-
tractor shares exactly one feature with thgdtobject, qr(b) every distractor shares exactly two
features with the tget. Both cases resulted in sequential search, but the slope in (b) was always
steeper than the slope in case (a). The same results would be obtained by I8\t4E6& (a), on
average the minimal feature will eIimina%eof the distractors. In (b), onl%would be eliminated

on average. Thus SWIFT predicts that the slope in (a) should be about half that of (b).

Effect of I rrelevant Features

Treisman (1988) has tested single feature search where the distractors are not homogeneous. In one
case the distractors varied in the relevant dimension (e.g. searching for geedrnasng multi-

colored objects). In the second case the distractors varied along irrelevant dimensions (e.g. search-
ing for a red taget among objects of d@ring orientations and size, but constant color). The main

result was that the first case resulted in serial search whereas the second case resulted in constant
time search. This is consistent with the network. Feature maps are likely to be coarse coded, so
variation within a dimension will cause the minimal feature map to have more than one spot of
activity. This would necessitate a scan through the objeat&t\dn in irrelevant dimensions how-

ever should cause no activity in the relevant feature map, so SWIFT search will always locate the
target in one step.

7.1.4 Fast Conjunction Search

Large Variancesin Search Slopes

In (Cave & Wlfe, 1990) and (feisman & Sato, 1990) the authors reported that search slopes could
vary by a lage amount across subjects. Conjunction searches of color and form produced wide
variances. The slopes for some subjects were almost flat, whereas others were quite steep. Single
feature searches produced consistently flat slopesfiéuttisearch task (such as search for a ran-
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domly oriented T among randomly orientéd)Lproduced consistently steep slopes.

Conjunction Search in Constant Time

Some authors have reported conjunctive searches which always result in flat slopes. (sicLeod,
al, 1988) report that the detection of a moving X among stai@Xd moving & can be done in
paraIIeI.1 (Nakayama and Silverman, 1986) tested conjunction searches using the features color
motion, and depth. They found that motion-color conjunctions required serial processing, whereas
depth-color and depth-motion conjunctions could be processed in parallel.

Recently (Teisman & Sato, 1990) and @lfe, Cave & Franzel, 1989) have suggested models
where conjunctions can be detected in constant time with top-down informatasman and

Sato suggest that if the features tharnateresent in the taget inhibit the priority map then a loca-

tion containing the conjunction of two features would retain the highest pridotfe, Cave, and

Franzel suggest an analogous mechanism using excitation instead of inhibition (see Section 10.1.2
for a review). Both of these suggestions can be modeled in VISIT by setting the feature weights
appropriately (as discussed in Section 5.3.2). As mentioned before, this strategy is not very general.
An equally serious problem is that it cannot explain serial search. If people can use such a general
strategy for detecting feature combinations, why tae’ get constant time search for all feature
conjunctions? People only produce constant time search for very specific feature combinations, a
fact that cannot be explained by the above mechanisms. (Cawif& N090) have suggested that

this is due to varying amounts of noise in the system. There is no adequate explanation for the
source of this noise, or why it should vary across individuals and across features.

Both of the above sets of results can be explained by VISIT with two assumptions: 1) that certain
feature combinations are in fact represented expli@tig 2) that these feature combinations are
learned through experience. If such combinations are present, then the relevant map would have a
single spot of activity so SWIFT would select it as minimal and locate tipet tara single step.

Since the features can be learned through experience, the particular combinations represented
would vary from individual to individual.

1. Although, in what seems to be a direct contradiction to this resudisiffan and Sato, 1990) report that
conjunctions of motion and orientation producedsthepest slopes in their subjects.
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Figure 7.4. Example of groupingfe€ts in visual search. Even though this is a cot
junction search, people will find the ga@t (shaded horizontal bar) in constant time.

Both assumptions have some evidence to support it. For example, it is known that area MT contains
cells which are tuned to both direction of motion as well as orientateom Egsen & Anderson,

1990). Karni & Sagi (1990) have shown that through training, adults can learn to improve their dis-
crimination of certain features, and that this learning is retinally localized. (Shiu & P4S9I&)

have further shown that learning of features is sometimes dependent on the cognitive state of the
individual, and not just on the retinal inputs. Thus it is quite plausible that certain feature combi-
nations are partially hard-wired in some people but not in others. For example, someone who is
active in outdoor sports may well encoddeatié#nt high-level visual features than someone who
spends most of their time indoors.

7.1.5 Effect of Perceptual Grouping on Search

A more puzzling phenomenon is théeet of perceptual groups on visual search. It is quite clear
that the overall sceneganization can have a dramatic impact on reaction time (Humphreys, Quin-
lan, & Riddoch, 1989; feisman & Sato, 1990). A simple example of this can be seen in Figure 7.4,
where the distractors clearly form a coherent group, separate fromgie Earen though the task

is a conjunction search, the total number of distractors havdaud eh search time.

There is no explicit mechanism in VISIT to deal with these situations. In the current implementa-
tion, once the minimal feature is chosen, objects are just prioritized based on their size. Presented
with the image in Figure 7.4, VISIT will simply go through its usual search sequenaecdunt

for the perceptual grouping results, the system needs a smarter strategy for ranking image loca-
tions. As a first approximation, one might use multiple-scale spatial frequency detectors. (Neurons
coding for spatial frequency are known to exist in V1 (&M & De \alois, 1988).) In Figure

7.4, a low frequency feature map would have less activity in the right half of the image, indicating
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Figure 7.5. The tget is now part of the Iger group. The prediction is that search sha
now be hindered by elements in the smaller group of objects.

that the region probably contains a smaller group. A modified SWIFT strategy might therefore pick
locations based on low activity in low-spatial frequency maps. The prediction based on such a strat-
egy would be that people always check the smallest group first. This would predict that search
should be hindered if the tget isnot in the smaller group (as in Figure 7.5). Although it is unlikely

that this specific search strategy is used by people, experiments which control for some of these
factors can help pin down the underlying computations.

7.2 Recovering General Scene Properties

7.2.1 Feature Binding

As the binding problem suggests, one of the basic tasks that should require attention is the associ-
ation of a combination of features with one object. The visual search experiments provide some
support for this ggument. In addition (fBisman & Schmidt, 1982) present some direct evidence.
Subjects were shown an image containing two letters feiréift colors. When the exposure time

was very short, subjects would often switch the colors of the two objects. These “illusory conjunc-
tions” did not occur when there was fatient time to focus. It has also been shown that prior
expectations can eliminate theskeefs (Treisman, 1988). For example subjects do not switch fea-
tures if it leads to a nonsense assignment. VISIT is consistent with this. When attentioses! dif

over more than one object, the network cannot associate the active features with any one object. If
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a higher level system tried to force such an association, then illusory conjunct errors would occur

7.2.2 Computing L ocation

The binding problem also suggests that in the presence of multiple stimuli, computing the locations
of individual objects should befatted. There is some evidence for this in the literature. In a
review article (Vise & Desimone, 1988) mention that, even with voluntafiyrgefwhen presented

with multiple tagets simultaneouslyhe first eye saccade lands at an intermediate position. This is
consistent with the notion that attention is required to individuate the locations of multiple objects.
As further support, studies on visual search have shown that identificationgdtagdnighly cor-

related with its accurate localizationr¢isman & Gelade, 1980; Johnston & PasHleg0).

7.2.3 Computing Spatial Relations

Complexity aguments outlined in Chapter 4 suggest that computing spatial relations should
require attention. The experimental evidence for this is not completely (€@¢@onnell & Treis-

man, 1991) have recently done some experiments along this line. They show that oriented dot pairs
can pop out in a field of horizontal dot pairs. The result holds even if the dots aferehdlifolors.

On the other hand, oriented bi-constrast dot-pairs (pairs of black and white dots on a grey field) do
not pop out. In this experiment, all the dot-pairs were close together in space. Computationally it
may not be too expensive to explicitly represent some small number of relations formed by nearby
objects. The fact that bi-contrast pairs do not pop out indicates that all such relations are not com-
puted in parallel.

What about relations formed over arbitrary spatial scales? The equilateral triamgieears
suggesthat attention is required to detect equilateralness with dot-triangles. This is due to the lack
of local information. Interestinglythis agument predicts that detecting equilateralness for trian-
gles made up of solid lines (Figure 7.6 (a)) can be done in parallel. This is because one simply has
to check whether all angles are’60 angles are represented pre-attentiviiign solid line trian-

gles should not require attention. The prediction would be that triangles as in Figure 7.6 (b) should
take a longer time to process than those in Figure 7.6(a). Dot-squares (Figure 7.6 (c)) should take
longer still, since one needs to attend to all four points.

Recovering more complex relations clearly requires some form of sequential processing, probably
utilizing attention. Good examples are tasks like determining, in an image containing squares and
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Figure 7.6. It should take longer to detect equilateralness in images like (b) than like (a). It should t:
even longer to detect whether a figure is square vs rectangular (c).
circles, whether there is a square next to the secogeistacircle (Mahongyl987). It is highly
unlikely that we have feed forward networks for computing such predicates.

7.2.4 Computing Motion

There has been some recent evidence that covert attention is involved in the computation of
motion. A simple demonstration of this is outlined in Figure 7.7. A black dot is drawn on the
screen, and then, after some delay a line is flashed up. If the delay is long enough (100 msecs is
plenty), then there is a clear perception that the line was drawn from the box outwards (in this case
from the left to the right). \th no delaythe line appears to be drawn instantaneols$lg expla-

nation in terms of visual attention is simple: when the black box is flashed up, it naturally attracts
attention. When the line is subsequently drawn, attention is shifted to the opposite side. The per-
ception that we have of a line being drawn from left to right is due solely tmtite/ards shift in

attention. When there is no delagttention does not have time to operate exclusively on the black
dot. The perception of the moving line is quite compelling arfatdlif to dismiss. (This sequence

is easy to implement on a computer and makes an interesting demonstration of visual attention.)

An interesting hypothesis has been proposed by Cavanagh (1296jteWWtrack a moving object

by following it with our eyes and head. Although the retinal image of the object is fairly constant,
the global motion of the object can be recovered by accumulating the motor commands to the eye
and head. Of course, we can also sense the motion of objects while our eyes remain fixed. How is
this motion perceived? There are two possibilities: 1) the perception may be due to the signals gen-
erated by low-level motion detectors By if a moving focus of attention is used to track the object,
motion perception may be obtain from the signals generated by the attention system itself. (Cavan-
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Delay

Figure 7.7. A black dot is flashed, followed by a defajowed by a horizontal line. it a delay

of 60 msecs, there is a clear impression of a line being drawn from left to right.
agh, 1990) describes evidence to support the secondlZiswwnown that low-level motion detec-
tors are highly sensitive to luminance but not color (Livingstone & Hubel, 1988). A circular
counterfeit grating (two identical circular gratings moving in opposite directions, clockwise and
anti-clockwise) was used. The key finding is that even when the two gratings were equi-luminant,
subjects were still able to track their motion. This seems to rule out the low-level motion detectors
since no motion information is present in the luminance channels.

If Cavanagls hypothesis is true, it imposes an interesting constraint. The axciwethent of the

focus of attention should be recoverable. The task is made more complex by the fact that multiple
shifts may be necessary in the course of tracking an object. In VISIT this operation would be simple
to implement. Higher stages always have access to the attentional parameters, hence a trace of
these parameters can be used to recover the motion. The focus is always updated using shifts rela-
tive to the current positionemporal integration of the update vectors would give an accurate esti-
mate of the net direction of motion from some reference point. By keeping track of the time as well
as the updates, it is possible to recover the speed.

7.3 Interfacing with Other Forms of Attention

The above experiments suggest that covert attention is necessary for a wide range of visual tasks.
Recent experiments have shown that the covert attention system seems to be related to other forms
of attention as well. In this section we review some of the research which discusses this relation-
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ship.

7.3.1 Relationship to Eye Saccades

Covert attention seems to be very closely related to eye saccades. The experiments described in
(Posnert. al, 1982) show that covert attention almost always moves to the intengetidaan

eye saccade about 20Gecs before the eyes begin to move. Clearly the converse is not true: atten-
tion movements do not always result in eye movements. In (Peisakrl982) patients unable to
saccade in the vertical direction were also slower at shifting attention vert®adiyon 6.2 dis-

cussed various areas of the brain that seem to be involved in covert attention. It is interesting to
note that all of these areas are also involved in eye saccadeg 8\Goldbeg, 1989).

These experiments imply that the two systems are highly related but can be decoupled. There might
be a good computational reason for this relationship. The covert attention system is much faster
than eye saccades. Covert attention shifts can occur as often as 25 times a second (Juesz & Ber
1987) whereas eye saccades only occur about 5-7 times per second. Since eye saccades are a more
expensive operation (in terms of computation time), it makes sense to use the covert attention sys-
tem to prune out candidate dat locations for an eye saccaderbus (1967) describes experi-

ments where saccadic gats were highly dependent on the instructions given to the subject. For
example, when asked to describe the expressions of people in a picture, the eyes fixated only on
the faces. When asked to describe the furniture subjects avoided the people. Given the visual search
results, it is highly unlikely that the visual system can saccade to complex features without first
covertly attending to it.

7.3.2 Relationship to Auditory Attention

There is some preliminary evidence that the auditory attention system and the visual attention sys-
tem are also quite related. In (Poseterl, 1987) the authors investigate whether spatial attention
mechanism uses the same system as auditory attention. In the first experiment subjects were asked
to perform two attention-requiring tasks simultaneauBhe primary task was a standard visual
attention task (as described in Section 6.1.1). The secondary task was linguistic: the subject had to
count the number of nouns in a list of spoken words that started with the letter “p”. They found that
the cued-side advantage for the visual attention task disappeared. Juey @nat this was proof

that the two forms of attention shared some common mechanisms. (Jay & Sparks, 1984) have pro-
vided further proof of this hypothesis. They looked at cells in superior colliculus that were respon-
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sive to auditory stimuli as well as cells responsive to visual stimuli. Both the auditory and visual
cells were topographically arranged, but since the eyes can move relative to the head, each should
handle a diierent frame of reference. In fact, they found that the receptive fields of both types of
cells were tuned to eye-centered coordinates. In other words, the receptive fields of auditory cells
shifted coordinates dynamically to compensate for changes in eye position.
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8. Extending VISIT

8.1 A More Flexible Gating Networ k

A fast gating network is central to VISIThe following sections discuss various extensions to the
gating network. These extensions allow a richer class of phenomena to be modeled within the same
framework as VISIT

8.1.1 A General Framework for Focus of Attention

This section describes a general mechanism for implementing attention in arbitrary input spaces.
The gating network in VISIT is an example within this framework. The framework is used to dem-
onstrate the robustness of the gating function. It is modified to include fodiestdifshapes, the

ability to dynamically change this shape, and foci with smooth boundaries.

Locally Tuned Receptive Fieldsin N Dimensions

| first present a simple scheme for implementing static localized receptive fields using linear thresh-
old units. The scheme relies on the following fact: if one maps the points‘ironto the parabo-

loid defined byz = Sis 1%, then the intersection of a hyperplaneirwith this paraboloid projects

onto a sphere in"~*. Thus there is a mapping between planesiand spheres in"-*. To select

a set of points which lie within a sphere in some space one just has to project the points onto the
paraboloid and slice it with the plane corresponding to the sphere. Points which lie “beneath” the
plane are within the sphere. Figure 8.1 illustrates thisiforNotice that the computation of a
threshold unit is exactly that of deciding on which side of a hyperplane an input poinblies. T
encode circular receptive fields with threshold units, you just need to include an extra input: the

sum of the squares of all the other inputs. An equation of the form:
-5 wixi + zxi2+c0nst) >0 (8.1)

will be positive only ifx lies within a spherical volume determined by the weights and constant.
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Dynamic Receptive Fields

In addition to being able to select a portion of the input space, we need the ability to shift the loca-
tion and size of the receptive field around quickly in response to changing demands. In the figure
there are two ways to do this. The first method involves changing the slope of the hyperplane. In
Figure 8.1(a) note that as the slope increases the center of the projected circle will shift to the right.
For any sphere it is possible to compute thefmients of the hyperplane which produces that
sphere. Given a plamex = me wherem andc¢ are real-valued vectors, the projection of the inter-
section of the plane with the paraboloid is a sphere whose center is:

_ O m _mn—lE 2
(B8 vt = Fom " am (8.2)

n

and whose radius is:

o Jm§+m§+m+mﬁ_l+4mn(ﬁ1[é) (8.3)
2m,

In a threshold unit, changing the slope of the hyperplane corresponds to changing the weights of
the inputs. So, with appropriate training one of these units can learn the correct position of its recep-
tive field.

Since learning in neural networks typically involves several iterations, the time scale for weight
changes is normally too slow to allow dynamic computations. An alternate method is to fix the
plane but shift the paraboloid, by computing:

z= Zin:_i(xi_ai)z"'rz (8.4)

This moves it a distance along dimension (changing the location of the sphere) and a distance

z=x+yA Threshold Unit

paraboloid

-

T

/4 Kan 2

Xl al X2 32 Xn R

circle
X b
@) (b)
Figure 8.1(a) The plane intersects the paraboloid in a curve which projects to a circle. (b) Architecture of tl
unit computing the intersection in n dimensions.




One gate unit
X ’

Figure 8.2. The gating layer encodesxthesubspace.

r¢ along the z-axis (changing the radius of the sphere). K thandr are available as input then

the receptive field can be changed an arbitrary amount in one time step. Figure 8.1(b) shows how
such a unit would be configured. The néeefis that the threshold unit will respond only when

the input vectok lies within the spherical receptive field determinediiand-.

Focus of Attention with Value Coded Units

So far we have assumedradimensional input space that is encoded asalog signals. In VISIT

a circular focus is implemented orz-a@imensional retina. The units in this representation are laid
out on a flat sheet, with each unit explicitly encoding a local region in the spadectritef gating

layer encodes they subspace in the figure (Figure 8.2). The inputs to the gating network represent
the amount the parabola has to be shifted in order to arrive at the correct circle.

8.1.2 A Non-circular Focus

The above geometric interpretation has a number of advantages. It points out how to obtain non-
circular receptive fields. By altering the non-lineardiye can obtain cross-sections witHed#nt

shapes. For example, elliptical foci may be obtained by using the parabclo@l{?;icixﬁ where

¢, denotes the amount of stretching along each axis. In principle arbitrary shapes can be obtained
by appropriately choosing the non-linearitye shapes can be dynamically adjusted by including

the appropriate parameters as additional inputs to the gate units (e g.iththe ellipse example).
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Figure 8.3. Hict of gain on locally tuned receptive fields.
8.1.3 A Smooth Decision Boundary

VISIT currently implements a circular focus with a hard boundary: pixels are either in or out of the
focus. For some computations it may be important to incorporate a gradually decayingumider
a focus may be obtained by using s sigmoidal output function in place of the threshold:

_ 1

wherez is the same as in Equati{®4). This function results in a focus with a flat top, circular
cross-section, and decaying boundaries. The gain parameter G controls the sharpness of the bound-
ary. Figure 8.3 illustrates these properties in the one-dimensional case. The figure plots the func-
tion:

_ 1

for three diferent values of G. By including G as an input to each gate unit, it is even possible to
dynamically control the sharpness of the boundary

8.1.4 Ease of Implementation

One concern with the gating network is its ease of implementation, both in silicon and biological
hardware. It is quite likely that in the near future, special purpose analog chips will be manufac-
tured to perform the tasks required by early visidnwould be natural to include the gating net-

work as part of such a chip but it is unclear whether exact quadratic computations can be performed
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Figure 8.4. Attending to perceived depth planes would allow the system to segregate the two
objects in (a), but not the objects in (b).

in this media. The above framework demonstrates that the gating computation is actually quite
robust. Exact parabokare not necessaitywe just want some sort of a localized response in the
projected spacegny upward pointing, roughly cone like function will §aé. For example, an
upward pointing Gaussian will do the job. The exact slope of the hyperplane is also not important,
as long as it remains relatively stable. This robustness also makes a biological implementation of
a similar gating operation more plausible.

8.2 Focus of Attention in Other Representations

The ability to extend the gating network to arbitrary dimensions allows a natural way to transfer
the entire structure of VISIT to other value coded representations. This ability may prove to be
quite useful in modeling other attentional phenomena. The literature on object based attention sug-
gests that even when two objects are overlapping, people can attend to a single one (Section 6.1.5).
One possible explanation is that the attention system attends to depth as well as two-dimensional
regions (Duncan, 1984). For example in Figure 8.4(a) such a system would be able to segregate the
horizontal object from the vertical one by attending to the near depth plane. The explanation pre-

1. For examples of current research in this direction see (Mead, 1989; Bair & Koch, 1991; and Horiuchi, et.
al, 1991).
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dicts that if the objects are intertwined (as in Figurg@}4 one cannot attend to each one individ-

ually. Note that since the two images are single two-dimensional images, the system must be able
to gate perceived depth as well as stereoscopic depth. So a second prediction of such a system is
that perceived depth maps exist in the visual cortex. Psychophysical experiments by (Ramachan-
dran, 1988; Enns & Rensink, 1991) provide some preliminary evidence for this. Their experiments
show that search for @ets distinguished by complex 3D features such as shape from shading or
orientation of simple cubes can be performed in constant time. The actual images they used were
2D images, so a disparity based feature map cannot account for the results.

Motion is another feature that seems to have similar characteristics. Preliminary experimental evi-
dence along these lines is found in (McLeba, 1988) who show that conjunctiondats defined

by motion and form can be detected in constant time. (Mckiea 1991) ague for the existence

of a motion filter that can segregate moving objects by direction of motion.

Attention is also useful in non-visual modalities as well. A good example is audition, where atten-
tion is often necessary to distinguish individual soundpographic maps representing frequency
amplitude, and phase are known to exist in auditory cortex (Konishi, 1983). If appropriate coordi-
nates can be specified in these dimensions then a network like VISIT can easily implement an audi-
tory attentional mechanism. Such a network could be used to model some of the results dealing
with auditory attention (Gray & Wdderburn, 1960; Posnetr al, 1987). One can even imagine
attentional mechanisms operating at the high level of structured representations. Any space that is
value-coded is faced with the binding problem. The only requirements for VISIT are the existence
of some notion of location plus a similarity metric. As long as these two conditions are met, the
same network architecture can be used to implement attention in these spaces.
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9. Learning To Focus Attention

Early in development, the primary visual areas saj&oize to form retinotopic maps. There is evi-
dence that only part of this process is genetically specified: the final maps are also dependent on
the specific images that are experienced during development (Bear & C&i#8r Network sim-

ulations with unsupervised learning rules have been used to model aspects of this developmental
process (Kohonen, 1984; Obermagerl, 1991). Ypically these networks are presented with an
ensemble of images. Each unit learns to represent a local region such that the entire network best
covers the set of input images. If a gating network exists in biological attention, it is likely to be
also learned although the learning process will be more complex. In addition to forming a retino-
topic map, each gate unit must learn its global position within the image. It must also learn to use
this information to respond properly to fisy, r) inputs. The following sections describe a series

of experiments aimed at understanding how this process might take place.

9.1 Adaptive Gate Units

First | describe how the behavior of individual gate units can be modified. Recall that in the gating
network, each unit receives three inputs corresponding to the current circle of interest and responds
with a “1” if it is outside it. The computation was implemented by units which exactly computed
the equation for a circle:

rP— (x-X)2-(y-VY)2 (9.1)
whereX; andY; denotes the position of unitlf this sum is greater than 0 then the unit is outside
the circle defined byx,y,r) and turns on. This quadratic computation can be modeled by second

order units, a generalization of the semilinear units used in standard back propagation. The output
of such a unit is given by:

0, = S(Zwikjokoj) 9.2)
0]
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wherek andj range over all the inputs to the gating network suscthe sigmoid function:

1
1+e™*

s(x) = (9.3)

We also include a bias unit (a unit whose output is aljpgs additional input to each unit in order
to generate the low order tern8y expanding Eq(9.1), we get:

r2—x%+2xX —y? + 2yY, - (X2 +Y?) (9.4)

SinceX; andY; are constant for each gate unit, by setting the weights i(EX).appropriately the
unit can compute E@9.4). The only diierence is that the unit uses a sigmoid instead of a threshold
which results in a soft decision boundary instead of a hard one (Section 8.1.3).

It is simple to modify back propagation to deal with second order units (Rumelhart & McClelland,
1986). Given a second order unit and an error signtie update rule for each weight is:

Aw, = 50,0 (9.5)
wheres, is computed as in standard back propagation. Given appropriate teacher signals, second
order threshold units using back propagation learning are capable of learning the correct mapping.

The central issue is to generatén a biologically plausible fashion. In the following sections, we
discuss some methods for doing this.

9.2 Using a Perfect Teacher Signal

The first and simplest scenario assumes the existence of a perfect fBaahey, given a gating
layer, for each(x,y,r) input there is a signal available for each gate unit that specifies whether it
should be on or &fWith this type of a training signal, each unit receives direct information about
its correct state and should rapidly learn to implement the correct mapping.

Simulation results verify this intuition. The particular network used consisted of four input units
corresponding to (x,§) and a bias unit, plusl®x10 array of second order units. The net input to
the unit was a second order weighted sum with one weight for evenyipaiconjunction of its

1. Second order units in turn are a special case of sigma-pi units (Rumelhart & McClelland, 1986). Such units
have been proposed as a model of computation in cortical neurons (Mel & Koch, 1990).
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Figure 9.1. A 10X10 gating layer after being trained on a perfect training signal. Numbers
below each figure are the corresponding,fx,yput values. The circular outline is the
desired boundaryrhe shading represents the strength of each output signal.

Inputs.

The weights were initialized to uniform random numbers in the range [-.5,.5]. The training con-

sisted of presenting the network with randomly selected input triples. For each training pattern, the

correct desired output was explicitly computed for each gate unit and used as the teacher signal.

Back propagation using the update rule in @) was used to update the weights after each pat-
tern presentation. Figure 9.1 shows the output of the networklafd80 weight updates. The fig-

ure displays the patterns of activity for severdedént values ofx, y, r). The gating network has
learned to exhibit a circular pattern of activity and correctly learned to shift it according to the

input. This demonstrates that if a perfect teacher signal is available, the gating network can learn

to focus attention.
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9.3 Reinforcement Teacher Signals

The above scenario leads tdi@ént learning but is biologically implausible. It requires detailed
knowledge about the internal structure of the network. In partjchateacher must already know

the locations of each of the gate units and the network must be able to prdféeyateerror sig-

nals to each one. It would be more realistic to use a signal that is globally available and constant
for each gate unit. This wathe same error signal can be broadcast to each gate unit from some
other part of the system responsible for evaluation. A natural candidate for such a signal is the
result of some general task that the network is involved in. Under this scenatrio, if the network com-
pletes the task correctlghen it receives positive reinforcement otherwise it receives negative rein-
forcement.

Visual search is a good domain for this sort of a reinforcement signal, since we know it requires
attention. It is possible to generate a plausible error signal for the gating network within this
domain. During a search sequence the gating network is responsible for tasks of the following sort:
“in the current image, determine the activity of a given set of featar a given location’If the

success and failure of this task is used to train the gating network, then the teacher signals no longer
depend on the internal structure of the network but can instead be derived from the results of
actions on the external world. In addition, the same error signal can now be used for each gate unit.
Since the task requires a focus of attention, gate units trained with it should learn the correct map-

ping.

9.3.1 Simulation Results

To test the above hypothesis, simulations were performed using a simplified version of visual
search. The structure of the network is shown in Figure 9.2. It consists of an image, a gating layer
a single gated feature map, and a global OR. The gated feature map receives inhibition from the
gating layer and positive connections from the image. The feature map simply signals the presence
of activity in the corresponding locations. A global OR is computed from the activity in the gated
feature map and represents the output of the network. All the weights to the gating layer are adap-
tive. The rest of the weights are pre-specified and kept fixed to reduce the number of free parame-
ters (the weights to the gated feature map are all the same negative, montiene is no real need

to learn them). As in the previous scenario, the gating network consists of second order units con-
taining a weight for paiwise conjunctions of the inputs. For this task, only those connections that
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Figure 9.2. Architecture of the network. (a) The general network structure. (b) The connection
a single location.

are strictly necessary tor the task are included. Note that some of the second order connections are

unnecessary for implementing §§.4). In particular the weights for the termgy; rx, andry can

be set to zero, which eliminates four degrees of freedom from each gate unit. This weight elimina-

tion is not necessary but makes the learning proceed much faster

A 6x6image was used. The weights to the gating network were initialized to uniform random val-

ues in the range [-.5,.5]. The network was trained with patterns consisting of an imagéxayg an

triplet (see Figure 9.3 for two examples). There vB®@0such training images, each with a ran-

domly sized rectangle placed randomly within the image. The desired output of the global OR was

set to*1” if there is any activity in the image in the region specified by the input ti@3leoth-

erwise. The error between this value and the value of the global OR was back propagated and used
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Figure 9.3. Wo example training patterns for the reinforcement learning scenario, and
their desired outputs. The circle represents the focus of attention implied (xyihe
inputs.

as the error signal for the gating network.

Although in principle the task constraints should force the gate units to learn to focus attention, in
practice this is a very di€ult learning task. The reinforcement signal is extremely noisy with
respect to each gate unit. For a given training pattern, a correctly behaving gate unit can still receive
negative reinforcement if some of the other gate units are performing incorfextlgxample,
consider a gate unit, g, in the lower left corner of the training pattern shown in Figure 9.3(a). An
object is in the upper left corner and the current focus of attention is in the lower right. Since the
focus does not intersect the object, the desired outpuHiewevey if any of the gate units cover-

ing the object turn on (incorrectly), then the output of the network will be incorreaj et

receive a negative ertdgimilarly, a unit with incorrect output can receive positive reinforcement

if some of the other units perform correctfpr example, i§ were to turn on incorrectlyhe gated
feature map output at that location will still bé sihce the corresponding image pixel i& ¢f

none of the gate units within the object turn on, then the network will still produce the correct out-
put, andg would receive positive reinforcement. During the initial learning phase, when the gate
unit weights are random, the first of these two situations is quite likely to occurgerlajects.

The second situation may occur quite often with small objects. Due to this the teacher signal pro-
vides very little information, if anyto each unit.

Despite these problems, a significant amount of learning did take place. Figure 9.4 shows the
behavior of the network aft@50,000 iterations. It can be seen from the figures that gsandr
varied, the output of the gate units resembles a blob-like shape moving around. The output is not a
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Figure 9.4. Output of a 6x6 gating network with link constraints after training with a reinforcement teac
signal.

perfect circle. There is some spurious actj\ntyt it IS possible that a smarter learning rule @ne.

which exploited spatial regularities) could increase performance. Considering the problems men-
tioned above, it is quite astonishing that the network managed to learn anything at all. The resulting
network can still act as a reasonable focus of attention provided the activity is blurred a little. This
clearly shows that, on average, the reinforcement signal used does contain more information than
noise and can be used to train the gating network.

It is interesting to examine the performance of the gating network during the training process. Ini-
tially the outputs are random and there is no relationship between the input and output signals. In
the course of training, the network first learned the relevancd-gjure 9.5 shows the output of

the gate units for various valuesradfter50,000 iterations. By this time the network has learned

that forr near the maximum value, most of the gate units should be on whereas&0, most

of the gate units should befofhis is reasonable since there is a direct correlation between the size
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Egﬂtrs 9.5. Output of a 6x6 gating network early in the learning process. Numbers below arerjhe
of the focus and the probability that the output.islowever as the figure shows, the gate units
have not yet learned anything about a circle. Af5€000 iterations (Figure 9.4), the network has
learned that there is a correlation betwgew) and the activity of the gate units. It has learned that
asx increases, the activity should move from left to right. As y increases the activity should move
from top to bottom. In ééct, each gate unit has learned its global position within the image.

9.4 Discussion

Since retinotopic feature maps are learned in biological systems, the spatial attention system must
also be learned.olstudy how this might happen, this chapter has discussed methods for training
the gating network in VISITExperiments show that a rough blob-like focus of attention can evolve
through learning using a simple, global reinforcement signal, even if that signal is quite noisy

Ideally all aspects of the model should be learned. The learning of early visual features is getting
to be well understood. There is an extensive computational literature on the development of such
features. Several people have shown that unsupervised learning rules, such as the Hebb rule, can
lead to units with response characteristics similar to neurons in V1 (LidSi&8; Beckerl1991).

Recent psychophysical studies suggest that this learning continues in adults. (Karni & Sagi, 1990)
showed that adult subjects can improve feature discrimination through repeated presentations and
that this improvement is retinally localized. (Ling-po & Pashl®91) have further showed that

this learning is not completely unsupervised: the subject must be actively attending to that feature
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for the learning to take place.

Apart from the early feature maps and the gating network, it is unclear at present how the other
modules in VISIT might be learned. The strategy used for the gating network should be applicable
to some of them as well. For example, the priority map essentially acts as a feed forward system,
i.e. units receive input (output of feature maps, feature weight values, plus the three attention
parameters) and compute some outputs (error vectors, priority value). There are no dynamics
involved, so with a perfect teacher signal, the priority map should be easy to learn. It should also
be possible to construct a reinforcement learning scenario so that a global signal can be used to train
the map.

A more dificult problem is training the control networks. This system is characterized by feedback
pathways, interesting dynamics, and not much regulgitjlliams & Zipser 1988) describe
experiments showing how some simple control structures can be learned in recurrent networks. In
general however this type of learning is not well understood. For example, it is not all clear how a
search strategy such as SWIFT could evolve. There has been some research on the development of
attention in people which might prove relevant (Johnson, 1990), but it is not yet at the point where
detailed computational models can be formed. Methodologidgllg hard to test attentional
behavior in infants which are only a few days old. Both the computational and psychophysical
aspects of this issue is filiult and so this is one area where the future interaction between theory
and experimental results is certain to be beneficial.
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10. Related M odels

VISIT builds upon, and has been inspired ttwe work of a number of researchers. This chapter
describes some of the work on building explicit models of attention, highlighting some of the com-
mon ground and diérences with VISIT

10.1 Two Psychological Models

There have been several psychological theories of attention in the literature. Some have been spec-
ified in more detail than others. Here | describe two: feature integration theory and guided search.
Feature integration theory was chosen because it was the original model used to explain visual
search, and it still seems to be the “standard” model of attention. Guided search was chosen
because it has been implemented as a computer model of visual search and accounts for some of
the more interesting visual search results. For additional models see (Bundesen, 1990; Duncan &
Humphreys, 1989).

10.1.1 Feature Integration Theory

Feature Integration Theory was proposed tBisiman and Gelade (1980) to explain théed#nt

reaction time results for visual search. The model is outlined in Figure 10.1. The model makes use
of separate feature maps which are gated by a single spotlight of attention. The spotlight is used
when a conjunction of features must be detected. The location map contains all the objects in the
image. The original model predicted that all conjunction searches would require a serial, self-ter-
minating scan of every object in the image. There was no notion of prearitpnjunction searches

would always result in linear search times. The model managed to unify many of the results under
a single framework. This included single vs. conjunctive feature search, 2:1 search ratios, search
asymmetries, and illusory conjuncts. However it was not consistent with some of the newer results,
such as search within a feature, the parallel processing of conjunctions, etc. The theory has since
been modified to include a notion of priority similar to that discussed in Section 5&sh{dan &
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Figure 10.1. A sketch of feature integration theory

Sato, 1990), but the mechanisms for setting the priority levels have not yet been specified clearly

10.1.2 Guided Search

Guided Search was proposed by Cave aolief1990) to account for the results obtained in visual
search experiments that conflict with Feature Integration Th&bey significant contribution of
Guided Search is an explicit mechanism for computing the priorities using a combination of top-
down and bottom-up information. A bottom-up priority is computed by comparing the feature val-
ues of each object against the feature values of every other object. This is done for every feature
independently and summed up. This process can explain single feature search times sigee the tar
(which differs in one feature with every other object) will always have significantly higher priori-
ties than the distractors (which onlyfdif from the taget). The top-down process adds another
component which favors features belonging to thgetasbject. This process is very similar to the
scheme discussed in Section 5.3.2 and always assigns a conjunctive sgat¢hedrighest pri-

ority. The model explains dédring search slopes by assuming the existence of inherent noise in the
priority calculations.

The authors present simulations showing that triple conjunction search, search within a feature,
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effects of irrelevant distractors, constant time search for conjunctions, and varying search slopes
can all be explained by Guided Search. As a model of visual search, Guided Search expi@ins a lar
set of results, but cannot explain search asymmetries @rltlsearch slopes. Furthermore, it can-

not explain why only some feature conjunctions result in parallel slopes but not others. There are
also three problems with implementing Guided Search as a connectionist network. The model
assumes that objects have already been segmented and available in,amithr@ye slot per
object. Second, the bottom-up computation isficieht. It compares every location with every
other location which require’S(fnz) connections wherkis the number of feature maps, ani$

the maximum number of elements. This is clearly not feasible for high resolution images, Finally
the model is very sensitive to the noise parambtesrder to explain the ddrent search results,
Guided Search must assume thatedént amounts of noise are present dedght times and in
different subjects.

10.2 Computational Models

Among the psychological theories of attention and visual search, Feature Integration Theory and
Guided Search are notable in that they consider some of the underlying operations in some detail.
They do not, howevemodel the implementations of these operations. There exist very few imple-
mented models of attention. Other than VISIdne implement every aspect within a connectionist
network. The existing implementations can be partitioned into two classes: pyramid models and
iterative models. The models are described below

10.2.1 Pyramid M odels

Koch and Ullman (1985) introduced the idea of a pyramid model of attention which has since been
implemented by Chapman (1990) in a system called SIVS. In this model a log-depth tree is placed
above a saliency map (Figure 10.2). At each level nodes receive activation from nodes below and
transmit the maximum of these values to the next level. The top node of the tree computes the
address and value of the most salient location. In addition, SIVS implements a fixed set of visual
routines which use the tree to access image features. The rfiairtgifvith this approach is that

the focus is not continuously variable. As a result the scheme cannot handle real pixel based images
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Figure 10.2. Koch and Ullmasattention pyramid.

but must assume a prior mechanism for segmenting the objects and normalizing their sizes. As with
Guided Search, each object must occupy exactly one location in the saliency map. Chapman briefly
discusses a way to reduce this restriction a little by overlapping several trees in a single network,
but no details are specified. A furtherfidifilty is that the time required to focus is logarithmic in

the maximum number of elements. Depending on the degree of the nodes, focussing time can be
relatively slow Nevertheless, this scheme was the first concrete suggestion for implementing an
attentional mechanism. The visual routines implementation, though not connectionist, represents
the first attempt at modeling Ullmaframework.

Anderson and & Essen (1987) discuss a mechanism for implementing attention using a pyramid-
like structure that represents the sequence of visual areas from LGN ugetxhTllevel can do

one of several actions depending on some control inputs. Each level compresses the input by a fac-
tor of two. Each level can also send its input straight through, or shift it by one position to the left
or right. To focus attention on a region, a series of micro-shifts are used to bring it into register with
one of several discrete chunks at the bottom of the pyramid. Control signals are then used to route
this region to the uppermost level. The main advantage of this scheme is that an entire region is
routed to the top, so the spatial relations of objects within that region are preserved. There are a
number of disadvantages. 1) It is unclear how a continuous focus of attention would be imple-
mented. 2) The shifting operation is quite complex and time consuming. It is unclear whether this
sort of a strategy can account for the extremely fast response times of human attention. 3) The
scheme predicts that shifting operations occur at all levels of the hieréhang is as yet no phys-
iological evidence for any sort of attentiondkeets below level V4.
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10.2.2 Iterative M odels

In contrast to the pyramid based models, (Ma@88; Mozer1991) describes AM, a model based

on iterative relaxation. In AM (as in VISIT) a region of activity in a layer of retinotopic units gates
the activity from feature maps to higher levels. The current focus is determined by an iterative rule.
At each time step units compare their activity with their neighbors and adjust their values according
to a locally competitive update rule. In time the network selects a single region of maximal activity
The main advantage of this scheme over the pyramid models is a continuously variable region. AM
also incorporates the ability to weight individual feature maps, although this capability was not
used in the simulations. Sandon (1990) describes a model which also uses an iterative rule but per-
forms the computation at several spatial scales simultaneously

One problem with iterative models is that the settling time is quite sensitive to the size of the image
as well as to specific images. It can be quite high if there are similar regions of activity that are
widely separated. In simulations, AM with a 36x6 image array took anywhere from 20 to 100 iter-
ations to settle (Mozefl991). A second issue is that the region selection is based completely on
local information. There is no explicit mechanism for using top-down location information to shift
attention. AM has been used as a model of word recognition and can model many of the perceptual
effects associated with reading. Some of the visual search results can be explained under suitable
noise assumptions, as in Guided Search.

(Fukushima, 1986) describes a model combining a log-depth hierarchical network and iterative
relaxation. The output level of the network contains one unit per pattern to be recognized. Given
an image the output nodes corresponding to tifierdift patterns will each respond to some degree.

The unit with the lagest response is selected and a signal is transmitted back through the pathways
activated by the input pattern. This creates a positive feedback loop which sharpens the detection
of this pattern. The pathways corresponding to the other patterns gradually attenuate in the absence
of this facilitation. In time the network attends to one of the input patterns. A unique property of
this scheme is that the shape of the focus of attention depends only on the shape of the input pat-
terns and thus can be arbitrafpwever the process is quite slow since many iterations are required

for the network to settle, and for each iteration the activity has to flow up and down a fairly deep
hierarchy The network has been used recently in the recognition of Chinese Kaniji characters
(Fukushima, Imagawa, & Ashida, 1991).
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10.3 Discussion

VISIT incorporates a number of features of other models. The notion of a gating network and
weights associated with feature maps is similar to the ideas in AM. The priority map is similar in
spirit to Feature Integration Theosyfocation map, and Koch and Ullmarpriority map. As in
Guided Search, VISIT makes use of a combination of top-down and bottom-up information for the
search process. The underlying constraints in VISIT are computatio@nely and the ability to

work with high-resolution images. Due to this, the implementations of the above features have
been very dierent. VISIT is the first model to separate the gating and priority computations and
this results in fast run times. VISIT is also the first model to make every aspect of the control pro-
cess explicit as a connectionist system. Fin®BIT is the only system that deals well with high-
resolution images.
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11. Concluding Remarks

This thesis has presented a model of attention derived from computational principles and biological
data. The overall design is simple, and should be easily implementable on a massively parallel
computer As far as I'm aware, VISIT is the first fully connectionist model of spatial attention
(including implementation of the control processes). It is also the first model that is a useful com-
putational model as well as being a reasonable psychological, physiological, and anatomical model
of human attention.

The initial goal of this project was to build a neural bridge between early and late vision. | feel
VISIT represents a step towards that goal but there is still much more to be done. It should be rel-
atively easy to include more realistic feature maps and implement the model on parallel hardware.
It should be simple to incorporate most connectionist theories of object recognition. Such a system
should, for example, be able to search a sparse image for fairly complex objects in real-time. It will
be more challenging to extend the system to deal with overlapping objects. Extending the system
to handle multiple visual tasks will require the ability to dynamically decide what sequence of
actions must be executed to complete the current task.

We are far from building a visual system with anything near the complexity of human vision. What
is the best way to proceed? | personally believe that the major breakthroughs will come from those
who keep both computationalffiefency and biological plausibility in mind. As constraints for a
model, these two might seem contradict&#hat do the constraints faced by a chemical system
have to do with the &€iency constraints faced by an electronic computer? My own experience
argues that the interaction between the two can be extremely useful. For example, the priority map
in VISIT was inspired by the existence of similar maps in monkeys for controlling eye saccades.
Later | realized that error units were actually a vefigieht and flexible encoding scheme. Con-
versely some of the design decisions were made purely for reasoffisiehefy Examples include
partitioning the network into the specific modules, and the SWIFT search stiditemgd out later

that these features also matched the biological data well.

| don't believe these incidents are coincidence. At this point | am not even convinced that the two
are distinct at the macro level. It seems clear to me that as our knowledge of both fields increase,
the interaction between the two will lead to a remarkably rich set of models in the near future.
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