[ICSIM: An Object-Oriented Connectionist Simulator

Heinz W. Schmidt} Ben Gomes
ICSI, Berkeley, California

Abstract

ICSIM is a connectionist net simulator being developed at ICSI and written in
Sather. It is object-oriented to meet the requirements for flexibility and reuse of
homogeneous and structured connectionist nets and to allow the user to encapsulate
efficient customized implementations perhaps running on dedicated hardware. Nets
are composed by combining off-the-shelf library classes and if necessary by specializing
some of their behaviour. General user interface classes allow a uniform or customized
graphic presentation of the nets being modeled.

The report gives an overview of the simulator. Its main concepts, the class struc-
ture of its library and some of the design decisions are sketched and a number of
example nets are used to illustrate how net structure, interconnection and behavior
are defined.

1 Introduction

In a highly exploratory field of research like that of artificial neural nets, simulation seems
to be the only prototyping technique combining sufficient flexibility with acceptable cost.
Flexibility is essential, due to the different mathematical models underlying neural nets,
the different network architectures and applications and also due to the experimental
character of most research projects (cf. e.g. [12, 15, 9, 1, 16]). Different simulators serve
different purposes ranging from modeling bio-chemical processes in the human brain (e.g.
[17]) to developing structured connectionist models of artificial memory, recognition and
reasoning processes (e.g. [8, 11, 3]). Efficiency is equally important; the simulation of the
massively parallel nets, for instance in real-time speech recognition, may take hours on
sequential machines.

Existing simulators like the Rochester simulator [8] or Genesis [17] lack the ability to
deal with nets in a modular fashion supporting the partial reuse of existing prototype
nets. Moreover they often started off as simulators with a textual interface and a graphic
interface for visualization of net behavior and performance is either missing or put on top
of the textual dialogue interface. This compromises extensibility. For instance, if new
types of nets are added, the command language and the related modules may also need
to be extended.

Some form of interactive, incremental prototyping is necessary to allow the user to
change the representation and/or structure of nets during a simulation. This is particularly

*on leave from: Inst. f. Systemtechnik, GMD, Germany

important in case of long simulation runs. Otherwise, in a non-incremental environment,
these long runs tend to repeat essentially the same problems as the edit-compile-debug
cycle in the batch-orieted style of programming in the seventieth. For instance, in the
development of the Genesis simulator this need was specifically addressed by an interme-
diate shell language interpreter [18] and in the Rochester simulator a special linker/loader
was developed to support a kind of dynamic binding of binary code for the same reason.

We believe that most of the above requirements related to extensibility, reuse and in-
crementality can be met by an object-oriented design of the simulator. In the decentralized
view of objects, functionality is organized along the dimension of data types. The uni-
formity of the ‘message passing metaphor’ is independent of whether messages are imple-
mented by procedure calls or real message passing in the sense of communications between
processes. Message passing lends itsell not only to the support of command-language-like
interfaces in an incremental prototyping environment but also to the integration of sepa-
rate tools. Finally the abstract data type paradigm embodied in object-oriented languages
provides acceptable high-level mechanisms that have advantages over special purpose lan-
guages for declaring net topology and interconnections (e.g. [10, 3]).

In the near future, we expect network sizes in the range of some hundreds of thousands
of units. Although larger nets are conceivable theoretically and, as nature suggests, realis-
tic, the technology to deal with heterogeneous nets of such size does not yet exist. For nets
of some hundred thousands units, efficiency must be addressed by parallel hardware com-
bined with a dedicated selection of data representations to reduce storage requirements
and the resulting paging and garbage collection overhead. Data structure selection and
hiding of the chosen data representation is also naturally addressed by the abstract data
type approach inherent in object-oriented languages. Parallelism of heterogeneous collec-
tions of objects comes naturally in object-oriented terms and while the hope is that an
object-oriented approach to parallel simulation will lend itself to the development of mas-
sively parallel applications, this is the topic of ongoing research in the field of concurrent
object-oriented languages.

Summarizing, the design of the ICSIM simulator tries to achieve the following goals:

1. Support a library of standard building blocks including novel structures like struc-
tured and heterogeneous networks, shared weights, different kinds of parallel paradigms
etc.

2. Provide flexibility and extensibility in network architecture and behavior (including
learning).

3. Create simulations that are modular and as easy to understand (declarative) as
possible.

4. Permit quick incremental changes to the networks in a protyping environment.
To achieve these goals we have chosen to

1. shift the conceptual focus from units to nets, and from global and sequential execu-
tion to local and asynchronous execution;

2. combine flexibility of object-oriented design with efliciency by virtualization of struc-
tures (e.g. virtual connections), parallel execution, dedicated processing, e.g. down-

loading nets to dedicated hardware!.

The current focus of the design is on the structure of the class libraries and, to some ex-
tent, on the separation and interaction between the simulator proper and the user interface
objects. The simulator is written in Sather[13], after initial prototype implementations in
Common Lisp and FEiffel.

The design tries to assist the specialist scientific community in teaching and research
in artificial neural networks. We envisage three types of ‘users’ to ICSIM that possess
increasing programming skills:

1. A graphic point-and-click interface is to allow the ICSIM beginner and maybe the
non-programmer expert to get acquainted with the available objects, tools and their
functionality. This interface is fairly limited. It supports only a fixed set of objects
and some standard ways of combining them.

2. A simple library of standard classes with a meaningful set of independent classes
and a coherent default functionality allows combination of off-the-shelf classes and
simple specializations in terms of ‘single-point’ redefinition. If this is done well, most
users should be able to do their simulations at this level.

3. skilled object-oriented programmers can use extension and inheritance to implement
radically different algorithms based on an advanced library with a set of dedicated
classes including new ways of visual presentation.

Due to the importance of extensibility and reuse and the limitation of "point-and-click’
interfaces, our initial design focuses on the users in the second and third class.

2 Overview

Two worlds can be distinguished in ICSIM: models and views. Models are the primary
object of interest in a simulation. Different kinds of networks, units and special approx-
imation and learning methods fall in this category. Views are the first-level objects that
a user sees and manipulates to deal with models: textual and graphical presentations,
operations on them that change the state of models, their behavior or their presentation.

Views have the character of objects to the extent that they are the medium through
which models are seen. At the same time they have the character of tools to the extent
that models can be manipulated through them.

In ICSIM we have chosen to separate models and views down to the level of instances
for three reasons:

1. Massively parallel objects justify a many-to-many relation between models and
views. In order to reduce complexity, separate views may filter different aspects
of a single chosen model.

Ysuch as the Ring Array Processor (RAP) developed at ICSI

2. The amount of presentation related (graphical) information must be reduced to a
minimum in the presence of many thousands of instances; and presentation informa-
tion and techniques deserve an encapsulation of their own to keep orthogonal issues
separate in the design;

3. We expect parallel execution of models in which server processors have local memory
to hold model instances combined with a user interface running on a workstation
that holds view instances.

2.1 A simple example: Computing the XOR of two random inputs

Fig. 1 shows a small net of four units computing the XOR of two random inputs.

The hidden unit in the center of the net is a boolean threshold of 2 and the output
(top) a boolean threshold (of 0.5 by default). The example demonstrates connection
functionality on the lowest level (wiring units one by one) and the choice of a specific
computation mode.

Skipped psfile=ps/xor.ps

Figure 1: Xor net

This model is implemented by two small classes representing the net (Xor_NET) and
a view of the net (Xor_VIEW).

Upon creation, the interactive text view class creates, initializes and then runs the
interactive view. All the simulator behavior, i.e. command prompting and interpretation,
net access and so forth are inherited from the superclass TEXT_VIEw_NET and its ancestors.
The main purposes of the class Xor_VIEw are to select the proper type of view and to
specialize the type of net to be simulated (here Xor_VIEW).

class Xor_VIEW is TEXT_VIEW_NET{X0R_NET}; end;

An (Xor_NET) is a NET composed of units (cf. below). ANy_UNIT is the most general
unit class. This means, in the context of this class, we can call only the most general

subset of operations on units but we are free to create arbitrary units as components of
the Xor_NET — descendents of ANY_UNIT.

As part of the creation, this class builds the corresponding units by means of inherited
initialization routines and then wires them. For simplicity, we use integers here to ‘name’
the units. Units 0 and 1 represent the input units, unit 2 the hidden and unit 3 the output
unit. The inherited create routine calls back the routine create_Component redefined to
‘declare’ the proper type of units and finally calls finish which completes the creation.
Instances of class Boor_RaNDoM_UNIT are created as input units; a boolean unit with a
variable threshold of type VaArR_BoorL_UNIT is chosen as hidden unit and the threshold is
defined as 2.0; and finally a boolean unit with constant default threshold of 0.5 is made
the output unit. A parameter map (PMaP) object details the creation specifics, here the
selected weights depicted in Fig. 1 (1.0 and —2.0). Parameter maps allow to associate
typed values to symbols (or keywords). In the example below, for instance, the REAL value
-2. is associated to the symbol initial weight. Particularly during initialization ICSIM uses
PMAP as a uniform and dynamically extensible way of parametrization to provide objects
at different levels of a structured net with access to common structural information.

class XorR_NET is NET{ANY_UNIT};

finish is
cl: PMAP::create.r(initial_weight,1); c2: PMAP::create.r(initial_weight,-2.);
unit(2).connect(unit(0),c1); unit(2).connect(unit(1),cl);
unit(3).connect(unit(0),cl); unit(3).connect(unit(1),cl);
unit(3).connect(unit(2),c2);

end;

private create_Component (i: INT): ANY_UNIT is
switch i
when 0..1 then res := Boor._RANDOM_UNIT::create;
when 2 then res := VaArR_BooL_UniT::create(2,2.0);
when 3 then res := BooL_UNIT::create(3);
end;

end;

step is serial _Step end;

end;

This defines a running model. All the necessary functionality including means to
describe the current state of the net, to manually inspect and update single units are
inherited. The corresponding functionality is retrieved, compiled and linked when the
root class of this simulation, class Xor_VIiEw, is compiled.

2.2 Models

Models are built from units and nets. We speak of units (rather than neurons) to stress
the artificial character of these objects and their difference from physiological models of

neurons. In ICSIM, units and nets are characterized by their structure and their behavior.
The structural aspects include composition, interconnection and state. Behavior is subdi-
vided into computation and learning. Together these aspects make up the functionality of
the respective objects.

2.2.1 Structure

Nets are either composed of units or, recursively, of other nets. Informally units can be
thought of as atomic nets. The common functionality of nets and units is captured in the
class ANy_MobpeL. This class defines the protocol for interconnecting and triggering the
computation steps of nets and units. ANy is the most general of all the simulator related
classes. It encapsulates various general routines, like access to some global information,
printing routines, persistency and the creation protocol.

Typically the state and behavior of a net is understood as the combined distributed
state and behavior of its component subnets or units. In this sense, a net is ultimately
defined in terms of its lowest-level units and most of the functionality of units carries over
to nets in a natural way. For instance we may say that a net performs one computation
step when all of its units performs a single computation step. Most of the ICSIM classes
are compositional in this sense. The hierarchical structure of nets plus the interconnection
structure between its components uniquely extends the low-level unit behavior to the high-
level net behavior.

The complete story is more complex, when we introduce intermediate levels of subnets
and consider asynchronous computation modes. For instance, the implementation of a
net’s behavior is not independent of the data representation of its state. A specific choice
of a compact data representation on the subnet level will typically require a specific way to
implement the computation of the net. Also, modeling a specific computation mode of a
net may require departure from a pure compositional semantics. For instance, structured
connectionist nets [7, 14, 11], that model semantic networks, will usually require special
computation modes to implement mechanisms like variable-binding, token passing or in-
ference steps. Our hierarchy of net classes is designed to allow the user to form subclasses
in such a situation. There are a number of intermediate classes in the hierarchy whose
purpose is the definition of a corresponding abstract data type only and which do not yet
freeze a specific data representation for their subclasses.

2.2.2 State of computation

The activity of units is represented by their activation levels. Units have an internal
activation level which we call potential and an externally visible activation level called
output (visible to other units). The potential is usually some real-valued function of
the net input from other units. For instance, for many of our instantiable library units
the potential is the weighted sum of inputs. Different types of units may have different
additional attributes to model more complex states and state transitions. In some models
[6, 14], a unit has a mode represented by a value in a small range of integers that represent
different phases of computation. We subsume all the related accessor functionality of
classes under the general term state.

The output of a unit is some function of its potential such as the result of some
squashing or threshold function, cf. Fig. 2.

Skipped psfile=ps/synthetic.ps

Figure 2: Unit synthesis

For the class ANy_UniT, this value is computed but not stored. In other classes
(Two_PHASE_UNIT and its descendents), output is a stored attribute separate from po-
tential. This separation is used in a sequential simulation of simultaneous steps. Units
can compute their potential without affecting the ‘simultaneous’ computations in other
units which ‘see’ the unchanged output of the previous state. Only when all units in the
simultaneous step have computed their potential, will all of them change their output (cf.
Section 2.2.4 below).

2.2.3 Interconnection

Units receive input signals from other units via directed connections. These connections
may carry weights representing the connection strength. The interconnection functional-
ity of units includes primitives to connect them and to initialize weights. For learning,
specific unit classes embody training rules which define how weights are changed during
the computation cycles of a net in response to signals from a net’s environment. The inter-
connection of a net thus represents the knowledge or state of training of the net. Because
the weights of a connection directly influence the activation of its target unit only, one can
view the weights of the input connections of a unit as part of the overall unit function.

Nets can be interconnected in many different ways. A single net can exhibit many
different interconnection structures. Therefore different connection procedures are, in
general, supported by the same type of net. In contrast to this, units, viewed as atomic
nets, have a single connect procedure.

There are different ways to distinguish different interconnection structures. In the
most general case, the internal interconnection structure of a net, once it is built, is a
spaghetti bowl of indistinguishable connections.

One simple means of imposing structure on interconnection is partitioning the net on
the instance level. A specific component of a net may be connected only to some other
specific component, this ‘knowledge’ about interconnection is built into the connection
routines and selection routines of the net.

Another, structural mechanism is a type-specific partitioning of the net. In such a
partitioning only certain types of components are connected with each other. In this case
the respective types can encapsulate the knowledge about their interconnection. The net
connection and selection routines can use a uniform protocol for inquiring components
about their connections.

Finally, sites can be used for partitioning the connection structure. Sites correspond
to different types of connections. Semantically, they may be viewed as a partitioning of
the net adjacency matrix. In the distributed representation that we have chosen for many
of the simulator classes, units hold a corresponding vector of the connection matrix. A
site then groups the corresponding part of such a vector.

In ICSIM sites also encapsulate the representation of weights. Moreover, different sites
may have distinct functions for contributing to the computation of a unit. Sites thus lead
to a structural and functional decomposition of units. However, in ICSIM, they do not
involve a temporal decomposition. This means, unit steps are the atomic steps in our
discrete simulation.

Units and sites have a single output while the output of nets is that of perhaps many
units. Units and sites therefore obey a common information transmission protocol cap-
tured by the class ANY_SINGLE_OuTpuT (cf. Fig. 3). Based on this protocol it is possible
to compose sites and units in a uniform way to form a site tree where the output of one
site is fed into another site and so on until the whole input is integrated and worked out
by the receiving unit. The lower part of Fig. 2 alludes to this possibility. The resulting
structure is loosely analogous to dendritic trees. The output of a single unit can also be fed
into such a site tree many times via multiple connections?. Although semantically more
complex, from the viewpoint of modeling power and also of implementation, this scheme
has advantages. It is more powerful than simple unidirectional connections between pairs
of units because it allows one to express complex non-linear dependencies by means of
simple standard site and unit functions in terms of structural arrangements.

In the simplest case, however, a unit has a single site and the library includes site
classes which enforce simple connections between units.

The interconnection structure of a net is an important aspect of the way it computes
and generalizes its trained behavior. There are so many variants of interconnection types
and structures that they deserve a high-level means to describe them. The connection spec-
ifications that parametrize the various connection procedures are part of the initialization
specifications (init_pmap). For instance x_connect (short for ‘cross connection’) connects
two nets by connecting all units of the first to all of the second net (cf. also Fig. 7?). A
connection specification can ‘tell’ x_connect to skip certain connections, to connect with
some probability only and so on. It also ‘tells’ the initial weight to use and for multi-site
units it tells which site to connect to.

In this way users can customize interconnection structure on a high level — a more

?Physiclogically, many neurons have multiple connections with adjacent neurons and the activation
of these synaptic connections depends on learning such that there is the possibility of many different
non-linear interactions between the same two neurons[2].

Skipped psfile= ps/output-object.ps

Figure 3: Any_Single_Output: Common functionality of units and sites

convenient way than programming in terms of the internal connection primitives of the
different net classes.

To interpret a connection request at the various levels in the hierarchy, I[CSIM supports
general routines ANY_MODEL::connectp, INPUTS::which_site, and ANY_LINK::initial weight.

At the net level the boolean function connectp will be called to determine whether two
objects are to be connected. The result may depend on a probabilistic variable to allow for
a randomly dense interconnection structure or it may depend on the type of subnets and
units to be connected. Then, at the unit level, the site — if any — will be determined and
finally, at the site level, the initial weight — if any. In this way a connection specification
describes which connections to ‘wire’, to which sites to connect and what initial weights
to choose.

Different connection specifications have different regimes to choose sites and initial
weights. For class MuLTi_SITE, for instance, we assume that a net sequentially builds its
different types of connection structure site by site. A connection specification used in this
process can be updated by the net (set_current_site) whenever one type of connection (site)
is built.

The following example shows hierarchical nets and the use of different connection prim-
itives. Qur problem consists of coloring the map shown in Fig. 5, such that neighboring
regions do not receive the same colors (white, green, red and blue). We have chosen the
four color problem as a ‘typical’ local constraint problem.

More formally, we wish to find a total function color from regions to colors with the
property that for two regions 2 and y in the neighbor relation color(x) differs from color(y).

Our coding in terms of interconnection structure is obvious when we consider the
following reformulated specification: We wish to find a binary relation color between regions

Skipped psfile=ps/con-spec.ps

Figure 4: Connection specifications customize interconnection structure

and colors, that is total, unique and satisfies the neighbor constraint above.

We now represent each region by four units, one for each color. If a unit’s activation
level is high, the corresponding pair (region,color) is considered to be a member of the
color relation. The constraints are represented by inhibitory connections, shown in Fig.
6, as follows: The colors of one region are mutually exclusive (complete_connect) and the
same colors of neighboring regions mutually exclude each other (bus_connect).

Choosing different inhibition strengths for the two types of exclusions and a particular
nondeterministic unit function we let the net randomly walk through its combinatorial
state space. The net has many fixpoints, each representing a solution.

We choose a weak inhibition between the same colors of neighboring regions (—1) and
a strong inhibition (—10) among the colors of the same region, at least n times the weak
inhibition, were n is the maximal number of direct neighbors in the net.

The four-color net (CorL4_NET) is hierarchically built from regions (Cor4_REG). A
CoL4_NET creates its regions as subnets and ‘declares’ the neighbor relations (part of
the create routine) which are ‘compiled’ into the corresponding interconnection structure
(bus_connect).

Each region is a net composed of Cor4_UniTs. It creates its four color units as part of
its own creation and interconnects them internally.

class Cor4_NeET{REGION} is NET1D{REGION};
constant default_init_pmap: Pmap := PmaP:i(size,10); — — ten regions
neighbor(i,j: INT) is — — connect two regions as neighbors
subnet(i).bus_connect (subnet(j),weak_inhibit);
subnet(j).bus_connect (subnet(i),weak_inhibit);

end;

finish is — — declare neighbor relation

10

Skipped psfile=ps/coldgraph.ps

Skipped psfile=ps/col4dmap.ps

Figure 5: Region map and neighbor graph

neighbor(0,1); neighbor(0,5);
neighbor(1,2); neighbor(1,6); neighbor(1,5);

end;
private create_component(r: INT): CoL4_REG is
res := REGION::create_default; res.set_name(” Region ”.copy.i(r));

end;

end;

class Cor4_REG{U} is NET1D{U};
constant default_init_pmap: PmaAP := PmaP::i(size,4);
finish(ignore: Pmap) is complete_connect (strong-inhibit); end;
end;

The connections specifications weak_inhibit and strong_inhibit are constant connection
specifications like in the previous (Xor) example.

2.2.4 Behavior

The computation of a net consists of many update steps of its units. A single unit step
has two phases, internally. The first phase computes the input received by the unit. This

11

Skipped psfile=ps/coldnet.ps

Figure 6: Interconnection structure

input determines the internal potential. The second phase internally posts the potential
so that it becomes visible as the unit output to connected units.

We refer to this combination of compute and post as a discrete unit step. Most often
compute and post will be deterministic functions, often monotonic and usually differen-
tiable. Sometimes it is useful to consider non-deterministic unit functions, i.e. units whose
outputs depend on some random choice or models a specific probability distribution, i.e.
a stochastic function. For instance, the compute procedure of random units sets the po-
tential to some random value. Accordingly we call a unit deterministic if its function is
deterministic and otherwise nondeterministic.

We distinguish serial and parallel computation.

Serial computation can be deterministic or random.

In deterministic serial computation the structure of a net defines a ‘natural’ order in
which components step. For instance, a serial computation of a net may consists of a
series of steps of its unit in the order in which they are structurally arranged in the net.
Similarly, in this computation mode, in the step of a layered net, one subnet completes its
step before the next one starts its step.

In the random serial computation, we randomly choose the component that is to
step next. The different components are assumed to have a uniformly equal chance to
precede any other component. The law of large numbers suggests that with increasing
number of steps each component eventually gets a chance to step. This computation model
assumes that the steps of two different components can always be temporally separated,
i.e. temporal measurements can be arbitrarily fine and interferences of two components
in between successive measurements can be neglected. These simplifying assumptions are
often adequate.

For some models, tight temporal relations are essential, including real-time dependen-
cies with bounded delays. There are three types of parallel computation modes: syn-
chronous, fair asynchronous and unconstrained asynchronous. All parallel computation
modes involve simulation of real parallelism. This means, units may update simultane-
ously without interfering spontaneously (limited signal speed). Intuitively, this means that

12

the output of some unit cannot affect that of a simultaneously updating one.

The synchronous parallel computation mode (of a subnet) represents the tightest form
of temporal coupling among the parallel modes: all units step simultaneously in parallel.
This means all units compute their potential and then all units post some function of
the potential to their output. Thus the output of a given unit’s step can only affect the
computations of other units in a subsequent step.

In the asynchronous computation modes some units may ‘step ahead’ of other units.
This is similar to serial random computation. However, an arbitrary number of units
updates simultaneously. Consider two units u and v where v receives some input from u.
If v and v update simultaneously, v is not directly influenced by w’s step. However, if u
happens to step ahead of v, v will 'see’ the current output of u. If u steps ahead multiple
times before v updates, intermediate outputs of u may be lost. In the fair asynchronous
mode, no unit can step ahead of any other unit more than a fixed number & of steps. Every
unit has a fair chance to update eventually. In fact, its update step can be predicted in a
fixed temporal interval determined by k.

All of these parallel modes are represented by special cases of what we call bounded
asynchronous computation. We associate a synchronizalion bound k with a net, defining
the maximal number of times a single unit can step ahead of other units. A synchronization
distance 0 obviously corresponds to the synchronous mode. A positive integer value k
guarantees fairness, i.e. each unit will eventually step but up to k — 1 signals may be
lost between two connected units. And the value oo corresponds to the unconstrained
asynchronous model.

Many connectionist models rely on convergence of the net, i.e. the net function (defined
in terms of its units’ functions) is supposed to reach a fixpoint in which the output x =
f(x), where f is the net function composed of the unit functions f; and x is the net state
vector composed of the unit state values z;. If fis the single-step function, i.e. determines
the next state f(x), and the above equation holds in a given state x, the net output has
settled (is therefore statically stable). For recurrent nets it may be useful to consider fin
the above equation as the function defined by a finite sequence of net steps. Even if the
single-step function does not have a fixpoint, a multi-step function f may have a fixpoint.
In this case the net oscillates (and is therefore dynamically stable). Net and unit classes
have the specializable predicates deterministicp and fixpointp to help the simulator search
and determine such fixpoint states. For a unit the predicate fixpointp represents the local
fixpoint condition z; = f;(x), in other words, the state (z;) of unit ¢ will not change (does
not require updates) if the state of other units (in z) does not change. This covers the cases
where units have ranges of input in which their function f; behaves nondeterministically
and also units the state of which may settle only after a number of updates due to internal
state.

Specializations of all this standard functionality are possible and available. For instance
the most general class of units, ANy_UniT, does not distinguish between the two phases of
a step while Two_PHASE_UNIT does. The user may design subclasses of ANy_UNIT instead
of subclasses of Two_PaASE_UNIT, for instance, when it is clear that a simulation of 'real’
parallelism is not important but an arbitrary serialization will do. Also when it is clear
that the subclasses will always be executed on physically parallel processors there is no
difference between these two classes.

For learning, units can be clamped, receive error signals, accumulate them and self_adapt
their connection weights to accommodate for the error values accumulated so far. As part

13

of this adaptation, they feedback error signals to their own inputs. In this way errors are
recursively fed back towards the input units. Currently the back-propagation rule is the
only learning rule implemented, cf. the corresponding routines of the class Bp_UNIT.

The corresponding basic procedures of units are again driven by the net; the driving
routine of the net is also called self.adapt. For instance in a layered back-propagation
net, the corresponding net receives some error signals at the output layer (teach_output)
and then self adapts by letting the units adapt to the error signals according to the back-
propagation algorithm starting from the output layer and working back to the input layer
successively.

We conclude this section by completing the four-color example.

The output of a color unit (Cor4_UNIT) is non-deterministic. When it receives weak
inhibition only, a unit can still be activated with a certain probability. This is expressed
in the feature compute. unifrnd is a random number generator that returns a uniform
random number between 0 and 1.

class CorL4_UniT is SiaMoI1p_UNIT;

compute is
potential:=20*(accumulated_input - RANDOM::uniform Strong_inhibition)+.5;
end;

fixpointp: BOOLEAN is
in: REAL := accumulated_input;
res := (in <= strong.inhibition and output < 0.3) or
(in = 0.0 and output > 0.7)
end;

end;

The non-deterministic character is also expressed by redefining the predicate fixpointp
that helps the system determine whether or not the net has converged. Here fixpointp
expresses the non-deterministic range of the unit function modulo some tolerance because
of the slow convergence of the sigmoid function close to 0 and 1.

From the superclass UniT, this class inherits a sigmoidal squashing function with a
fixed steepness (t=10, cf. Fig. 7).

A UwniT is a Two_PHASE_UNIT, it can be used with all modes of stepping. The stepping
mode for the CorL4_NET is random serial. This net would also converge to a solution in
synchronous parallel mode due to the random potential that is taken by compute above.

2.3 Learning

One of the main intended uses of ICSIM is to allow the user to experiment with different
learning algorithms. The encapsulation of learning, in order to separate it as much as
possible from the structure of the network, is the most important issue. The cascade
correlation algorithm is chosen to illustrate the approach described, because it is one of
the more complex learning algorithms, and exercises many aspects of the simulator.

14

Skipped psfile=ps/sigmoid.ps

Figure 7: A temperature dependent sigmoidal unit functions

After a brief description of the cascade correlation example, the constraints and criteria
for implementing learning will be discussed. Then the solution chosen by ICSIM will be
described, illustrated by the implementation of cascade correlation.

2.3.1 Cascade Correlation: The Algorithm

The network starts out as a perceptron, with an input layer, an (empty) hidden layer, and
an output layer. The input layer is fully connected to the output layer.

The connections to the output layer are trained using some form of gradient descent
- quickprop [5] is a fast second order method to achieve this. Training stops when the
total error of the output layer does not change by even a small amount (the output change
threshold) for a number of epochs (output patience), or when a preset maximum number
of epochs is exceeded, in case the outputs do not settle but oscillate instead.

A new candidate node is then added to the network. It has inputs from all but the
output nodes. To begin with, it’s output is not used, except for training. The installation
of this node takes place in two stages. First the inputs are trained, then it is connected to
all the nodes in the output layer. All the weights coming into the output layer are then
retrained.

In the first step, the inputs to the network are taught by performing gradient descent
to mazximize the correlation between the output of the candidate node, and the error of
the output layer. This correlation learning phase is continued until the correlation does
not change by more than a small amount (input change threshold) for a certain number
of epochs (input patience). There is also a maximum number of epochs to handle the case
where the correlation begins to oscillate wildly. Once again, quickprop may be used to
perform this gradient descent.

In the second step, the new node is connected to all the outputs of the network. Its
inputs are frozen so that they will no longer go through any form of learning. The only
free (unfrozen) weights at this point, are the weights going into the output layer. These
weights are then retrained using normal gradient descent (quickprop) on the outputs.

15

After this another unit is added and the training of the candidate units begins again.
In order to improve the performance of the correlation gradient descent, not one, but
several candidates are trained. However, at the end of the correlation learning phase, only
the candidate with the highest correlation is tenured, and becomes a part of the network.

Note that at any given time in the algorithm, only one “layer” of weights is being
retrained, so only simple (and fast) perceptron learning need be used.

The final network consists of an input layer, a cascade layer in which every succeeding
node has an input from every node that came before it, and an output layer where every
node has inputs from all the input and cascade nodes. See Fig 8.

Figure 8: Basic Cascade Correlation architecture.

2.3.2 Design Criteria

Since learning algorithms can be very computationally expensive, the efficiency of the
implemenation is important. Indirection that arises because of the structure of the design
is acceptable as long as we avoid very deeply cacaded messages, and minimize overhead in
tight loops. Computationally expensive parts (vector and matrix operations) should also
be encapsulated, to make it easy to spawn off vector operations to specialized hardware.

Within the constraints of efficiency, the implementation should be as modular as pos-
sible, so that the learning is clearly separated from the structure of the network. This
separation is necessary to facilitate independent experimentation with different network
architectures and learning algorithms. ICSIM should have a library of learning methods
and an independent library of network architectures, from which classes can be combined
to meet the user’s needs. This is only possible to the extent that the learning algorithm
is independent of the network structure. Cascade correlation for instance, relies on a net
that grows by adding nodes that are fully connected to all preceeding nodes.

If we view the growing net as one object (the structure) with a particular connectivity

16

pattern, the cascade correlation learning method proper is independent of this structure
and triggers the net to grow. On the other hand, it is often desirable to “distribute”
learning and make it as local as possible. Thus the way a network is structured defines
its input-output behavior (function) and at the same time how it apapts to input. To
achieve modeling flexibility, ICSIM tries to be general enough to cover both these extremes.
Learning may need to be implemented at various levels of the network, depending on how
much must be known about other parts of the network. Ideally it would be possible
to encapsulate learning at the level of the unit. With many learning algorithms this is
possible. It is then easy to create any kind of network structure, simply by using the
appropriate units to create the network. Sometimes, however, more global knowledge is
needed, and must be encapsulated at the net level, if only for efficiency.

In order to train a network, it is sometimes necessary to control learning in the units
from a higher level. This high level control can vary in complexity, from a simple two
phase backprop over all patterns, to the multi-stage training of cascade correlation. We
would like to encapsulate this higher level of the algorithm in a learning supervisor, so that
it is encapsulated and can be re-used with different network architectures and modified
easily.

We can use either a client relationship or inheritance to interact between the learning
supervisor and the network i.e. the supervising class could either have the network as
a client, or inherit from it. Since clients cannot break the encapsulation provided by
a class, i.e. cannot use private features, a client relationship combines restriction with
abstraction and is often easier to understand. An inheritance relationship, while not as well
encapsulated, has faster access to the internals of the network. The inheritance relationship
would tend to blur the distinction between learning and structure, since learning methods
would be part of a NET class (in a descendant of the class where the structure was defined).
The pure client relationship would exact a performance penalty, since all tight loops over
components would now have to use the (slower) public interface to the components of a
network.

ICSIM chooses a compromise. Two other classes are distinguished: a “supervisor”
(which uses the client relationship) to encapsulate overall control of the algorithm, and a
“learning” class (which uses inheritance) to encapsulate tight inner loops over the compo-
nents.

2.3.3 Supervisor

The supervisor controls the overall behaviour of the network, which it has as a client, and
describes the high level structure of the learning algorithm. It controls its client network
by performing combinations of various atomic actions on it. In addition to the model,
the supervisor also uses contains two other gadgets - a parameter reader and a pattern
holder - to assist in the supervision of the network. The parameter holder reads in the
parameters for the model (network), the pattern holder and for the supervisor itself. The
pattern holder holds the training and test patterns, which are usually read in from a
file. The supervisor will present these patterns sequentially to the network in the course
of learning. The supervisor class is parametrized over the network model and over the
pattern holder (cross-validation, for instance, is implemented by creating a new pattern
holder that divides the patterns into training and test patterns, and can step through
them independently).

17

class ANY_SuPERVISOR{M ,P} is
ANy;

model: M
pat_holder: P;
params: PARAM_READER;

init(init_pmap: PmaP) is ...
— read in pmaps from an input file and set up
— the model and pat_holder

run is ...
— default running behaviour.

learn is ...
— redefined in subclasses to reflect actual learning
— methods.

forward_pass is ...
— The computation of a network.

epoch is ...
— Forward pass for various patterns

end;

The protocol that is defined for the supervisor consists of
e creation: create, init
e control: run, learn
o description: describe

When the supervisor is created, it first calls on the parameter reader to read in the
network parameters from a parameter file, using the parameter reader. The parameters
are in the form of PmaP’s (associative lists of parameters and their values), which may
be nested, in order to reflect the creation of nested networks. The appropriate PMAP’s
are then passed as the parameter to the create routines, so that the network is set up as
specified by the parameter file.

After its creation (during which the model etc. are instantiated), the supervisor is sent
the message run, which performs the stepping, training, testing and network modification
that the algorithm requires. The supervisor controls the algorithm by passing messages
(calls) to the units via the medium of the net (model) and learning classes.

The supervisor thus controls all the algorithm, by performing actions on a network,
down to the level where the components must be accessed. Actions that do need to access
the components directly are encapsulated in the network class in order to achieve efficiency.

18

The cascade correlation supervisor provides a high-level description of the cascade
correlation algorithm. The different kinds of epochs, for training output and hidden nodes,
are described in the supervisor.

We first declare the parameters that the supervisor itself needs. These parameters
will be instantiated from the PmaPs in the parameter file during the create routine of the
supervisor (in ANY_SUPERVISOR).

class CC_SupERVISOR{M,P} is ANY_SUPERVISOR{M,P};

output_patience: INT;
— ... all other parameters for learning

The overall algorithm trains the output layer, trains the candidates, then installs the
best candidate. The stopping criterion described here is simply the number of units. More
complex stopping criteria, based on the network error for instance, are easily described.

learn_and_grow(init_pmap: PMaP) is
output_patience := init_apmap.int_opt(output_patience,10);
in_epochs: INT := init_apmap.int(input_epochs);
out_epochs: INT := init_apmap.int(output_epochs);
unit_counter: INT := 0;
until (unit_counter > num_units) loop
output_learn(out_epochs);
input_learn(in_epochs);
model.install_new _unit;
unit_counter := unit_counter + 1;
end;
end;

Training the output layer is done by performing output epochs until a certain error cri-
terion is reached. The code for testing for patience (testing whether the err has decreased
significantly), is omitted. Routines like compute_sum_sq_error represent the boundary be-
tween the network model and the supervisor. Since these routines need to loop over
individual components, they are implemented in the network.

output_learn(nepochs: INT) is
i INT := 0; until i = nepochs loop
output_epoch;
model.output_layer.compute_sum_sq_error;
err := model.output_layer.get_sum _sq_error;
— ... code to test for patience
i=i41;

19

end;
end;

The output epoch represents a single pass over the patterns. Each pattern in turn is
presented to the output. The pattern is forward propagated through the network, after
which the error is backpropagated. The notion of a “cursor” is used to step through the
patterns.

output_epoch is
pat_holder.first;
model.epoch_reset;
until pat_holder.is_done loop
forward pass;
output_backward_pass;
pat_holder.next;
end;
model.output_layer.self_adapt;
end;

The forward pass begins by resetting the model. The current input pattern is then pre-
sented to the input layer, and the model is stepped.

forward_pass is
model.reset;
model.input_layer.present_input(pat_holder.get_input_pattern);
model.serial _step;

end;

The backward pass is similar, beginning by presenting the current output pattern to the
output layer, and then backpropagating the error.

As may be seen, the supervisor provides a very declarative high level description of a
rather complex algorithm.

2.3.4 Learning Classes

The learning classes are mainly an interface between the supervisor and the units. They
are at the same level as the network and will be combined with them, but contain only
procedural information. All the functionality in the learning class could easily be placed
in the net class, but separating it out makes the design more modular, and also makes it
possible to combine the same procedural information with different network topologies.

Sather’s facility for multiple inheritance is used to separate the learning from the net
classes. The actual model then consists of a class that inherits from both the appropriate
learning class and the appropriate network class. This maintains the distinction between
learning and structure, without any sacrifice of efficiency.

Most of the routines of the learning class take the form of loops over the components
of the network, to perform various atomic actions on these components, as shown below.

20

class BP_LEARNING{DEFERRED} is
ANY_LEARNING;
self_adapt is
i: INT; until i = n loop
components[i].self_adapt;i:= 1 + 1
end;
end;

The learning and network classes are combined using multiple inheritance as shown in the
figure.

2.3.5 Net Classes

Cascade correlation introduces several new network classes - FULL_CC_N&T, CoRR_OUTPUT_NET,
GrowING _CAscADE_NET. FuLL_CC_NET is a container net that holds the three components
network - the input net, the cascade net and the output net. It creates these networks
and provides a public interface to them, for the supervisor to use. Hence, the supervisor
has access to the different component networks throught the public interface of this class.

class FuLL_CC_NET is
NETID{SNETID{$SANY_UNIT}};

bias : Bias_UNIT;
— access functions for the input, hidden and output layers.

input_layer: INPUT_LAYER is component[0] end;

private create_components(init_pmap: PMaP) is ...
— Create the input, (empty) cascade, and output nets
— and connect them

Though the installation of a new unit is part of the learning schedule, it alters the
structure of the network, and is hence encapsulated by the network class.

install_new_unit is
cascade_layer.install_new_unit(layer_connect_spec(0));
end;

GRrROWING _CAscADE_NET is a CascaDE_NET with additional support for training and
installing candidate units into the cascade net.

class GROWING_CasCcADE_NET{T} is
CAsCADE_NET{T};

21

cand_units: LisT{CorRR_UNIT};
best_score: REAL;

Stepping is modified to accomodate the new candidate units. The installation of the new
candidate units is performed by converting one of the candidate units into a member of
the list of cascaded component units.

The Corr_OuTPUT_NET illustrates the use of multiple inheritance to denote the back-
prop style of learning on a NET_LAYER. In addition, it needs to be able to keep error
statistics for the output nodes to be used when training the candidates.

class CorR_OUTPUT_NET is
NET_LAYER{CORR_OUTPUT_UNIT };
Bp_LEARNING{CHECK };

sum_sq_error: REAL;

compute_sum _sq_error is
— store the sum of the errors
— at each component in the sum_sq_error
i INT := 0; until i = components.size loop
SUM_S(q_error := sum_sq_error +
components[i].get_sum_sq_error;
i=i41;
end;
end; end;

In ICSIM, the NET classes encapsulate the topology of the networks. In addition, they
also serve as to communicate between the learning supervisor, and the learning methods
that are at the level of the unit. Hence, they are, in a sense, the heart of ICSIM.

2.3.6 Unit Classes

Many learning algorithms can be implemented in the unit classes alone. This is to be
expected, since the unit should be the basic computational structure. However, learn-
ing strategies frequently do not limit their computation to within the unit and rely on
more global computation as well. As pointed out above, sometimes computation can be
expressed in either a local or a global form.

The cascade correlation example defines three main classes of units - the Qp_Un1T, the
Corr_UnIT and the CorrR_OuTPUT_UNIT.

Qp_UNIT implements the quickprop algorithm [5], by inheriting from backprop and
modifying the weight update method. The create routine must also be modified in order
to take into account the extra parameters and arrays that the quickprop unit requires.
The Qp_UnIT is not used directly, but both the Corr_OuTPUT_UNIT and the CorRR_UNIT
inherit from it.

The Corr_OuTpPUT_UNIT is used in the construction of the output layer. It keeps track
of the sum of the error it has seen and the sum of the error squared. This is accumulated

22

over an epoch before the candidate units are trained, since the candidate units need to
know this information in order to compute their own error.

class Corr_OuTPUT_UNIT 18
Qp_UNIT;

sum_error: REAL;
sum_sq_error: REAL;

compute_current_error is
local_error := d_unit_fn(output, 0.0) * feedback_sum;
sum _error := sum _error + local_error;
sum_sq_error := sum_sq_error + local_error * local_error;
end;

The Corr_UniT is used for candidate units. This unit has a pointer to the output network,
0 as to get access to the error statistics of the output nodes, which are CorrR_OUTPUT_UNITS.
It needs these in order to compute its own correlation error.

class Corr_UNIT 1s
Qp_UNIT;

corr: LisT{REAL}; — Correlations with output units
prev_corr: LisT{REAL}; — Previous correlations
sum_value: REAL; — Sum of values over an epoch

output_corrnet: CoRR_OUTPUT_NET;
— points to the output network

compute_correlations is
sum_value := sum_value + output;
o: INT := 0; until o = output_corr_net.size loop
corr[o] := corr[o] +
output_corr_net.component(o).get_local_error * output;
o:=o0+ 1;
end;
end; end;

With the exception of the Corr_UniT, the UniT level implementations of the algorithms
are completely local. Any different network structure may use quickprop, for instance, by
using QP_UNITsS to construct the network. Even in cascade correlation, if we change the
Corr_UNIT to inherit from Bp_UniT instead of Qp_UniT, we can use backprop instead of
quickprop.

2.4 Views

From the user’s perspective, views are the first-level objects for presenting models and
interact with them. Views have a passive character to the extent that they are the medium

23

through which models are seen. At the same time they have the active character of an
instrument to the extent that they allow the user to manipulate models.

Each view encapsulates a specific technique of presentation and to this end a moderate
amount of knowledge about the object being presented. Since views are the only medium
to ‘see’ and ‘manipulate’ models, it is natural in an object-oriented setting to associate
view-related functionality with the model objects themselves and to localize the informa-
tion and logic needed for the purpose of presentation and interaction. On the other hand,
in the presence of many parallel objects, we do not want to duplicate the storage needed
for the presentation and interaction logic and do not want to distribute this logic more
than necessary to the objects executing in parallel. Hence there is a tradeofl between
object-specific functionality local to the objects and central functionality for managing
presentations. This tradeoff is particularly evident when parallel simulations are consid-
ered in which models execute on parallel processors while the user monitors the simulation
at the local workstation.

Our compromise in ICSIM is to have different kinds of views that fall in different ranges
between these two extremes. So far we distinguish five kinds of views. The most general
ones, not restricted to our application, are the text interaction view and tour view. These
views maintain the ‘what-you-see-is-the-object’ metaphor, and are indeed associated to
the objects themselves.

The text interaction view, or lext view gives a textual presentation of the current state
of the simulation (cf. below) and lets the user enter in a textual dialog. It is based
on various describe routines and allows interaction with a single top-level net in terms of
textual menus. The menus offer the main simulation functions of the corresponding net
class. By inheritance, all user-defined objects will ‘know’ how to describe themselves. This
eases rapid prototyping of models. In time, the user will typically redefine parts of this
functionality to adopt net descriptions to the specific problem at hand.

The following is an extract of the dialog that results from the four-color classes we
have described above.

Text View (choose command):

New

Reset

Sync Bound

Micro Step

Step

Step size

Solve (Care!)

Fixpoint?

: Describe

10: View

11: QUIT

Choose (Default: New): step si
=> Step size

Typein number of steps (Default: 1): 10
Choose (Default: Step size): ste

O 00 ~N O O W N =

=> Step
Region=0 G : P=-87.4225,0=0;P=-102.844,0=0;P=30.6219,0=1;P=-20.6846,0=0
Region=1 B : P=41.5084,0=1;P=-112.997,0=0;P=-117.051,0=0;P=-21.3759,0=0

Region=2 G : P=-113.033,0=0;P=-29.1242,0=0;P=40.4869,0=1;P=-107.736,0=0

24

Region=3 R : P=-80.5654,0=0;P=95.0193,0=1;P=-112.285,0=0;P=-55.5378,0=0
Region=4 W: P=-42.0739,0=0;P=-22.7232,0=0;P=-44.9267,0=0;P=15.5342,0=1
Region=5 R : P=-82.594,0=0;P=57.0895,0=1;P=-114.38,0=0;P=-92.1095,0=0
Region=6 W: P=-28.485,0=0;P=-62.5832,0=0;P=-156.564,0=0;P=63.5484,0=1
Region=7 G : P=-69.826,0=0;P=-123.127,0=0;P=22.5425,0=1;P=-40.0455,0=0
Region=8 G : P=-95.7435,0=0;P=-49.759,0=0;P=43.1937,0=1;P=-102.074,0=0
Region=9 B : P=33.9479,0=1;P=-86.9696,0=0;P=-110.278,0=0;P=-93.9951,0=0
Choose (Default: Step): solve

=> Solve (Care!)

Fixpoint reached...

Region=0 G : P=-108.461,0=0;P=-89.0467,0=0;P=96.153,0=1;P=-36.0983,0=0
Region=1 B : P=25.4792,0=1;P=-49.5313,0=0;P=-134.411,0=0;P=-55.9796,0=0
Region=2 G : P=-47.1786,0=0;P=-65.5438,0=0;P=43.6305,0=1;P=-79.8739,0=0
Region=3 R : P=-73.183,0=0;P=60.8683,0=1;P=-97.7836,0=0;P=-68.6225,0=0
Region=4 G : P=-34.2809,0=0;P=-50.2365,0=0;P=28.1771,0=1;P=-64.8654,0=0
Region=5 R : P=-91.8668,0=0;P=47.9891,0=1;P=-53.9801,0=0;P=-116.018,0=0
Region=6 W: P=-138.609,0=0;P=-40.5245,0=0;P=-55.539,0=0;P=94 . 1444 ,0=1
Region=7 B : P=95.265,0=1;P=-137.771,0=0;P=-140.15,0=0;P=-118.357,0=0
Region=8 G : P=-104.173,0=0;P=-26.8236,0=0;P=37.5878,0=1;P=-82.4699,0=0
Region=9 W: P=-96.8263,0=0;P=-89.8717,0=0;P=-93.9958,0=0;P=89.2666,0=1

The tour view allows to tour and navigate through the ‘land-of-instances’. It is useful
in debugging, including high-level model debugging to understand the average and limit
cases of the model behavior that occurs during the simulation. In the tour view, attributes
can be inspected, objects can be created on the fly, and exported routines can be executed
on them. Most classes inherit general, although inefficient, exported routines for reaching
related objects directly or describing the object in the current focus (cf. Fig. 9).

The tour view is currently implemented by exploiting the Sather debugging environ-
ment SDB. SDB offers interative inspection, stepping, tracing and breakpoint facilities
under Emacs. Under X the tool supports a simple point-and-click interface on textual,
i.e. source-level, descriptions of objects.

The above textual views, including the tour view, do not add attributes to instances.
They are only based on routines and runtime information about the classes and the features
they support. In general, however, views may require instance-level information. In
particular graphic views described below are therefore separate from model classes in
ICSIM. They are encapsulated in terms of more or less model independent classes and
support different metaphors for visualization. In our current, still floating user interface
design, we call these views block view, map view and profile view.

The block view is loosely related to the tour view. It presents the structure and in-
terconnection of a net at different levels of the hierarchy in a symbolic way by nodes and
edges. This view is useful at a high level of abstraction where a single edge between two
net nodes represents a complex interconnection pattern. Traversals on these graphs and
blowing up its details is comparable to a restricted tour through the corresponding ob-
jects. Nets can be instantiated from a palette of existing classes and the choice of an edge
corresponds to the invocation of a specific connection routine. Due to the symbolic level
it provides, the block view is a kind of ‘point-and-click’ entry point for ICSIM beginners.

The map view maps net state(s) to a geometrical layout. For instance, the units of
a layered net can be mapped to a two-dimensional cellular plane showing the activation
in limited regions of a net through colored cells on the plane. Typically the arrangement

25

| o 4 o +|
| | Object: #12020C Class: COL4UNIT| |A: show Attributes

| | Attributes: 4 Routines: 164 | |IB: Back up

| e + |C: Create object

[(1) inputs: ARRAY_SET --> |E: Execute routine
[(2) weights: ARRAY_SET --> |F: Forget object

[(3) potential: REAL = -24.993568 [G: Goto object

| [L: List objects
| |[N: Name object

| [Q: Quit

| |R: show Routines
| |S: Set attribute
| |W: Wash screen

|
|

[l

[l

[l

[l

[l

[l

[(4) output: REAL = 0.000000 [I: check Invariant ||
[l

[l

[l

[l

[l

[l

|X: set-up eXecution ||

Figure 9: Tour view: based on the Sather Source-Level Debugger

of cells is very regular, i.e. cells are uniformly distributed in the two dimensions (array
metaphor).

Finally, the profile view presents the surface of some function of the net state or of
the product of state and time. Histograms, plots and error surfaces are examples of this
metaphor.

To simplify the application and ‘programming’ of views, views can be connected to
nets much like nets are interconnected in the model world. As a by-product of this design,
storage for view related information (attributes, instances) is dynamically allocated only
when needed. And views can then be saved to persistent storage like nets if the user wishes
to save them. Moreover many views can be ‘open’ on the same object at any time. And
the state or behavior of many objects can be viewed with a single view. In other words,
there is an N-to-M relation between models and views.

In order to meet the requirement for encapsulation, type-specific views can inherit from
the respective net classes. In this way, views that are meaningful only for certain types
of nets can encapsulate model specific information without having to include presentation
information in each model instance. This approach seems to be a reasonable compromise
with respect to the tradeoff between object-specific presentations (controlled by the model
object) and presentation objects that sense and control models and, in this sense, centralize
user interface functionality.

3 Conclusion

We described the design of ICSIM, a simulator for connectionist nets. The choice of an
object-oriented approach to the problem is promising and seems to have scope also in the

26

direction of parallel simulations.

The design of ICSIM is centered around nets instead of units. The decomposition of
large nets into subnets allows to choose adequate data structures without compromising the
general simulation-oriented functionality. At the same time nets allow a user to choose the
granularity of distributed representation and parallelism without the need of homogeneous
(SIMD type of) representation where this would be unnatural.

Acknowledgement

We are grateful to Jerry Feldman with whom we had many stimulating discussions on
the design of ICSIM. Also thanks to Susan Weber, Franz Kurfess and Richard Durbin
who worked with prototype versions of the similulator and had many useful suggestions
for improvements. Also thanks to Jeff Bilmes with whom the first author worked on the
design of the user interface.

The details of the cascade-correlation algorithm are based on Scott Crowder’s C im-
plementation.

References

[1] Alexander, I (ed.): Neural Computing Architectures: The design of brain-like machines.
Cambridge: MIT Press, 1989

[2] Coss, R.G., and Perkel, D.H.: The function of dendritic spines: a review of theoretical
issues. Behavioural and Neural Biology, 44, pp. 151-185 (1985)

[3] D’Autrechy, C.L. et al: A general-purpose simulation environment for develping con-
nectionist models. Simulation 51, 1, pp. 5-19

[4] Fahlman, S. and Lebiere, C. “The Cascade-Correlation Learning Architecture”.
Carnegie-Mellon Report CMU-CS-90-100, 1990

[5] Fahlman, S. “Faster-Learning Variations on Back-Propagation: An Empirical Study”.
In: Proc. of the 1988 Connectionist Models Summer School, Morgan Kaufmann, 1988

[6] Feldman, J.A. and Ballard, D.H.: Connectionist models and their properties. Cognitive
Science, 6, pp. 205-254

[7] Feldman, J.A. et al: Computing with Structured Connectionist Networks, CACM 31,
2, pp. 170-187, (1988)

[8] Goddard, N.: The Rochester Connectionist Simulator: User Manual, TR, Univ.
Rochester, 1987

[9] Hecht-Nielson, R.: Neurocomputing: Picking the Human Brain. I[EEE Spectrum, March
1988, pp. 36-41

[10] Korb, T., Zell, A.: A declarative neural network decription language. Microprocessing
and Microprogramming 27, North-Holland, pp. 181-188 (1989)

[11] Lange, T.E. et al.. DESCARTES: Developmeni Environment for Simulating Hybrid
Connectionist Architectures. TR UCLA-AI-89-16, Los Angelos: UCLA, 1989

27

[16]

[17]

[18]

McClelland, J. L., Rumelhart, D. E., and the PDP research group: Parallel distributed
processing: Foundations. Cambridge, MA: Bradford Books, 1986

Omohundro, S.: The Sather Language. TR, Berkeley: 1CSI, to appear, 1990.

Shastri, L. and Ajjanagadde, V.: From associations to systematic reasoning. TR,
Philadelphia: Univ. of Pennsylvania, 1989

Waltz, D., Feldman J.A. (eds): Connectionist models and their implications: readings
from cognitive science. Norwood, N.J.: Ablex Pub. Corp., 1988.

Wassermann, P.D.: Neural Computing: Theory and Prazis. New York: Van Nostrand
Reinhold, 1989

Wilson, M.A. et al.: Genesis: A system for simulating neural networks. Proc. of '89

NIPS conf., also TR: Pasadena: Cal. Inst. of Tech., 1989

Wilson, M.A. et al.: Genesisé6 XODUS: General Purpose Neural Network Simulation
Tool. Proc. of 89 USENIX conf., also TR: Pasadena: Cal. Inst. of Tech., 1989

28

