(3]

[4]

[25]

L. Cardelli: “A Semantics of Multiple Inheritance” in Kahn et al (eds): Semantics of Data Types,
New York: Springer, LNCS 173, pp. 51-67, 1984

L. Cardelli: “Basic polymorphic type checking”, Science of Computer Programming 8 pp. 147—
172 (1987)

C. Chambers, D. Ungar and E. Lee: “An efficient implementation of SELF, a dymically-typed
object-oriented language based on prototypes.” OOPSLA 89 Conf. Proc., Special Issue, SIG-
PLAN NOTICES, 24(10), 1989

C.C. Lim and A. Stolcke: Sather Language Design and Performance Fvaluation. TR-91-034,
1CSI, 1991

T. Coquand, C. Gunter, G. Winskel: “Domain Theoretic Models of Polymorphism.” in Informa-
tion and Computation 81(2), pp. 123167, 1989

W.R. Cook: “A Proposal for Making Eiffel Type-safe.” in S. Cook (Ed.): ACM ECOOP 89 Conf.
Proc., British Computer Society Workshop Series, pp. 57-70, 1989

Interactive Software Engineering: FEiffel The Language, Ref. Manual, ISE, TR-EI-17/RM, 1989

J.A. Feldman, C.C. Lim, F. Mazzanti: pSather Monitors: Design, Tutorial, Rationale and Im-
plementation. ICSI, TR-91-031 1991

U. Hoelzle, C. Chambers, D. Ungar: “Optimizing Dynamically-Typed Object-Oriented Lan-
guages with Polymorphic Inline Caches”, in O. Nierstrasz (ed.): Proc. ECOOP 91, 1991

A.K. Jones and B.H. Liskov, “A Language Extension for Controlling Access to Shared Data.”
IEEE Trans. Soft. Eng. 2(4), pp. 277-285 (1976)

S. Keene, Object-oriented Programming in Common Lisp. Addison-Wesley, 1989
S. Keene, “Multiple Inheritance in CLOS”. JOOP 2(5), pp. 75-77 (1990)

G. Kiczales, J. des Rivieres and D.G. Bobrow: The Art of the Metaobject Protocol. MIT Press,
1991

B. Kramer and H.W. Schmidt: “Architecture and Functionality of a Specification Environment

for Distributed Software”. IEEE Conf. Proc. COMPSAC 90, pp. 617-622, 1990
B. Meyer, Object-oriented Software Construction, Prentice Hall, 1988

B. Meyer, “Sequential and Concurrent Object-Oriented Programming” Conf. Proc. Tools
'90,1990

D.A. Moon: “The Common Lisp Object-Oriented Programming Language Standard.” in W.
Kim and F. Lochovsky (eds.): Object-Oriented Concepts, Applications, and Databases. Addison-
Wesley, 1988

S.M. Omohundro, The Sather Language. ICSI, Berkeley, 1990.

J.R. Rose: “Fast Dispatch Mechanisms for Stock Hardware” SIGPLAN Notices 22(2) pp. 85-94,
1987

H.W. Schmidt, B. Gomes: ICSIM - An Object-Oriented Connectionist Simulator. ICSI, Berkeley,
TR-91-048, 1991

H.W. Schmidt, J. Bilmes: “Exception Handling in pSather.” Proc. Workshop Fzception Han-
dling, FCOOP 91, Geneva, 1991, to appear.

G. Smolka, W. Nutt, J, A. Goguen and J. Meseguer: “Order-Sorted Equational Computation.”
in M. Nivat, H. Ait-Aci (eds.): Resolution of Equations in Algebraic Structures, Academic Press,
1988

G.L. Steele Jr., Common Lisp — The Language. Digital Press, 1990

24

of some of its implementations make Common Lisp the language of choice in artificial intel-
ligence for many in academia and in industry. The completed ANSI standard adds to the
broad acceptability of the language. The Common Lisp Object System with its advanced
features, like method combination, dynamic class creation and change, and the meta-object
protocol make it ever more attractive for experimental projects in object-orientation.

Eiffel is a young language, the first attempt at a language in which a flexible type system,
static typing, inheritance of semantics and other advanced issues were combined and made
commercially available. There is a growing interest in the language, particularly in academia
and for teaching of high-level language issues. For a young language the suite of tools is
acceptable. The language has a few exotic features, partly because common terminology
is abandoned in favor of distinctiveness, partly because semantic issues are overstressed.
Mostly the language is a success and provides a fresh look at many issues in object-oriented
programming. Unfortunately, the language directly competes with C*+ because it addresses
the same set of users. It appears that in the industrial arena, Ct* is likely to be the preferred
language for reasons other than elegance and clarity. Perhaps — or hopefully — it will absorb
some useful features of Eiffel on the way. There will still be sufficient space for Eiffel to
develop further.

Sather is the newest language among the languages compared. It looks much like Eif-
fel but stresses implementation inheritance, simplicity and efficiency, one reason for static
typing in the language. Its semantics differs from Fiffel in a number of respects. Types
can be dispatched and non-dispatched. Implementation inheritance is stressed more than
semantics inheritance and the order of parent classes defines inheritance like in many other
object-oriented languages, avoiding FEiffel’s need for low-level conflict resolution. Partly
these differences are due to the desire for simplification, partly to allow more pragmatic
and higher-level (class-level) forms of code combination and reuse, partly they try to resolve
semantical problems of Eiffel. For instance contravariance is required for conformance be-
tween redefined and new methods and dynamic parametrization only allows reference to the
type of self. All this greatly simplifies typing issues and optimization but can make Eiffel
programs incompatible with Sather. The restriction to fewer semantic constructs and a few
implementation-oriented limiting decisions are made up for by a simpler language semantics
that can make programs clearer.

Acknowledgement

Thanks to Danny Bobrow, Pierre Cointee, Richard Gabriel, Nicolas Graube, Gregor Kisz-
gales and in particular Andreas Paepcke who posed many helpful questions and made several
concrete suggestions for improving the text. Explicit thanks also to Jerome Feldman who
helped improving the clarity of some paragraphs.

References

[1] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel, S. Keene, G. Kiczales, and D.A. Moon: Common
Lisp Object System Specification, X3J13 Document 88-002R. (Also published in SIGPLAN No-
tices, 28, special issue, Sept. 1988, and in Guy Steele: Common Lisp, The Language, 2nd ed.,
Digital Press, 1990.)

[2] H. Boehm, and M. Weiser: “Garbage Collection in an Uncooperative Environment”. Software
Practice & FEzperience, September 1988, pp. 807-820.

23

all its descendent constructor types including A. Among the advantages of this distinction
are the explicit control of typing, non-dispatched calls, inlining and other optimizations.
Semantically, it allows a more precise specification of the intended meaning of a declaration
and provides for stricter type checking. A disadvantage is that programmers may choose an
undispatched type for efficiency considerations and exclude future unplanned-for extensions
that might be possible were subtyping allowed.

Unlike the previous example, the following procedures of class PERSISTENT _STACK show
the use of dispatched types and call disambiguation by prefixing the class name.

append(s: $sTack{T})is - - append s (unmodified) to self.
i: INT; until i = s.ssize loop push(s[i]);i:=1i 4 1 end

end;

private handle_unknown_type is
ouT::s("PERSISTENT STACK {T}: ”); - - std out string
PERSISTENT::handle_unknown _type;

end;

Disambiguated calls are non-dispatched. self is bound to the void value when the corre-
sponding routines execute. (iven the possibility of disambiguated calls, it makes sense to
write non-instantiable classes that comprise only functions whose definitions do not refer
to self. In other words disambiguated calls can be used together with function packages
containing only non-overloaded, or monomorphic, function packages. Such classes are used
to interface to Sather from C packages.

Sather is currently being extended to pSather, an experimental parallel version of the
language that adds threads, synchronization, protection and exception handling [10, 23].
By default objects are parallel, i.e., multiple threads can execute in them. A distinguished
class called MONITOR combines various efficient low-level synchronization mechanisms such
as locking, futures and event-like mechanisms. Higher-level library classes can then define
standard or customized synchronization disciplines on top of these MONITOR primitives. The
hope is that library classes provide sufficient freedom for trading off parallelism abstractions,
mappings to different architectures and efficient, perhaps machine-dependent, implementa-
tions. A first experimental implementation of pSather runs on Sequent multi-processors and

SPARC.

6 Conclusion

We have given an overview of three object-oriented languages, CL.OS, Eiffel and Sather.
Among these Common Lisp builds undoubtedly on the longest experience with related
object-oriented dialects. Many useful tools are available, several (full or partial) implemen-
tations of CLOS exist on the marketplace, public domain implementations are available and
a growing community of CLOS users exists and shares their sources. Compatibility with
earlier Lisp dialects is a requirement to the language and therefore many compromises had to
be made that make Common Lisp a baroque elephant amongst the various Lisp dialects. Its
many existing tools, though, its flexibility in prototyping, its portability and the efficiency

22

defined in combinations with other classes in the different descendents. Moreover, late
checking implies that the body of one routine inherited by different classes may have different
type decorations in these different classes. In general this reduces the requirements for
compatibility between inherited routines and their redefinitions. For instance, due to late
checking, there are no compatibility requirements between an inherited private routine and
its redefinition at all.

Sather extends the flexibility of its extensible type system to foreign types. The type
F_OB is known to have word size but can be specialized like basic types. It has no predefined
operations but can be extended and is restricted to non-dispatched calls. In this way Sather
promotes the use of well-tested and professionally maintained foreign packages (currently
only C) as foreign abstract data types and the compiler can type-check calls to foreign
functions.

The capability of subtyping for foreign types makes the foreign interface particularly
elegant. For one, no special treatment of foreign types is necessary with respect to typing.
More importantly, programmers can take full advantage of type-checking at one of the
weakest interfaces, viz., to foreign packages, that are usually hard to debug. An appropriate
declaration of foreign functions is thus rewarded in Sather.

The design of Sather was based on Eiffel but focussed more on expressive power, efficiency
and simplicity than on the formal and theoretical issues addressed by FEiffel. The language
is much smaller than the current Eiffel, it eliminates many keywords and simplifies the
syntax and inheritance rules. In Sather, parent classes are listed with features in arbitrary
sequence. In conflicts, the last feature wins.

The following code depicts a partial class definition in Sather. The name (PANEL) is
followed by a sequence of definitions, among them a reference to an ancestor class (CANVAS)
and several attribute definitions.

class PANEL is

CANVAS;

shared default_title: sTR := ”No Title”; — — stub initialization.

constant is_panel: BOOL := true; — — true here and in subtypes

private col_gap: INT; — — delta pixels between columns. -1 default.
end;

The special type SELF_TYPE is used for dynamic parametrization as in
equal(e: SELF_TYPE): BOOL

which implies that a dotted call x.equal(y) has type compatible arguments.

Sather allows one to explicitly declare dispatched types. If a variable declaration directly
specifies a class name as in a: FOO then that variable can only hold objects of exactly this
type. If the class name is preceded by a dollar sign (indicating a variable type?) as in a:
$Froo then at run time, the variable may hold objects from any descendent class of Foo.
Semantically, the constructor type A corresponds to the set of instances carrying the dynamic
type A (created with A:new). In contrast to this, the dispatched type $a is the union of

?and indicating the slightly higher expense of dispatching

21

ated to that of layer_create_unit which may change in future descendents. The rules for such
type associations in Eiffel guarantee that the type-checker can use the more refined type
information in the descendent context but does not have to reanalyse and/or recompile the
current function (create_component). It only requires the signature (argument and result type)
to do its job.

layer_create_unit(i: INTEGER): BP_UNIT is
do Result.create(0) end;

The code below contains a few assertions. Pre- and postconditions are specified as re-
quired and ensured assertions, respectively, and play different roles. The caller must guaran-
tee that the assertions at the begin of the definition (require) are satisfied. The implementor
must guarantee those at the end (ensure). The advantage of this kind of programming with
‘interfaces as contracts’ [17] is the separation of responsibilities, in particular, checks need
not be built into the ‘wrong’ program context avoiding the dreaded argument ‘overcheck’
syndrome of many large modular programs where programs perform the same checks in
many places and sometimes often in the same recursive descent.

desired_output(i: INTEGER): REAL is
- — compute the desired output for the i-th output unit
require 0 <= i;i < output_layer.units.count;
- — by default we are satisfied
do Result:=output_layer.units.item(i).output end;

Eiffel has many more features that deserve attention and make it a language with scope
for the future. Eiffel 3.0, a new version announced by ISE for 1992 addresses several typing
issues, such as void object references, optional parameters and more powerful object creation.

5 Sather

Sather combines the (undispatched) procedural style of programming encapsulated abstract
types with the object-oriented specialization and recombination of classes. Its typing rules
syntactically isolate potential type violations by restricting them to assignments and make
Sather weakly type-safe, i.e., type-safe under the assumptions that assignments are type-
correct. There are well-known techniques, based on explicit type checking, that protect
reverse assignments in which (persistent) objects of a more general types are assigned to
variables of more specific types. This makes a sublanguage of Sather (with protected reverse
assignments) type-safe in the usual sense.

To ease rapid prototyping and provide maximal freedom in reusing existing definitions
despite the strong-typing approach, Sather’s typing rules are based on late checking. This
means that inherited definitions need only be type-correct in the descendent context and
client calls to actualized parametric classes need only be type-correct in the actualized
version of that class. Although this may put more burden on the type-checker, parameterized
classes can be used to model open modules (mixins) some of whose operations are only

20

deferred class MULTI_SITE [FROM_OB -> OUTPUT_OBJECT]
export repeat INPUTS
inherit INPUTS [ANY_SITE [FROM _OB]]
rename output as accumulated_input,
feedback_error as site_feedback _error
redefine is_site, as_site, as_unit, output, feedback_error;

feature
< class body omitted >
end;

wiring single connections rather than putting boxes together as ADT encapsulation intends
to promote. The existence of public domain extensions of the Emacs Eiffel mode with
commands that produce maximal visibility by collecting the method names in the class
body and listing them in the interface is indicative for this.

The reason for this weakness is simultaneously Eiffel’s strength. The strictness of Eiffel’s
interface rules leads to greatly improved robustness and to a clear separation of interface
design and implementation. It is a fascinating question whether an interpreter with the
‘right’ defaults might provide for a graceful degradation of robustness in favor of design
freedom in the early development without automatically leading to designs that cannot be
turned into robust products later on.

create_component(i: INTEGER): BP_LAYER [like layer create_unit] is
local j: INTEGER; u: BP_UNIT; k: INTEGER;
do Result.create(0);

j := layern_units(i); - — ask descendent: how many units?

from k := 0 until k = j loop
u := layer_create_unit(i); - — make a unit, descendent may help.
Result.units.push(u);
k=k+1

end;

end;

The create_component code presents a function that creates a BP_LAYER® with the help of
descendent functions called back. The keyword “is” separates function head and body. The
function is called create_component, takes one argument, an INTEGER, and returns a value
of type BP_LAYER, a parameterized type, here actualized with the association type ‘like
layer_create_unit’. This type expression refers to the result type of layer_create_unit, which is
supposed to be another function.

layer_create_unit(i) must make a unit of the appropriate type for layer i and is likely to be
redefined to give the compiler a sufficiently precise result-type in the descendent context.
Thus, the create_component function is dynamically parameterized. Its result-type is associ-

8short for back-propagation layer, a layer in a particular kind of connectionist nets

19

(defmethod connect-input ((self SILENT-INPUT-CONNECTION) (from UNIT) weight)
(cond ((zerop weight)
(vector-push-extend from (inactive-in-links self)))
(t (vector-push-extend from (in-links self))
(vector-push-extend weight (weights self))
(connect-output from self))))

(defmethod update :after ((self ACTIVATION-MIXIN) input)
(declare (ignore input))
(unless (zerop (delta self))
(dotimes (i (out-degree self))
(trigger (out-unit self i) :input-changed))))

and can be explained as function composition along the class hierarchy. Method combina-
tion has many more facets that we do not have space to describe here. For further details
cf. for example [13].

4 Eiffel

A class in Eiffel lists its name, interface, and features. The class below is a deferred (non-
instantiable) class and the compiler will ignore missing methods. But the interface for all
called methods must be present. Features can be declared as deferred for that purpose. The
class also shows bounded parametrization. The type parameter FROM_OB is restricted to
be a child of oUTPUT_OBIECT (the arrow defines this so-called type bound and tells the
compiler which operations are applicable to objects of type FROM_OB declared inside this
class).

The interface lists all exported names, repeat is a macro installing the export list of
a parent. Every parent in the parent list is typically followed by rename, define, redefine
instructions if a parent feature is not simply inherited by the child (the default). For
instance, define is used to announce that a feature deferred in the parent is now going to be
defined. rename and redefine announce corresponding changes.

An interesting feature of Fiffel is that the visibility of child and parent is unrelated, the
exports of one do not have to be a subset of those of the other. This may be surprising at
first, but causes less complexity than one might expect at a first glance. A child instance
still supports all the exports of its parent where it is known only to be of the parent type.
This is an elegant way to combine the functionality of ADT’s and inheritance to obtain
what was called compile-time checked capabilities by Jones and Liskov in the late seventies
[12].

Two parents must be disjoint or agree in the typing of their features and a feature
must only be defined in either of them or stem from the same ancestor. According to our
experience and taste this is one of the practical draw-backs of the visibility rules, because,
as we pointed out, it usually forces the programmer to deal with every common name of
two parents in the interface explicitly. In large systems, programmers experience this as

18

Tools || Common Lisp

Fiffel | Sather |

Interpreter Yes No No
Incremental Compiler || Yes Yes Yes
Debugger Yes No Yes
Object browser Yes (Inspector) | Yes | Yes
Class browser Yes (Some) Yes Yes
Library source Yes (Some) Yes | Yes
Environment source Yes (Some) No Yes
Publically available Yes No Yes

by-product, most types including basic types can be specialized since the dispatching relies
on type information and classes are merely one kind of type. The formal abstract data
type semantics of order-sorted algebras [24], provides a pure (side-effect free) semantics for
such a separation. They also base their formal treatment of subtype polymorphism on the
types of all arguments. In this view, the type of a collection of arguments is the cartesian
product of the single argument types, and methods may be viewed as executing ‘inside’ the
corresponding product class. This brings back the notion of class behavior and abstract
data types on a higher level.

The class 4COL-REGION below has three parents: NET, MUTEX-CONSTRAINT-MIXIN and
ACTIVATION-METER and introduces five object attributes. Each attribute declaration op-
tionally lists an initialization that evaluates and initializes the object when a new object is
created. Most of the attributes also allow access to clients, here only :accessor functions are
defined that can be used to read and write to the attribute. :reader functions can also be
used to make the object read-only for clients, in terms of the underlying abstract data type.

(defclass 4COT-REGION (NET MUTEX-CONSTRAINT-MIXIN ACTIVATION-METER)
((red :accessor red :initform ’(mk-col-unit))
(green :accessor green :initform ’(mk-col-unit))
(blue :accessor blue :initform ’(mk-col-unit))
(white :accessor white :initform ’(mk-col-unit))
(unit-set :initform ’(red green blue white))))

Methods refer to classes by the typing of their arguments. The method connect-input
below will only be dispatched to if its first argument is a SILENT-INPUT-CONNECTION and
its second argument is a UNIT, and if there is no more special method for the dynamic type
of the first and second argument at the time of the call.

The second method shows the so-called standard method combination. With this type of
combination one can add behavior to inherited methods by writing qualified methods. An
update method will (conceptually) trigger the execution of the ‘update :after’ method below
when it completes its own execution.

CL compilers can implement this triggering by combining the bodies of the various qual-
ified methods and the method proper to one effective method that can be further optimized.
Method combination thus aims at separating type-specific part of behavior within the clan

17

references and manipulating the state as needs arise during test. A class browser displays
the inheritance hierarchy and finds methods that belong to specific classes or collects the
definitions that make up a single effective method. The profiler collects execution statistics
for program optimization. Most implementations on workstations offer a window based
interface with optional source licences for the GUI libraries. Some parallel extensions exist
for multi-processors on the market or to exploit concurrency on single-processor machines,
although parallel constructs are not part of the language standard. A large and vital user
community exists for Lisp and is slowly absorbing CLOS. Only recently a special newsgroup
continued a mailing list that existed for several years in the CLOS community. Most CLOS
implementations descend from the popular public domain PCL” implementation.

Beside the compiler, Eiffel is supported by a class browser and a tester (inspector).
The tester offers limited execution of methods since there is no interpreter. For instance,
methods and their arguments can be selected if they are around, and can be run like compiled
code in Lisp. Interpreters and debuggers are subject of development efforts at ISE to our
knowledge. Various smaller tools exist in the environment that allow interface extractions
from classes and semi-automatic generation of class documentation. Beside the basic types
and those needed by the Eiffel kernel (like I/O), the class library includes several parametric
data structures, classes for parsing and access to X. Also the source of the class browser is
included in the Eiffel system. The Eiffel community is growing. Since about two years there
is an Eiffel newsgroup.

Sather has been in operation since mid 1990 and a beta release has been publically
available since mid 1991. About 500 sites have retrieved the system within the first three
months and a number of ports were already completed. Because all source code is pub-
lically available, there are a growing number of general purpose library classes, program
development tools and ports to different platforms running UNIX. The Sather libraries in-
clude classes implementing most of the fundamental data structures and algorithms from
computer science, a variety of classes for geometry, numerical and statistics applications, as
well as connectionist net simulation and user interfaces.

Sather has a rich programming environment based on GNU Emacs. The source level
editing mode support syntax-oriented editing, a textual browsing facility for classes and au-
tomatic documentation generation. The Emacs debugger gdb has been extended to a Sather
source level debugger, that combines instance inspection with gdb breakpoints, execution
of compiled routines and other gdb facilities. Under X many functions can be invoked by a
comfortable point-and-click interface to Emacs.

3 CLOS

CLOS unifies and generalizes some classical object-oriented Lisp dialects like Flavors and
Loops. It is part of the dynamically typed Common Lisp (CL) language. Function calls
can be dispatched. Rather than dispatching at the calling code, generic functions have an
identity in Common Lisp. In fact, they are objects themselves of a generic-function class
and as part of the meta-object protocol their behavior can be customized.

By making generic functions “first-class citizens” in Common Lisp, the CI designers’
goal was to merge the object-oriented paradigm with procedure-oriented style of Lisp. This
provides a semantically consistent framework, in which the type character of classes, data
abstraction and representation, is separated from their behavioral aspects. As an elegant

"Xerox Parc, Palo Alto, CA

16

The Boehm collector does not know about type tags and instance layout. It quickly scans
certain memory areas and retains all pieces potentially referenced. Also it has the advantage
that it can be used uniformly with data originating in foreign packages. However it has the
‘mark-and-sweep disadvantage’ of less frequent but larger pauses that make it less attractive
for highly interactive programs.

The Sather libraries are designed in such a way that far less garbage is generated than is
common in other systems. Instead of using linked lists as the primary container structure,
the Sather libraries use the idea of amortized doubling. The primary container objects are
arrays and whenever their size is insufficient the allocated space is doubled. If a container
ultimately gets to be of size n, then log n such doublings will take place. The total allocated
space is 1 +2+4 + ... which is O(Qn) and there are only log n pieces for the collector to find.

Sather implements efficient arrays by allowing objects to have a variable sized array part
allocated at the bottom of the object. This allows direct array access in cases where other
languages require several indirections.

Q: Is the implementation portable? What does it compile to?

CLOS implementations rely on emitting machine code for several low-level constructs.
With each port some ‘machine-level patches’ have to be made. However ports exist for sev-
eral hardware platforms. Eiffel and Sather code compile into portable C and efficiently links
with existing C code. Preliminary Sather benchmarks show a performance improvement
over Eiffel of between a factor of 4 and 50 on basic dispatching and function calls. On the
Stanford benchmarks®, Sather is slightly faster than C*+, though this is probably due to
the C compiler’s better ability to optimize for a Sparcstation than the Ct+ compiler.

‘ Implementation H Common Lisp ‘ Fiffel ‘ Sather ‘
dispatching in generic function call code call code
method caching Yes No Yes
inherited code duplication || No No Yes
type of GC different Dijkstra Boehm
target code partly machine-dependent | portable C | portable C

2.5 Tools and Environment

Q: How is the language supported? What is covered by library classes? Is the source of
library classes and major tools available? Are there public domain implementations? Is
there a dynamic user community?

Most Common Lisp vendors offer CL.LOS supported by the standard suite of Lisp tools,
an editor, often based on Emacs, interpreter, incremental compiler, debugger, and inspector.
Some implementations include a class browser and profiler (or metering tool). Usually single
Lisp forms such as defclass, defmethod or defun can be sent from the editor to the incremental
compiler and dynamically bound into the running system allowing mixtures of interpreted
and compiled code as is most suitable for debugging. The debugger usually catches any
errors and gives information on the program state and allows stepping through source level
forms. The inspector allows the user to navigate through the data space following object

Sincluding 8 queens, towers of Hanoi, bubblesort, etc.

15

adding a routine offset that is a function of the class index. This is implemented by another
table lookup. No caching is used to our knowledge.

CLOS’ dispatch mechanism supports caching. Moreover it uses various special caches
that bypass standard caching such as ‘one argument’ dispatch (attribute access) ‘two ar-
guments’ dispatch (statistically common enough to deserve special treatment), ‘one index’
access (the indexed attributes of perhaps different classes were accessed at the same offset).
The caching scheme is described in detail in a forthcoming article®.

Q: Is the (binary) code for inherited methods shared or is it duplicated?

Another set of design decisions has to do with the extent to which descendent classes
duplicate versus directly use code inherited from ancestors. A similar question arises with
parameterized classes. In the current Sather implementation, we decided to opt for effi-
ciency over code size. Thus each descendent class and each set of parameterizations in a
parameterized class generates its own version of the routines it uses. Because of the strong
type specifications it is commonly the case that the compiler determines that many of the
ancestor routines are not used and so no code is generated. In large systems we find that
the most critical fundamental parameterized classes (such as LIST) appear many times (eg.
a few classes appear 10 to 20 times with different parameter setting in the Sather com-
piler). Most classes, however, appear only once and the expansion in overall code size is
not significant. Because these fundamental classes are involved so often in inner loops, the
speed advantage of having separately compiled versions for different parameter values can
be significant particularly due to the considerably higher potential of inlining.

Beside the sometimes increased code size, the price for this duplication is a loss of
some incremental compilation. When a class is compiled, all its ancestors have to be read
and reanalysed (self, at least, has a different type). Although the ancestor classes are not
recompiled themselves perhaps customized versions of their methods for this class have to
be compiled.

Q: What type of garbage collection is used. What is the overhead for tagging and garbage
collection?

In languages like Smalltalk, CL.OS, and Self typical programs generate a lot of garbage
and the philosophy is to institute clever collectors to get rid of it efficiently. In Lisp, CONS
cells are used to build up many data structures and these small bits of memory are continu-
ally being allocated and deallocated. In Smalltalk, stack frames themselves are objects that
must be continually reclaimed. In such an environment, sophisticated generational scavang-
ing collectors have made a tremendous difference. Eiffel 2.2 implements a Djkstra collector
which runs almost like a coroutine with the code. Ttems are marked white, black or gray
according to whether they have been examined, unexamined, or modified. This kind of col-
lector has the advantage that it runs concurrently with the code and spreads the collection
time over the execution. Unfortunately, it also entails marking bits on every assignment to
a pointer. Also, because the code compiles into C, a separate stack of pointers into pointer
variables on the system stack must be maintained. This prevents such variables from being
put into registers and can be detrimental to performance.

In Sather, we chose to use a simple conservative mark and sweep collector implemented
by Boehm [2], which doesn’t impose any added overhead except while collections are taking
place. For efficiency reasons the garbage collector is not based on the Dijkstra algorithm.

5Gregor Kiczales: Efficient Method Dispatch in PCL

14

| Methods || Common Lisp | Fiffel | Sather
belong to classes No Yes Yes
Single or multi-dispatch || Multi Single Single
Method combination Yes No No
Method conformance - covariant | contravariant
Reference to shadowed Yes as part Yes Yes
methods of method combination
inlining Partly Partly Yes
unfolding No No Yes

mechanisms to speedup method lookup and object access on the average.

The Sather type system uniquely identifies basic types such as integer, real, etc. at
compile time. There is therefore no need for tag bits and the associated processing overhead.
Expressions operating on such types (eg. most arithmetic expressions) compile directly into
analogous C code and ultimately run at the same speed as C.

All other objects have a run-time tag at the head of the space allocated for the object.
This contains a unique integer that is assigned to each type by the compiler. Because
the type system makes explicit the points where dispatched calls are allowed (via the “$”
declarations), such tags need only be examined on dispatched calls. For these calls, Sather
uses a combination of a fast hash table with local caching. Each feature name is assigned a
unique integer value. The hash table hashes on the integer associated with a feature and the
object tag that specifies the class. The contents of the table are interpreted as a function
pointer for routine calls, as a pointer to a static storage location for access to shared class
variables, as an immediate value for constants, and as an object offset for object attribute
access. Only those features that are accessed in a dispatched fashion are put into the table.
The table itself uses an inexpensive hashing function and collision resolution mechanism and
is kept at a load factor of .5 for efficiency.

Every potentially dispatched call has two static storage locations associated with it which
cache the table lookups. One of these stores the object tag of the last lookup and the other
stores the value retrieved on that lookup. Dispatched calls compile into an expression that
first compares the object tag with the cached object tag. If these are equal, the stored value
is used otherwise a hash lookup is done and the cached values are updated. In the most
expensive parts of the code (eg. repetitive loops) it is common for there to be many calls
on objects of the same type. In this case the extra overhead for the dispatching is only one
extra comparison.

The ability to explicitly declare object types also keeps the code size down. Because the
compiler can determine more easily which routines are actually called, it can leave out more
unused code. The dispatch table is far smaller for the same reason. This is particularly
important in modern RISC machines, which achieve much of their performance from data
caches. A smaller table improves the chances that the needed portion on any call will be in
the hardware cache. As a result, many Sather run-time characteristics are close to those of
hand-crafted C programs for several benchmarks [6].

Older Eiffel implementations use a (N2) routine table in which C functions are accessed
by class index plus routine offset. To avoid the required size for a large number of classes
(> 1000), in more recent implementations, this table is squeezed considerably by actually

13

For undispatched arguments, however, Sather requires contravariant conformance, i.e.,
the parent’s argument types must be subtypes of those of the child, while Eiffel requires
the opposite covariant conformance, and CLOS does not pose any typing requirement on
the undispatched arguments, such as for instance optional arguments of generic functions.
Contravariance is consistent with the assumptions of parent callers. They pass data of
the parent’s argument type and the child’s method must accept those. Only then can the
compiler correctly assume that the formal (undispatched) parameters of a method have the
type that is declared in the method head.

With respect to attributes, contravariance is consistent with the associated reader ac-
cess function. It allows to specialize attribute types when redefining attributes. However,
contravariance may conflict with direct assignments by clients to attributes because the
underlying writer access function has the assigned value as an argument. Such client as-
signments are supported in CLOS and Sather and may assign values of the attribute type
declared in a parent while the child specializes the type. The corresponding conflicts between
self assignments to attributes in inherited code and type redefinitions of these attributes is
less important. It can be resolved locally, i.e., by associating type redefinitions of attributes
with redefinitions of the conflicting methods.

The choice of covariant conformance in FEiffel is better suited to using inheritance for
restricting classes along the inheritance hierarchy but it invariably intertwines the semantics
of dynamic binding with exception handling.* Every method must expect to be called with
arguments of the ‘wrong’ type that either makes for a hole in Eiffel’s static type system or
requires run-time type-checking for all arguments before entering a method body optimized
under the assumptions of correctly typed arguments [8]. On the other hand, it is obvious
that the mathematically more pleasing contravariance, on which many formal typing systems
build [3, 7], does not allow type specialization of undispatched method arguments. This
often keeps argument types general for classes high up in the hierarchy. In the extreme
case all undispatched arguments are of the most general type and the compiler can only
use the type of dispatched arguments and there is no more distinction between a static and
dynamic typing approach. We believe this clearly exposes the general trade-off between
static typing and dynamic typing in object-oriented languages. We can obtain static typing
in one part of the language only by dynamically typing in another part. This is because
we cannot arbitrarily drop dynamic type-checking without risking violations of the typing
assumption that the compiler makes.

2.4 Implementation

Q: How is dynamic dispatch implemented? Is caching used to amortize the cost of dispatch-
ing?

The choices made in the Sather implementation reflect a desire for high efficiency. Per-
haps the most fundamental choice in the implementation of an object-oriented language
is the mechanism for implementing dispatching. The implementation of dynamic dispatch
has been subject of several papers. For instance Rose [21] compares various mechanisms
including low-level interrupt based dispatching on stock hardware that makes single dis-
patch as fast as function calls but at the cost of portability. CLOS and Sather use caching

*On the Eiffel newsgroup there was also a proposal to rely on global analysis to fix the type violations
possible with covariant conformance. The price however would be giving up the compositional semantics of
class combination. The addition of a legal call to a parent could invalidate an existing remote descendent.

12

switch x.type

when A:type then x1: A := x; x1.foo(...); - - non-dispatched, inlining possible
when B::type then x1: B := x; x1.foo(...); — — non-dispatched, inlining possible
else x.foo(...); - — normal dispatch

end ;

classes, can treat a system and optimize it as if future extensions would not happen. For
instance dispatched calls to children-less classes can be treated as undispatched. This does
not hinder reuse but may require some recompilation if new classes are added later.

Fiffel, for instance, inlines non-recursive procedures that happen to be non-overloaded,
i.e., procedures that have exactly one definition in the whole class hierarchy. Also dead-
code elimination can optionally be called for. Eiffel can remove unused classes and unused
features. This can drastically reduce the well-known burden of reusability where we drag a
whole library into our programs when we use a single procedure. To our experience, this
optimization typically reduces the size of executables by a factor of 2-3.

Functions are currently not inlined in Eiffel>. We assume this is due to the possibility of
specializing functions by attributes and the desire to share code on the binary level to gain
more incrementality in compilation. In Sather, functions cannot be redefined as attributes
and binary code is not necessarily shared so that functions can be inlined like procedures.
Additional to dead-code elimination, Sather can unfold inheritance. This includes the fea-
ture definitions of parent classes in the code of a child. While feature duplication increases
the size of binary code it also goes with

e more specific type information helping the compiler in optimizing, and,

e an unfolding of inherited definitions that decreases overloading.

Particularly the last point increases the possibility of inlining, which is the basis for many
other optimizations. On the one hand, this unfolding allows optimizing self calls and calls
to classes without decendents. The parent code will not be called with self bound to a child
instance, so that the compiler can take advantage of the child’s data layout and inline many
calls to self. On the other hand, when there are no redefinitions in existing descendents, the
compiler can tradeoff sharing of a single piece of code perhaps with more dispatched calls
in its body vs. duplicate versions for the different descendents.

Q: What are the typing rules in relation to redefinition and specialization?

The optimization and optional instrumentation of code by run-time checks often rely
on typing assumptions by the compiler. Different languages take different approaches with
respect to the typing rules for redefinitions. In general, we have to distinguish between the
arguments that the run-time system dispatches on and the ones that it does not use for
dispatch. We also must consider the method result type. No typing requirements have to
be posed for arguments dispatched on, since the method looked-up fits its arguments by
definition of the lookup mechanism. It is unquestionable that the result type of a redefining
method must be a subtype of the inherited method’s result-type since callers in inherited
code assume to get back a value of that type.

*Function inlining is announced for a forthcoming version

11

| Types & Inheritance || Common Lisp | FEiffel | Sather
Multiple inheritance || Yes Yes Yes
Visibility control packages ‘export’ and ‘rename’ | ‘private’
Default visibility - private public
Constraints class ordering | assertions No

& bounds

Conflict class ordering | explicit redefinition | class ordering and
resolution necessary ‘alias’
Static visibility No Yes Yes
& type checking
run-time type optional Yes, exceptions optional

checking

on violations

Semantic checks

Class invariants
pre- and postcond.

named assertions
included name-wise

included class-wise

Eiffel and Sather have single-argument dispatch. One argument is syntactically distin-
guished by so-called dotting: in a call arg0.foo(argl,...), the feature foo of the object argo is
applied to the other arguments. The type of this (implicitly) first argument (here argo) is
used to lookup a method defined in the class of that object. In this way methods belong to
a specific class. The dot notation supported in these languages also suggests the metaphor
of executing inside the object, and syntactically separates the one argument that is treated
specially. Dispatching is implemented in these languages as part of the call mechanism.

All three languages allow extensions of parent methods without copying the inherited
code to extend it and the implied danger of later parent modifications that require to up-
date descendents consistently. CLOS supports an almost declarative mechanism for method
combination in which methods of different supertypes can be combined to form one effec-
tive method. In Eiffel, a combination of renaming and redefinition allows one to refer to
a redefined method. Given a method is both renamed and redefined then, by convention,
renaming is supposed to not apply to calls of that feature. In particular the new definition
itself can then call the old method under the new name. Sather’s alias construct allows to
refer to parent methods and extend them in a descendent. In Sather and Eiffel, however,
method combinations is imperative by wrapping code around explicit calls to the parent
methods.

Q: What do we have to ‘pay’ for dynamic dispatch?

FEven if the run-time overhead for dispatching can be kept low on average, the semantics
of dynamic binding make object-oriented languages much slower than their non-object-
oriented relatives because function inlining is often much more difficult or not possible at
all. Inlining however is the basis for many other optimization that are not possible across
interprocedural calls. Making the inlined body of a function available for global optimization
however can easily outweigh the cost of a more elaborate compilation scheme and of run-time
type tests thrown into the code by the compiler and protecting an inlinable non-dispatched
call [11] like in

Static languages like Eiffel and Sather, whose compiler deals with a closed system of

10

Q: What are the rules for avoiding or resolving inheritance and/or naming conflicts?

In CLOS programmers solve inheritance conflicts mainly by rearranging parent lists in
the class hierarchy. Sometimes one has to rethink a class hierarchy and delete redundant
parent orderings, or factor some functionality in different ways.

Eiffel requires one to solve inheritance conflict on a feature-by-feature basis. If parents
are disjoint or share identical features originating from the same class, no conflict arises.
There is also no conflict if a feature is undefined or deferred, i.e., without implementation, in
all but one parent. All other conflicts must be explicitly solved and there is no preference
rules that depend on the order of parents. This conservative approach allows more and
simpler checks without forcing the compiler or human reader to look into the class bodies.
In this way it promotes a separation between design (class interface) and implementation
(class body) [17]. Naming conflicts that occur ‘accidentally” when large projects are merged
can be solved by renaming where all occurences of a name including references/calls are
consistently replaced. However inheritance conflicts can only be solved by redefinition this
way. One typically declares the conflicting parent features to be redefined and then copies
the “right” feature over to the child. Alternatively one may rename the “right” parent
feature and write a redefinition that calls it. This makes conflict resolution imperative and
low-level. Imperative, since it is not possible to get by without writing a routine, despite
the fact that all ingredients for the child are already there someplace in the respective
parents. Low-level, because one must resolve conflicts on a feature-by-feature basis rather
than “talking classes” and because the parent features that are “renamed away” are still
present bearing potential for new undesired naming conflicts. So the desired high-level
separation between design and implementation is weakened.

With respect to inheritance conflicts, Sather, at a first glance, takes a simplistic default
approach. Sather treats parent classes as if they were included in the child class. The last
definition of a feature is the active one. This is equivalent to a depth-first search in the
inheritance DAG starting from the class end to the beginning. Its explanation, the inclu-
sion/replacement metaphor, is simple and its consequences can be easily understood, but
like in CLOS it also has the disadvantage that children classes have to repeat ancestor classes
from time to time to ‘reactivate’ a bunch of otherwise shadowed features. For more complex
cases, Sather offers an alias construct that allows to refer to an inherited feature under a
different name. If conflict resolution on a single feature basis should become necessary, an
inherited feature can be aliased before it is shadowed by a subsequently included class and
can later be aliased back to shadow the unwanted one. Like parent class inclusion, there is
a simple inclusion semantics for alias that is copying the referenced feature at the place of
the alias declaration under a new name. Note that this is different from renaming, which
may change the body, too.

2.3 Methods and Dispatch

Q: What kinds of polymorphism are supported? What is the mechanism for dynamic dis-
patch?

CLOS has multi-methods, i.e., dispatches on the type of multiple arguments. Over-
loaded functions called generic functionsin CLOS, are objects. When called, they dispatch
according to the type of all their arguments and pass them on to the type-specific method,
the type-specific implementation of the overloaded function name.

While CLOS is dynamically typed, Sather and FEiffel support a combination of static
and dynamic type-checking. Because of dynamic binding, object-oriented languages do not
permit completely static typing. There are at least two reasons for this:

1. If attributes are specialized their types are usually specialized. Assignments to them in
inherited code still reflect the more general type. Either restricting the specialization
of attribute types or forcing the redefinition of all code which makes these assignments
would exclude many useful forms of reuse. This problem is independent of the approach
taken with respect to visibility and information hiding because it takes place only in
descendent classes.

2. There are many cases in which we would like container objects like lists, stacks, or files
to hold objects of several different types. Often these objects must be read out by a
different class than the one that wrote them. The reader must therefore dynamically
determine the types of the stored objects in order to apply only permissible functions.
There are many situations such as this in which the statically declared type of a
variable must be more general than the dynamic run-time type of a stored object.

Q: Is implementation or semantics inheritance supported? Can programmers express de-
scendent and parameter constraints?

Descendent constraints can only be expressed in CLOS and Eiffel.

In CLOS we can constrain the set of descendents by listing the parents of a class in a
particular order. CLOS demands the existence of a topological sort of the ancestors (the
direct and indirect parents) that defines the precedence among them for inheritance [14].

Eiffel promotes semantics inheritance. This means children must preserve the seman-
tics of their parents expressed in terms of class invariants, pre- and postconditions. FEiffel
also supports bounded parametric types, this means constraints on type parameters can be
expressed by listing a bounding class. Only its descendents are legal actual parameters.
This allows the compiler to develop an understanding of legal operations and their typing
on values of the parameter type within the parametric class.

In Sather, which stresses implementation inheritance, descendents are not constrained
by the semantics of their parents. In other words, one can use inheritance to reuse and
recombine the code of parent features in ways that satisfy semantic requirements different
from those of the parents. Features do not carry the semantic burden of the classes they
originate from. Also we have dropped bounds to shorten the learning curve and give the
implementor of parametric types the freedom to refer to features undefined in the parame-
terized class. The Sather compiler must check the use of parameters for each actualization,
a compile-time overhead that seems acceptable.

We have found semantics inheritance highly overrated in FEiffel. Since implementation
cannot be separated from semantics later, when a feature is inherited, semantics inheritance
excludes many useful forms of reuse. A full specification is often undesirable since the most
trivial properties, like bounds for array indexes and void references for instance, quickly
dominate the program text. Besides, the specification support in Eiffel is limited. The
main important use seems to be run-time code instrumentation. It is doubtful whether this
justifies the many related extra language features. So Sather just supports named assert
statements. Unlike Eiffel’s instrumentation which can be toggled on or off per-class, Sather
programmers use the assertion names (optionally in combination with class names) like a
logical proposition to classify assertions and control their inclusion.

are first-class citizens. Like in Smalltalk, the father of object-oriented languages?, classes
are objects themselves, they are meta-objects. These objects know to “talk” about aspects
of their instances. For example, they manufacture (make-instance) instances, they allocate
them, know to initialize them, to change their class, and many other details and manipula-
tions related to the administration of objects. The CLOS MOP (Meta Object Protocol) is
described in detail in [15]. Although we think that the MOP is one of the most interesting
parts of CLOS, there is little basis for comparison with the other two languages in which
classes are not objects themselves.

‘ Classes H Common Lisp ‘ Liffel ‘ Sather

include all types No Yes Yes

are objects Yes No, though class | No, though class
information information optionally
available available

have shared Yes No, but has once | Yes

attributes functions

support user-defined || Yes No Yes

default initialization

can be created Yes, also dynamic | No No

dynamically changes

are scoping units No Yes Yes

are compilation 1 file 1 file — 1 class, 1 file = N classes

units N definitions* will change

can be parametric No** Yes Yes

*) Methods and classes are separate definitions.
**) To avoid misinterpretations: parametric classes are often introduced in statically typed languages to model
some of the polymorphic capabilities of dynamically typed languages. Although parameterized classes are not

supported, parametric polymorphism is possible as pointed out above.

2.2 Inheritance and Typing

Q: What notion of inheritance is supported? How is it linked to the subtype relation? Is
static or dynamic typing supported?

The three languages all support multiple inheritance. They have different inheritance
constraints and different approaches to typing and naming conflicts.
access to all features and there is a strong link between subtyping and inheritance. The
children of a class are also subtypes of the corresponding type.

Note that for CLOS, technically speaking, classes do not inherit methods, because meth-
ods are not associated to, or encapsulated into classes. Only by explicit reference in the
signature of a method to a number of argument types, methods are associated to a (carte-
sian) product of such types, viz., the type of a tuple of actual arguments passed to that
particular method when it is selected by the dispatching mechanism. In this way methods
are only loosely or indirectly related to classes in CLOS.

Descendents have

2We consider Simula the grandfather.

related to Hoare-logic specifications. In particular, classes can specify invariants and meth-
ods can include preconditions and postconditions to this end. The invariant must hold in
all observable states, i.e., states reachable in terms of public routines only. Also routines
are applicable only if their preconditions hold and they must guarantee the postconditions
when they return.

In Sather all features are visible by default and private declarations are used to restrict
visibility as needs arise and the design settles. Like in Eiffel, hiding is about clients. De-
scendents have unrestricted access to private features. Semantic assertions can only be
associated to routines and semantics does not necessarily impose constraints on descendents
(cf. Section 2.2).

Q: Are parameterized types supported?

Only FEiffel and Sather support parametric classes. This means that classes may be
written with certain types left as parameters to be specified at the point of use. For example,
a class implementing a stack abstraction might be defined as sTack{T}. At the point of
use one might create objects with types STACK{INT}, STACK{TREE}, etc. One advantage of
this approach is that the types may be known at compile time and specialized efficient code
may be generated. Parameterized classes allow flexible classes to be written and used in
a variety of situations without sacrificing either type safety or efficiency. In Common Lisp
type declarations are optional. When types of slots are not specified in CLOS, there is no
need for parameterized classes, but the attendant type checking and static optimization are
lost as well. All three languages support parametric and subtype polymorphism.

Dynamic parametrization addresses the interplay between inheritance and parametric
polymorphism. It allows one to specify types by reference to the type of self or the type of a
feature. A redefinition of such a feature thus may redefine the types of several other features.
In Eiffel, such types are called association types. Sather supports the type SELF_TYPE for
this purpose. A typical usage would be for a ‘create’ routine whose return type should be
the same as the type of self. Thus SELF_TYPE is like a free type variable the substitution of
which refines the meaning of an inherited method in every descendent class. Semantically,
one may imagine textually copying any code or attribute definitions into a descendent class
and replacing any such type references by their meaning in the descendent context. The
substitution semantics of parameterized types permits implementations ranging from code
sharing to specialized code per descendent class.

CLOS classes are special types. Common Lisp defines a set of basic types that are not
classes and the user may define his own types via deftype that are distinct from classes. In
particular, not all of these types can be used as specializers for methods and they do not
appear as run-time tags of their objects. This situation arose because it is both possible
and useful with deftype to define a new type that is the union of two existing types or that
satisfies a unary predicate expressed in terms of the object’s value or its type. In general,
however, there will be no natural and unique way to fit such types into the specialization
semantics required for classes. Sather and Eiffel both treat the basic types INT, REAL, etc.
separately as well to avoid requiring run time tags and concomitant inefficiency. The strict
typing of these languages, however, allows the compiler to determine these types at compile
time. Sather and Fiffel cannot specify union types and so do not have to distinguish types
from classes.

Q: Can classes be dynamically created?

While in Eiffel and Sather all classes are known statically, at compile-time, CLOS’ classes

and Sather each object is blank at first, i.e., attributes take language-defined default values
according to their types. In Eiffel, the initial state is then reached after the execution of
the create routine, which must be provided by each class. In contrast, the initial state of
CLOS and Sather objects is defined by initialization expressions associated to attributes
(slots). An appropriate create respectively initialize behavior is automatically “composed” in
the semantics of these languages, although it can be explicitly defined. This stresses the
template character of classes, has a more declarative flavor and can simplify reasoning about
the initial state of objects, because it seems to reduce some common types of initialization
errors:

1. unbound parent attributes not initialized in descendents and leading to run time errors
when methods are called on them;

2. copying parts of the parent create code with the implied danger that the children are
forgotten when changes to parents are made, or that independent library users are
forced to change their code appropriately before they can run it with an improved
version of the libraries;

3. reference to and call of parent initialization routines and explicit reinitialization of
some attributes, with the danger of becoming even more dependent on the order and
interrelation of parent classes (explicit reference to their initialization routines) and the
need to understand and perhaps undo their initialization (for instance in the presence
of side-effects).

Q: How are classes related to abstract types?

Behavior abstraction in abstract data types is associated with visibility restrictions.
Clients of a class (callers different from self) should rely only on the abstract interface or
protocol and not on any implementation details. This enables classes to later make internal
changes for portability or efficiency as long as they don’t affect the interface.

CLOS has a half-hearted approach to abstract data types, because the implementation
type of data often shines through in many details of the type system. In part, this is
deliberate because of the wide variety of requirements imposed by different applications.
For example, Common Lisp is used to implement Lisp machine operating systems and
compilers for numerical applications such as S1 Lisp that are competitive with Fortran
in execution speed. The required efficiency can only be reached by using implementation
type information across module boundaries. Data abstraction is supported however. The
Common Lisp package mechanism allows one to define separate name spaces. It does not
however exclude accesses across package boundaries. Rather it exposes access to private
names by the ‘:;” notation. Also the data representation of classes is separated from the
abstract class behavior as defined by the interface or protocol. Allocation hints to the
compiler can be given in the class definition. The meta object protocol [15] also can be used
to choose a specific data representation and install basic access primitives. For instance,
allocate-instance is a method of STANDARD-CLASS and can be redefined to this end.

FEiffel stresses the semantic, abstract data type, aspect of classes and requires that se-
mantics is inherited and must be preserved by all descendents of a class (cf. Section 2.2).
Clients access objects only through their public or exported interface and can rely on the
specified semantics independent of the particular type of object being passed. FEiffel sup-
ports many constructs for detailing the semantics of this public interface in ways strongly

CLOS, Eiffel, and Sather are just three choices in a large space of possible languages
that vary along these dimensions. To assess a language, it is necessary to look beyond the
language definition and to consider the whole programming environment. It is important
to understand what tools exist in support of the language, whether source code is available,
what libraries are available, who the other users are, etc. In our comparison we will try to
consider these extended aspects of the languages besides the language definition.

We organize our comparison of the three languages by using a taxonomy defined by
a series of questions. Unfortunately, often completely different terminology has developed
for the very same concepts in different object oriented languages. We will introduce this
terminology as we proceed. We point out the similarities and the differences between the
three languages. The following table provides an initial map of technical terms for the most
central concepts, polymorphic variables and functions:

‘ Concept H Common Lisp ‘ Liffel ‘ Sather ‘
instance variable slot attribute attribute
class variable (class-allocated) slot | once function | shared attribute
polymorphism generic function no tech. term | no tech. term
class specific method routine routine
implementation of ~
~ with result method function function
~ without result method procedure procedure

2.1 Classes and Types
Q: What are classes in the language? To what extent are they templates for instances?

The object-oriented paradigm defines an object as a set of features including attributes
(called slotsin CLOS) and methods (called routinesin Eiffel and Sather) that operate on the
attributes. The three languages under consideration here are class-based, in distinction to
prototype-based languages like Self (e.g. [5]). In a class-based language, a class represents
the common structure and behavior of all objects that belong to it. In particular the class
provides a template for dynamic instance creation. In addition, one may consider it as
providing a template for the common behavior exibited by its instances. It encapsulates
the procedures and functions that in some sense belong to its instances. Multi-methods
in CLOS weaken this notion of encapsulation somewhat because methods need not belong
to individual classes. The argument specializers of methods may instead associate a single
method to a combination of several classes.

Usually an attribute may have different values in two different instances of a class. If
all objects of a class share an attribute then it is said to belong to the class rather than
the object. Here all objects in a class see the same value, and write to the same memory
location.

The initial state of an object is an important semantical notion for reasoning about a
program. The initial state must satisfy the class invariant, a semantic property associated
to the class and valid in all observable states (between the calls to public routines). Such
an invariant can be specified in Eiffel by an assertion associated to the class. In Eiffel

functions and procedures polymorphic, that is, applicable to different kinds of data. Usually
two kinds of polymorphism are distinguished [4], parametric and subytpe polymorphism.
Parametric polymorphisms have a single definition but their signature, that is, the type
of their arguments and results, may vary. Perhaps the signature contains type variables
ranging over many different types. For instance, inserting into different kinds of lists is a
typical parametric polymorphism. In contrast to this, a subtype polymorphism has different
definitions for different types with either the same signature or in some sense compatible
signatures.

Dynamic allocation and automatic garbage collection originated in the Lisp environment
and will be taken for granted by readers familiar with CLOS. Several object oriented lan-
guages, such as C*t*, do not support garbage collection. The lack of garbage collection
allows the problems of dangling pointers and memory leaks'. More fundamentally, forcing
the programmer to explicitly deallocate memory often destroys the clean encapsulation of
class abstractions. It is usually a distant caller of a class which knows when its objects can
be deallocated and this often forces callers of classes to be more aware of internal structures
than they should be. We therefore require garbage collection for typing, robustness and
encapsulation reasons.

These four aspects of object oriented languages interact in a complex fashion. The
tension between different goals leads to somewhat different notion of types.

1. There is a tension between abstract data types and inheritance. Abstract data types
want to make classes be opaque boxes in which the data representation and function
implementations are to be hidden. Modifying these representations then does not
affect too many dependents. In contrast, a major goal of inheritance is to open the
box for descendents, which want to share these implementation details with their
ancestors. This saves on rewriting code and children can survive certain changes
to their ancestors. Unfortunately, because of the broken encapsulation, in general,
descendent classes are more easily affected by modifications to parent classes than
clients are.

2. There is a tension between subtypes and inheritance. Types viewed as sets lead to a
notion of subtypes as subsets of objects to which certain functions may be applied (in
this way it is used for specification of legitimate operations). Among other purposes,
inheritance is used both to define these subtypes and to move features of a parent
class down to a child class. There are a few formal type systems that combine these
views (cf. e.g. [3, 4, 24]). However they make simplifying assumptions about the
uniformity of data and about the disjointness of types, which do not hold for most
existing object-oriented languages. For instance, they assume that all data is tagged
and that basic types are disjoint.

3. Finally there is a tension between static typing and dynamic dispatch. A primary
advantages of object oriented programming is the flexibility inherent in polymorphism.
This flexibility goes directly against the safety inherent in static typing. There are
inherent tradeoffs in how much checking is possible at compile time versus how much
must be done at run time to guarantee that, for instance, optimizer assumptions about
typing are preserved during execution. These tradeoffs are reflected in both the safety
and speed of exectution of programs in a language.

Tt is well known that supposedly well tested pieces of system software contain memory leaks, causing
their image size to grow without bound.

any particular language or to be especially interested in detailed aspects of language design.

The reasons for our decisions depend strongly on the requirements of these projects, but
they may be applicable to other similar projects. Our experience has been that CLOS gives
the more powerful and flexible environment for experimentation and prototyping but pays
for this flexibility in efficiency and robustness and sometimes the loss of simplicity. It takes
more development time before a program successfully makes it through the Eiffel or Sather
compiler and before a prototype is up and running. It is our experience, though, that when
it finally does compile, the design is closer to being ‘right’ and with less effort perhaps more
robust and efficient than is the version developed in CL.OS. On the other hand, this early
guarantee of these qualities requires restrictions, which lead to loss of flexibility both in
the early design and in later extensions. So, we do not prefer any one of these languages
unilaterally over the others. We do not believe in single language approaches. The selection
of a language depends on the goals and needs of a software project and on the skills of
the people involved. Often a single language will not do the job. Special requirements and
the needs of an application domain demand particular strengths and can tolerate certain
weaknesses.

In this paper we compare these three languages along the major themes of object-
oriented programming: classes and types, inheritance and subtyping, methods and forms of
polymorphism. We also compare the available tools and environments. For each of these
topics we develop an informal taxonomy and give a short tabular classification for the three
languages. Finally, we illustrate and explain a few constructs from each language to provide
a feeling for their varying terminologies and to motivate the reader to experiment with them
himself.

Our comparison tries to be informative and concise. We assume some familiarity with
the basic notions of object-oriented languages. We hope that both CLOS programmers
and Fiffel programmers can get a fast overview of the language they are less familiar with.
We hope the correspondences also will promote understanding of the differing terminologies
used in describing the different communities.

2 Taxonomy and Overview

In this paper we will take a class oriented view of object oriented programming. In addition,
we believe that for object-oriented programming to be effective, classes must provide the
following features:

abstract data types, inheritance, dynamic binding and garbage collection.

Abstract data types provide encapsulation and inheritance eases reuse. Both promote
extensibility and modifiability. These two requirements seem widely accepted and we will
not address them further.

Dynamic binding of functions to function names is one key to the flexibility and exten-
sibility of object-oriented languages. It allows new code to be called from unaltered old
code by passing data of new types to old operations or assigning them to old variables. It
is implemented by dynamic dispatch in which run-time type information is used to lookup,
or bind to, the proper function. Lisp-machine operating systems typically have over 2000
classes and Smalltalk systems have about 1000. These systems have evolved over fifteen
years and rely on incremental compilation and dynamic dispatch to allow extensions and
reuse of the existing class hierarchies while the system is running. Dynamic dispatch makes

1 Introduction

Common Lisp [25] was developed to consolidate the best ideas from a long line of Lisp
systems and has become an important standard. The object-oriented aspects developed in
CLOS [1, 19, 13] were developed later and were required to be compatible with the pre-
existing Common Lisp standard. This history has forced some compromise decisions that
probably would not have been made had the object-oriented aspects been a part of the
design of the language from the start. There probably would not be a distinction between
generic functions and ordinary functions. Types probably would not be distinct from classes,
and the encapsulation provided by the package mechanism probably would not have been
separate from class encapsulation. Many built-in functions of Common Lisp such as hash
tables, random numbers, etc. would have been separated as optional classes in a library.
Partly because of these issues, current Lisp executables tend to be large and computation
intensive.

The motivations underlying the approach taken by CLOS are the source of both its
greatest strengths and its greatest weaknesses. Lisp has always emphasized incremental
software construction and rapid prototyping. Lisp environments are among the best for this
kind of work, but it has forced a strong emphasis on dynamic alterability. For example, in
CLOS one can change the definition of a class in midstream. Instances that already exist
must be dynamically altered before methods may be applied. To avoid the need to recom-
pile methods when classes change, CLOS implementations typically make instance accesses
independent of the instance layout. This forces extra indirections and table lookups that
more restricted object-oriented languages can avoid. Such features can be quite useful, but
often one has to pay a price for them even if one does not want to use them. The incre-
mental style of design and programming that Lisp promotes is wonderful for rapid research
projects or for quickly getting a first working prototype of a new and complex system.
It is unfortunately often difficult to move from such prototypes to efficient, maintainable
and well-debugged systems. We believe that this is due in part to the extensive flexibility
provided by the environment. It is also partly due to the weak encapsulation provided by
CLOS. CLOS classes do not encapsulate functionality and the strong reliance on method
combination makes it difficult at times to understand exactly which pieces of code are being
executed at any given time.

Our views on these issues were formed in part during the development of a vision project
and of a general purpose connectionist simulation environment, called ICSIM [22]. We had
used Flavors, CLOS [16] and C in other projects. A quick prototype of ICSIM was developed
in CLOS. It allowed us to try out different designs but was too inefficient to develop into the
final version. We rewrote and extended the system in FEiffel, a strongly typed object-oriented
language [9]. Although the design was more explicit and satisfactory now, Eiffel’s constraints
in combining classes and reusing code led to unnecessary code repetition in several places.
Also we still had problems with efficiency. In response to the needs of these and other
projects, we developed Sather, a new language derived from Eiffel. Sather attempts to
retain the semantically clean structure of Eiffel while achieving the efficiency of C4+4 [6].
We chose FEiffel mainly for encapsulation and Sather for efficiency reasons but also because
we believe these languages have a shorter learning curve and the simulator is targeted for
interdisciplinary projects. Researchers from widely different backgrounds must be able to
develop new systems quickly using the simulator class library. We expect them to have
programming experience in a mainstream language but do not expect them to be expert in

INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center Street @ Suite 600 ® Berkeley, California 94704 e 1-510-642-4274 e FAX 1-510-643-7684

CLOS, Eiffel, and Sather:
A Comparison

Heinz W. Schmidt*, Stephen M. Omohundrof
TR-91-047

September, 1991

Abstract

The Common Lisp Object System defines a powertul and flexible type system that
builds on more than fifteen years of experience with object-oriented programming.
Most current implementations include a comfortable suite of Lisp support tools in-
cluding an Emacs Lisp editor, an interpreter, an incremental compiler, a debugger,
and an inspector that together promote rapid prototyping and design. What else
might one want from a system? We argue that static typing yields earlier error detec-
tion, greater robustness, and higher efficiency and that greater simplicity and more
orthogonality in the language constructs leads to a shorter learning curve and more in-
tuitive programming. These elements can be found in Eiffel and a new object-oriented
language, Sather, that we are developing at ICSI. Language simplicity and static typ-
ing are not for free, though. Programmers have to pay with loss of polymorphism and
flexibility in prototyping. We give a short comparison of CLOS, Eiffel and Sather,
addressing both language and environment issues.

The different approaches taken by the languages described in this paper have
evolved to fulfill different needs. While we have only touched on the essential differ-
ences, we hope that this discussion will be helpful in understanding the advantages
and disadvantages of each language.

*ICSI, on leave from: Inst. f. Systemtechnik, GMD, Germany
H1Cs1

