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ABSTRACT
Searching for objects in scenes is a natural task for people and has been extensively studied by psy-
chologists. In this paper we examine this task from a connectionist perspective. Computational com-
plexity aguments suggest that parallel feed-forward networks cannot perform thisftaign#y.
One dificulty is that, in order to distinguish thedat from distractors, a combination of features must
be associated with a single object. Often called the binding problem, this requirement presents a seri-
ous hurdle for connectionist models of visual processing when multiple objects are present. Psycho-
physical experiments suggest that people use covert visual attention to get around this problem. In this
paper we describe a psychologically plausible system which uses a focus of attention mechanism to
locate taget objects. A strategy that combines top-down and bottom-up information is used to mini-
mize search time. The behavior of the resulting system matches the reaction time behavior of people
in several interesting tasks.

1. This paper also appears in the Proceedings of the 13th Annual Conference of the Cognitive Scienceh®agjety1991.



Abstract lesz & Begen1987). Since neurons can only fire every 5-
Searching for objects in scenes is a natural task for people 10 msecs, this leaves time for at most 8-12 sequential
and has been extensively studied by psychologists. In this steps. The system must be able to deal with objects that
paper we examine this task from a connectionist perspec- vary continuously in size. Finallyhe serial component of
tive. Computational complexity guments suggest that par-  the search process should be as small as possible, so the
allel feed-forward networks cannot perform this task  ymper of successive fixations should be minimized.
efficiently. One dificulty is that, in order to distinguish the We have previously described ariigént mechanism

target from distractors, a combination of features must be for selective attention in the context of a connectionist net-
associated with a single object. Often calledhimgling v lon i X loni

problem, this requirement presents a serious hurdle for con- WOrk for computing spatial relations (Ahmad &
nectionist models of visual processing when multiple ob- Omohundral990a). In the following section we describe

jects are present. Psychophysical experiments suggest thatahn extended version for modeling visual search. This net-
people use covert visual attention to get around this prob- work meets the &tiency constraints listed above. A par-
lem. In this paper we describe a psychologically plausible allel search strategyWIFT, is used to minimize search
system which uses a focus of attention mechanism to locate time. In a final section we present simulation results of the

target objects. A strategy that combines top-down and bot- system and discuss its relation to recent experimental re-
tom-up information is used to minimize search time. The g its on visual search.

behavior of the resulting system matches the reaction time
behavior of people in several interesting tasks.

A Model Of Visual Attention

Introduction In this section we describe a connectionist model of covert
visual attention (see Figure 1). A set of basic features are
first computed from the image. The information is then fed
to two different systems: a gating network and a priority
network. The gating network implements the focus - its
function is to restrict higher level processing to a single
circular region. The priority network ranks image loca-
tions in parallel according to their relevance to the current

between features of @#frent objects when a parallel repre- 25K Finally a set of control networks are responsible for
sentation is used. Consider an image with red, blue, verImGdk""ltmg thel||nfor.mat|oridw.betwee3 thesE twol néat—
cal and horizontal objects. By computing a global OR o_worhs,faﬁ well as mcordpora'tl;n% top- OWS n.logvle ge.
appropriate feature maps, one can detect in parallel whicEach of these parts are described in more detail below
colors and orientations are present in the image. Howeve

to detect a red and horizontal object in the presence of ot T he Feature Maps

er objects one would have to pre-compute every possibFeature maps in the network are analogous to the topo-
conjunction of features at every location. Similathe in-  graphic maps early in the visual system. A set of basic fea-
terference between objects makes fificlift to recover the tures (orientation, colpetc.) are detected at each pixel in
locations of individual objects. ¥ a selective attention the image in parallel, using one unit at each location for
mechanism that inihibits all but the features of a single obevery feature. In addition there is a unit for each feature
ject, the interference is removed and the binding problermap which computes the global sum of the activity in the
goes awaySuch a model implies that in some situations émap. Exactly which features should be included is an ac-
serial search is required. This line of reasoning is used ttive area of research. For our purposes, any local feature
explain experimental results on visual search (reviewed imay be used. Our current implementation uses four feature
(Treisman 1988)). The original experiments showed thamaps: red, blue, horizontal, and vertical.

search for tayets dahed by a single feature can be com-

puted in parallel but that @ets dehed by a conjunction The Gating Network and Gated Feature Maps
of two features required time linear in the total number o

objects. (See, howevethe section on simulations for ex- 10 tackle the binding problem the network must be able to
ceptions to this rule.) inhibit thg transmission of features to the recognition
For a network implementation of visual search to beStage- This is accomplished by the gating network and the
useful as well as psychologically plausible, a number oJ2t€d feature maps. The gating network contains one unit
constraints must be met. The system should work for higP€" pixel. Each gate unit receives as input three parameters
resolution images and must therefore Hecight along ~ Ax-Ay andAy) representing the center and radius of the
several dimensions. The complexity of the network shoulCUITeNt circular focus of attention. Only the gate uouts
be low The time per attention shift should be small. Co-Sid€ the circle turn on (see (Ahmad and Omohundro

vert attention shifts in people take about 40-60msecs (J1990@) for details). Each unit within the gated feature
maps receives activation from the corresponding feature

In 1986, Sejnowski wrote: “The binding problem is a
touchstone for testing network models that claim to hawv
psychological validity” (Sejnowski986). In 1991, the

statement is still true. In visual search two aspects of th
problem are important: feature integration and localiza
tion. Feature integration is concerned with the interferenc
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detector and inhibition from a gate unit (Figure 1). Onlythan size could be infgfient. Several psychophysical ex-
the portion of the gated feature map that falls within theperiments have pointed out other possibilitieanfs &
current focus will respond. The resulting system déarf  Jonidesl990) provide evidence that stimuli which appear
image properties based on an external control signal. Aabruptly are attended to sooner than persistent stimuli, but
with regular feature maps, the network computes a globithat this can be overriden by explicit instructions to the
sum for each gated feature map. When attention is focussubject. Experiments on visual search suggest that objects
on an object, the activity of these sum units will reflect thewith the same features or form as thgeéarobject can get
object’s features, regardless of distractors. Retrieving thhigher priority than other objects (Egethra/, & Garbart
location of an object is simple: with attention centered or1984). All of this suggests a much more dynamic and flex-
the object, the units representig andA, will reflect the  ible priority system than one which simply ranks the loca-
objects location. The complexity of the network is linear tions based on pixel density
in the number of pixels and the time to focus is a smal This sort of flexibility can be added to the network with-
constant. out sacriicing efiiciency. The priority network contains a
An alternate architecture would use direct inhibition ofunit associated with each feature map, whose value in-
the feature maps themselves. This would eliminate thdicates the importance of that map. This value is dynami-
need for a separate set of gated maps. Howaverfo- cally adjusted according to the task. The priority of units in
cused state, such a network would be unable to make glokthe error map is computed as:
decisions based on the featuresthi\the configuration de-

scribed above, the network cafi@ééntly access both local A =GU ; Z:PfAfxyE
and global information simultaneoushis we will see be- Ly, £ L
low, this ability is crucial in diciently carrying out visual is the activation of the feature unit at locatiary).

search. There is even some direct psychological evidenn,:u%‘iy denotes the receptivield of uniti, andG is a mono-
to support the current architecture. When attention is higktonically increasing function of its input (we use a sig-
ly focused, people are able to report primitive features 9moid). WhenP; is 0, featuref has no d&ct on the priority

stimuli appearing outside the focus of attentio_n (ROCk. emap_ This allows the System to Comp|ete|y shtithaf ef-
al. 1990) but they are unable to I’eport Shape |nf0rmat|0fect of any feature map in para”eL

suggesting that higher level processing feaéd. We also need a way to update the focus of attention to the
o relevant locations.@accomplish this each location in the
The Priority Network priority map contains two additional units whose values en-

This gating method relies on an external mechanism fccode an “error vector”. The error vector is simply the dif-

determining focus locations and this is provided by the priference between the units’ location and the current center
ority network. Its job is to rank image locations in order ofof focus. These vectors are constantly updated as the focus

importance and to help shift the focus to those locationd0ves around. This representation is flexible afidiesit.
The main component is a coarse coded map in which tfTo move the focus to the highest priority quatlon, the con-
output of each unit reflects the priority of the region withintrol network simply chooses the corresponding error vector

its receptiveield. A simple and dicient way to rank re- and adds its componentsApandA,. To choose the nearest
gions is to use the mass of the points within the receptivlocatlon, the control network selects the smallest error vec-

field (Ahmad & Omohundrd990a). If this is the only tor. To choose locations to the right it can select a vector
ranking available, howevghen search for attributes other Whose first component is positive.
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The Control Network tion stabilizes on each location, the control network
The control network coordinates the informatitawfbe- ~ Checks the features of the current object against the stored
tween the gating network and the priority network. It con-taget representation. This continues until a match is found
sists of a collection of autonomous sub-networks carryin" 1€ré are no more objects. o

out independent tasks. There are networks which conting 1€ output of the simulator is shown in Figure 3(a). The
ally fine tune the scale and location of the focus of atter/OWer Ieft quadrant displays the image (the one shown is
tion, networks for storing locations, and a network foro4x64 pixels). The top left quadrant displays the activity of
updating the focus to the next error veciiiese are de- the four gated feature maps. Clockwise from top left the
scribed in detail in (Ahmad & Omohundi®90ab). The features are: blue, red, vertical and horizontal. In the figure

main addition is the subsystem SWIFT which controls th{h€ System is attending to the leftmost red-vertical object,
search process. This is described below so only the units at that location are active. The bottom

right quadrant shows the feature maps that are currently af-

The SWIFT search strategy. The main function of fecting the priority map. Since the get is a blue-vertical
SWIFT is to integrate top-down and bottom-up knowledgeobject, the system has chosen the vertical map as the mini-
to efficiently guide the search processpldown informa-  mal feature map. The top right quadrant displays the error
tion about the t@get features are stored in a set of units. Levectors in the priority map. Note that only vertical objects
T be this set of features. Since the desired object must cohave significant priorityThe run-time behavior of the net-
tain all the features in,Tany of the corresponding feature work is discussed in the following sections.
maps may be searched. Using the ability to weight featur
maps diferently the SWIFT network can remove the influ- geqrch Time With SWIET
ence of all but one of the featuredimBy setting this mag’ ) i
priority to 1, and all others to 0, the system wifeefively ~ Since SWIFT always searches the minimal feature map,
prune objects which do not contain this feature. (Hence tpthe critical variableM, that determines search time is:
name SWIFTSearch WIth Features Thrown outg fin- M = min,-{O(f)}
imize search time, it should choose the one correspondir T .
to the least number of objects. Since it idiclift to count ~ Wheref ranges over all the tget objects features, and
the number of objects in parallel, the network chooses thO() iS the number of objects with featuteSearch time
map with the minimal total activity as the one likely to con-Will always be linear irM, but does not necessarily have
tain the minimal number of objects. anythmg to do witlD, the n_umper of distractors. For ex-

SWIFT was inspired by the experiments in (Egetrziy/ ample, in images such as in Figure 3(b), the vertical map
& Garbart1984). These authors present evidence sugge<Vill P& chosen as the minimal feature map. Search time
ing that serial search can be restricted to objects with a pe/Vill not depend on the number of horizontal items. In a
ticular feature. For example, if subjects were instructed tS€NSe the search time is dependent on the discriminability
attend to red objects, and the number of red objects we® the taget object and not on the total number of distrac-
kept small and constant, then search time was constant wi°rS: Figure 4 plots the actual search time averaged over
respect to the number of distractors. In our implementatiorS€Vera! trials for various combinationsMfandD. In Fig-

the system dynamically computes the best feature. ure 4(a), the number of distractorsiketl at40 asM is
gradually increased. As expected, mean search time in-

. . creases linearlySince the search is self-terminating, the

Simulations ratio of the slopes for the &t absent and @&t present
The simulation proceeds as follows. Initially the networkcases is about 2:1. In Figure 4(b), the graphs show that
is presented with an image and “shown” thgéaobject search time can remain relativelgtfasD increases, as
by focusing attention on it. The network stores the activityjong asM is held constant.drour knowledge this specific
of the gated feature maps in a set of units and these bset of experiments has not been performed on people. In
come the taget features. For each subsequent image, ththe following sections we discuss SWIFT in relation to
total activity of all the feature maps is computed in paralmany of the experiments that have been done.
lel. Among the taget features, the network chooske
one with the least activity and sets its priorityltand all ~ Relationship With Psychological Data
others t00. Search then proceeds by sequentially visiting

locations in order of their saliencis the focus of atten- ingle and conjunctive feature searches. We frrst show
that the original search resultg€isman 1988) can be rep-

licated with SWIFT The experiments showed thatgeatis

1. The error vector representation was inspired by a similar defined by a single feature (e.g. a redeaamong blue ob-

mechanism for controlling eye saccades in the monkey jects) can be detected in paralledgets defined by a con-
superior colliculus (Sparks986).




junction of two features (e.g. a red-horizontajgramong  what to do? The subject has no knowledge about his/her in-
red-vertical and blue-horizontal objects) required time lin-ternal representations. Just knowledge about thettab-
ear in the number of objects. jectis insuficient - the map that is searched depends on the
For single feature searchd&scontains one feature so particular image. The answer is simple if SWIFT is used:
SWIFT will always choose it.d’detect whether the get  searching the map with the least total activity will always
is present just requires one step since there can be at mproduce the correct results.
one object with that feature. For conjunction seardhes
contains two features. If the number of objects with eac
feature is chosen randomign averageéM will be 1/2D.
Therefore average search time will grow linearly wiith
(see (Egeth, Wzi, & Garbart 1984) for a similar gument).
The ratio of slopes for images withdat absent to tget
present will be: 1, consistent with any self-terminating se-
rial scan. More recently it was shown that accurately de
tecting conjunctions depended on accurate localization ¢

the taget (Treisman & Satd 990). This is also consistent Recently (Teisman & Satd990) and (Wife, Cave &

with our architecture (Ahmad & Omohundro, 1990a). ! .

Franzell989) have suggested models where conjunctions
Tripleconjunction search. Search for an object defined by can be detected in constant time with top-down informa-
a conjunction of three features results irfedi#nt search tion. It is possible to implementdisman and Sate’Fea-
slopes (Quinlan & Humphreyi987). There were two situ- ture Inhibition model in our architecture. They suggest that
ations that were tested: (a) every distractor shares exacif the features that aneot present in the taget inhibit the
one feature with the tget object, ar(b) every distractor priority map (i.e P; is negative) then a location containing
shares exactly two features with thegttr Both cases re- the conjunction of two features would retain the highest
sulted in sequential search, but the slope in (b) was alwapriority. This can be easily modeled in our network, how-
steeper than the slope in case (a). These results are conever there is one problem: it cannot explain sequential
tent with SWIFT In case (a), on average the minimal fea-search! If people can use such a general stratggy do
ture will eliminate2/3 of the distractors. In (b), onl{/3  we get linear search times at all? A related problem is that
would be eliminated on average. Thus SWIFT predicts théboth models cannot explain why only specific feature com-
the slope in (a) should be about half that of (b). binations give rise to parallel search.

SWIFT can explain these results if one assumes that cer-
tain feature combinations are represented in parallel. For
example, (McLeod, Driver& Crisp 1988) mentions that
area MT contains cells which are tuned to both direction of
motion and orientation. Since a primary feature that distin-
hguishes Xs$ from O5 is an oriented line, a moving X should

produce a unique pattern of activity in this feature map. If
such combinations are present, then SWIFT would select
the appropriate feature map and detect tlggetain constant
time.

|ParaIIeI processing of conjunctions. Some authors have
reported conjunctive feature searches which always result
in flat slopes. (McLeod, Drive& Crisp 1988) report that

the detection of a moving X among statisnd moving

O’s can be done in parallel. (Nakayama & Silvermh@86)
tested conjunction searches using the features, color

tion, and depth. They found that motion-color conjunctions
required serial processing, whereas depth-color and depth-
motion conjunctions could be processed in parallel.

Search asymmetries. There is another search paradigm
where constant and linear time searches have been repc
ed. Searching for a line oriented®l@mong vertical lines
can be done in constant time, but searching for a vertici
line among these oblique lines takes linear tinrei§man
1988). This asymmetry is explained by assuming that t
early representation includesiaife number of orienta-
tions that are coarse coded, including vertical and an oriel
tation greater than $8Each oblique line is represented as
a combination of activity in the vertical map and the mag
coding a successive orientation. If this is true, then a patte! )
containing a single oblique line amongield of vertical Concluding Remarks
lines will cause several regions of activity in the vertical
map but only a single region of activity in the other map.
The presence of the oblique line can therefore be detect;
in constant time by computing a global OR. Howettes
image of a vertical line among several oblique lines will
generate several active regions in both maps except at o
location, where only the vertical map is activated. In this
case, the network must bind the presence of activity in or
map with the absence of activity at the same location in ar
other map. This requires serial search.

Similar asymmetries are present when detecting curve
ture, circles vs ellipses, single vs paired lines, etc. In all ¢
these cases, a central question is: how does the brain kni

Optimal featuresfor visual search. In light of the above
results it is natural to ask what the best set of features
should be. If SWIFT is used as a constraint, then we want
the set of features that minimikkover all possible images
and taget objects, i.e. that best discriminate objects. It is
easy to see that the optimal set of features should be maxi-
mally uncorrelated and that the distribution of feature val-
ues should be uniform over the space of possible objects. In
other words, the optimal features should be the principal
components of the distribution of images. It is interesting
to note that a single Hebb neuron extracts trgekrprin-
cipal component of the input distribution and with inhibi-
tion, sets of Hebbian neurons can extract successively
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Figure 3. (a) Sample output from our simulatby An image with M=5. (No shading => red, filled black => blue.)

smaller components. Moreoyers some researchers havespecifc amount of noise in the activations of the feature
demonstrated (e.g. Linsk&®89), simple Hebbian learning maps. In our model search time depends on the feature
can lead to features that look very similar to the features irepresentations and the minimal feature map.

the visual cortex. If the early features in visual cortex are il
fact the principal components, then SWIFT is a simple
strategy that takes advantage of it.

Conclusions. We have presentedfiefent psychologically
plausible connectionist mechanisms for visual attention.
These mechanisms have been integrated into a complete
Other computational models. (Chapmarl990) has im- system for visual search. The resulting network scales well
plemented a pyramid model of attention. It has only beeboth in terms of the number of connections (linear in the
used to replicate the original single feature vs conjunctivhumber of pixels) and in the focusing time (constant). The
feature searches although, in principle, a control stratecimplementation of a single plausible search strategy
like SWIFT could be employed. @e, Cave, & Franzel SWIFT, was shown to be consistent with the single/con-
1989) have simulated a model of visual search which thejunctive search, the 2:1 ratio in thegat absent/present
call the Guided Search model. Their model accounts for slopes, and dependence on localization. The strategy ex-
wider range of results than Chapnsar©Our model is con- tends other sequential integration models in that it is also
sistent with their philosophy in that a smart parallel strategconsistent with search for triple conjunctions, search asym-
is used to rank possible candidates. However their modmetries, search within a feature, and possibly the constant
cannot account for the search asymmetry results @& the time detection of certain feature combinations.

ratios in the slopes. In addition, the model requires comr

plete connectivity of the units in the feature maps. This Acknowledgments

would requireO(N?) weights (resulting in approximatel i . .
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not implementable for high-resolution images. Neither of2nd especially Annergisman for their helpful comments
these models implement a continuous focus of attentioraNd stimulating discussions.
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