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Abstract

Sather is an object-oriented language recently designed and implemented at the
International Computer Science Institute in Berkeley. It compiles into C and is in-
tended to allow development of object-oriented, reusable software while retaining C’s
efficiency and portability. We investigate to what extent these goals were met through
a comparative performance study and analysis of Sather and C programs on a RISC
machine. Several language design decisions in Sather are motivated by the goal of
efficient compilation to standard architectures. We evaluate the reasoning behind
these decisions, using instruction set usage statistics, cache simulations, and other
data collected by instrumented Sather-generated code.

We conclude that while Sather users still pay a moderate overhead for programming
convenience (in both run time and memory usage) the overall CPU and memory
usage profiles of Sather programs are virtually identical to those of comparable C
programs. QOur analysis also shows that each of the choices made in Sather design
and implementation is well justified by a distinctive performance advantage. It seems,
then, that Sather proves the feasibility of its own design goal of making object-oriented
programming efficient on standard architectures using a combination of judicious
language design and efficient implementation.
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4 1 INTRODUCTION

1 Introduction

1.1 Sather and Object-Oriented programming

Sather[3] is an object-oriented language designed and implemented recently at the International
Computer Science Institute in Berkeley. Why another—in particular, object-oriented—language,
one might ask?

The answer is that none of the existing object-oriented languages available seem to provide all
of the major features Sather was designed for, namely

Code Reusability. The view of software components was proposed in the sixties, but has never
been fully realized. Because object-oriented programming emphasizes the structuring of pro-
grams around classes’ of objects, if the classes are well-encapsulated, a programmer simply
needs to write “glue” code that ties together pre-written software components, allowing greater
code re-utilization and productivity. Among today’s languages, Eiffel seems to come closest
to this goal. Therefore, Sather was strongly inspired by Eiffel[2], retaining the crucial features
of class parametrization, multiple inheritance, modular class definitions, and a clean class
interface.

Code Simplicity. Why, then, not simply adopt Eiffel? The problem with Eiffel is that it has a lot
of features which are of only theoretical interest to most programmers. These include constructs
which assert the pre- and post-conditions of routines and complex class inheritance rules.
Hence, Sather was designed as a simplified variant of Eiffel. It focuses on providing features
that allow programmers to write efficient, reusable code. In the environment Sather was
developed in, runtime is still generally the major criterion for software suitability, and Sather
code would only be used (much less reused) if it can afford performance levels comparable to
traditional procedural languages.

Efficiency. Another reason for not choosing Eiffel is that the dispatching mechanism in the
language makes Eiffel programs inherently slow to execute on standard architectures. Why
use not C++[5], then, which has compilers that produce efficient code? This brings us back
to the first point: C+4++4 does not have a clean syntax and lacks constructs such as class
parametrization which are essential to writing reusable code.

1.2 Historical Perspective

Sather is not the first attempt at trying to make object-oriented programs efficient. An example
of implementing efficient object-oriented programming environment is the SOAR (Smalltalk On A
RISC) project [6]. SOAR, however, tries to bridge the semantic gap between language and hardware
from exactly the opposite side to Sather. More specifically, SOAR tries to gain efficiency of Smalltalk
programs using an architectural approach. Starting with a RISC architecture, the aim was to add a
certain number of architectural features, each of which would significantly improve certain aspects
of the performance of Smalltalk programs. The disadvantages of such an approach include:

e The architectural features are closely tuned to the needs of a specific language (Smalltalk).
It is not clear that the highly specialized solutions in SOAR can be equally useful in other
object-oriented languages.

e It is difficult for Smalltalk systems implemented on SOAR to immediately reap the benefits of
faster RISC architectures, since that would mean starting another hardware design cycle.

1In subsequent discussion, we use the terms class and type interchangeably.
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Since RISC architectures—including RISC compiler technology—have further improved, it is
appropriate to re-evaluate the performance of object-oriented systems on standard architectures,
and see how efficiency can be obtained using an approach that does not rely on special-purpose
hardware as SOAR.

In contrast to SOAR, Sather attempts to make object-oriented programs efficient by eliminating
as many of the inefficiencies inherent in object-oriented language semantics at compile time. In
many respects the language is designed to help the compilation process.

The language does not try to create the illusion that all language constructs are equally efficient,
and asks the programmer to sacrifice some semantic generality and conceptual elegance to avoid sig-
nificant performance penalties. Since Sather was developed out of concrete programming experience
and demands, its designers feel safe to say that none of the restrictions incorporated in the language
present a serious limitation, but are natural matches for real world programming needs.

1.3 Important Sather Language Features

In this section, we discuss two features of the Sather language that are designed to allow efficient
code to be generated by providing crucial information about objects at compile time.

1.3.1 Explicit Dispatching

Most object-oriented languages have very general semantics for object dispatching. Consider the
following piece of code:

x:ANIMAL;
Xx.eat;

In Eiffel, for example, x during execution may refer to an object in the class ANIMAL or in any of
ANIMAL’s descendent class such as MAMMAL, REPTILE, etc. Furthermore, each class ANIMAL, MAMMAL
or REPTILE may have a different eat routine. The only way to determine the correct eat routine
to be executed, is to associate a tag with the object referred to by x. The object x is dispatched to
the correct routine using the tag during program execution.

This incurs extra costs during execution time, because every operation on an object has to be
dispatched. Sather takes the view that the programmer will have a good idea of the types of objects
referred to by x. Often, the programmer knows that x can only refer to exactly one type of object.
Then why incur the extra execution cost of dispatching? Therefore, in Sather, there is a distinction
between dispatched and non-dispatched types. In the following piece of code (same as above),

x:ANIMAL;
X.eat;

x has a non-dispatched type and hence its type ANIMAL is known exactly during compile-time.
The Sather compiler can then generate code to call ANIMAL’s eat routine, instead of generating
dispatching code to determine the correct eat routine during actual program execution. There is
no need to perform any type-checking during execution to check that x is of the correct type.

On the other hand, if the programmer decides that x may refer to any object from more than
one class, then he/she can explicitly request the object to be dispatched as in the following code:?

x:$ANIMAL;
X.eat;

2The dollar sign syntax is meant to remind the programmer of the more costly nature of dynamic dispatching.
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In this example, x has a dispatched type, and general code is generated so that x can be dispatched
to the correct eat routine during execution.® (Later, we will discuss how the Sather implementation
tries to make dispatching efficient.)

Hence Sather trades complete generality for simple restrictions which will improve code efficiency.

1.3.2 Separate Class Hierarchies for Basic Types

Basic types in Sather refer to the classes INT, CHAR, BOOL, DOUBLE and REAL. These are data types
which are generally supported at the machine level with efficient operations. Some object-oriented
languages (e.g. Eiffel, Smalltalk) have a top-most class which is inherited by all other classes (in-
cluding basic classes such as INT). Thus we may have a class INT_OR_DOUBLE which is a descendent
of both INT and DOUBLE. The following questions then arise:

e How much space is allocated for an object in the class INT_OR_DOUBLE?

o If we have

x:INT_OR_DOUBLE;
X = X + x;

we only know at execution time whether the add routine refers to an integer add-operation or
a double-precision floating-point add-operation. Hence, an extra tag is needed and this makes
the addition operation expensive even though integer addition is supported efficiently at the
machine level (and a lot of architectures have floating point units for floating-point operations).

To solve both problems, the Sather language differs from other object-oriented languages in that
there is no top-most class which is the ancestor of all classes. There are several distinct hierarchies:

Basic Classes. Each basic class INT, CHAR, BOOL, REAL and DOUBLE has its own distinct in-
heritance hierarchy. Hence it is a compile-time error to define a class such as INT_OR_DOUBLE
which inherits from both INT and DOUBLE. This simplifies the implementation and allows for
efficient code to be generated as illustrated in the following example.

Suppose if we have a class INT_HASH which inherits from INT, and the following piece of code:

x:INT_HASH;
X :=x + 1;
result := x.compute_hash_function;

The distinct hierarchies allow the compiler to treat x exactly as an integer with the additional
property that it has an associted hash function. No extra space is needed to allocate any tag
for x and there is no need to perform any type-checking during execution to decide whether +
refers to an integer or a floating-point addition.

Non-Basic Classes. All other classes form a separate inheritance DAG with a top-class class
called 0B. During execution, any object from a non-basic class has a type tag associated with
it.

An important special case of non-basic classes are

Array Classes. Array classes are the subset of non-basic classes that inherit from an ARRAY class.
Objects can inherit only from a single array class, allowing the array to be allocated as an
extensible block of memory embedded inside the rest of the object. This avoids the overhead
of having to dereference an additional pointer to the array. Arbitrary array may of course
occur as attributes inside an object.

3There are some intricacies involved in using explicit dispatching, but the above discussion gives a general idea.
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The underlying principle governing class hierarchy structure, then, is that two classes can only
be in the same hierarchy if their objects can be merged efficiently into as single memory layout, thus
allowing for efficient access code to be generated.

This illustrates a tradeoff between language elegance/programming convenience and code effi-
ciency. Even though we lose the elegance of unifying all classes under one ancestor class;, we gain
in language simplicity and code efficiency. There is no loss in the power of abstraction because a
programmer can still define a non-basic class which may contain an integer or a double-precision
floating-point:

class INT_OR_DOUBLE is
i:INT;
d:DOUBLE;

end;

1.4 Sather Compilation Strategy

We now describe three features of the Sather compilation strategy. The first two are based on
intuitive assumptions which will have to be verified later in the study. The third feature is an
example of space-for-time tradeoff which was decided in favor of time.

1.4.1 C as Intermediate Language

One of the main goals in the design of the Sather compiler was to make the compiler easily portable
to new architectures.* At the same time, it seems that C has become useful as an intermediate
language as evidenced by the AT&T compiler for C++ and the Eiffel compiler, both of which
produce C code. By using C as the “intermediate” language, and since C compilers are available
for most architectures, the Sather compiler and programs can be made inherently portable. We also
hope to take advantage of the fact that most modern C compilers produce very efficient code. We
thus save ourselves the trouble of reinventing the wheel in optimizing compiler technology, and hope
to benefit immediatetely from new improvements in this area, which is developing concurrently with
processor achitectures.

1.4.2 Dispatch Cache

As discussed above, Sather provides an explicit dispatch which incurs much extra execution costs.
How can we lower the costs of dispatching? The belief is that even if a name (say x) may refer to
different types of objects during the course of program execution, most of the time, x will refer to
one type of object. Suppose we have:

x:$ANIMAL;
X.eat;

The hypothesis is that if x currently refers to a REPTILE object, the next object it refers to will
most likely also be in the REPTILE class (one could call this principle class locality). Following the
general principle of making the common case fast, a one-word cache for the target address of the
call x.eat is allocated. Suppose x initially refers to a REPTILE object. The first call will result in a
miss, and hence the dispatching mechanism is invoked to locate the eat routine for REPTILE. This
result is stored in the cache, along with the type tag for REPTILE. If the call is executed again with
x referring to a REPTILE object, the correct eat routine is immediately known without invoking the
dispatch mechanism. The overhead cost of a hit is then a simple comparison of the type tag against
the tag from the previous call. The space overhead is only 2 words per static procedure call.

4Sather was originally developed on a Sun4 (SPARC) platform.
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1.4.3 Code Duplication

To take full advantage of the Sather features of separate class hierarchies and explicit dispatch, the
compiler has to generate ‘specialized’ code for each instance of an inherited procedure. Consider the
following code fragment:

class ANIMAL is

age is <Calculation> end;

eat is if (age < 30) .... end;
end;

class REPTILE is
age is <Reptile age calculation> end;
ANIMAL;

end;

Here, REPTILE inherits the eat routine from ANIMAL. Instead of a single shared copy of eat, two
copies are generated. If there were only one copy of the code, dispatching code would be required
to find out the type of object that calls eat at runtime, and depending on the type, decide which
age routine is the correct one to invoke. Furthermore, the class attributes used inside age can be
at different memory offsets depending on which subclass is used, meaning that attribute accesses
would have to be dispatched as well. This would overwhelm the efficiency gained from having explicit
dispatch and separate class hierarchies.

Of course, the larger amount of generated code results in higher memory requirements. More
memory and disk space is needed to store the class-specific code. It was decided that these were
no real issues given today’s availability of primary and secondary storage. Potentially more serious
would be a performance penalty due to higher cache miss rates. Here again, the principle of class
locality can be invoked to argue that the same instance of a procedure will tend to be reused, thus
resulting in effective use of the instruction cache. This issue is addressed by the cache performance
studies reported later.

1.5 Questions addressed in this study

Having discussed the language design and compilation strategies underlying Sather, we now wish
to support the design decisions with data from and analyses of actual Sather programs and their
execution on existing hardware.

One source of information is performance data obtained from actually running or simulating
Sather programs, including opcode frequencies, cache miss rates, and the like. These measurements
can answer several important question.

e Is Sather overall efficient enough to be a viable alternative to, say, C?

e Does Sather code place unusual demands on a standard instruction set architecture, i.e.,; is
there room for improvement at the architectural level (despite Sather being designed for that
not to be necessary)?

e Do the CPU and memory usage patterns reveal any weak points in the language design and/or
implementation?

Section 2 describes the techniques used in obtaining the required performance data, and section 3
presents the results.

In section 4 we then turn to each of the major language features discussed above and evaluate
their impact on performance through a detailed analysis of the performance data obtained and the
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code produced at the C and assembler levels. This includes conclusions about how Sather code
generation could be (And actually was) improved as a result of the findings reported here.

Section 5 discusses remaining issues, such as how the software approach to object-oriented effi-
ciency compares to SOAR’s hardware-oriented approach, and what other questions would be worth
investigating (but have not been in this study due to time constraints).

Conclusions and final thoughts can be found in section 6.
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2 Methodology

One assumption in having Sather compiler generate C code was that the object-orientedness of
Sather programs does not require code which is not efficiently expressed in C. Since the state-of-the-
art in efficient C implementations is represented by RISC architectures paired with RISC compiler
technology, we decided to use a popular RISC platform as our testbed for a comparative study of
C and Sather code and performance. Also, since RISC machines are characterized by their lack of
special support for language-specific features (object-oriented or otherwise), we expect the results
to generalize to future innovations in instruction set architecture developed for general computing.
This section describes the methods used in this study.

2.1 Benchmarks
2.1.1 Microbenchmarks

The bulk of the data comes from a set of small programs designed to highlight one (or a small
number of) individual language features at a time. These microbenchmarks exist in several versions,
including one in pure C, and several ones written in Sather following different programming styles.

Of course microbenchmarks allow only limited conclusions about overall performance of real-
world programs. They are, however, useful for a number of reasons. Even if the goal is to optimize
the language overall this can be achieved by checking on individual features one-by-one, making
sure that none drops far behind. Second, since the programs have a well-defined scope, direct
comparisons between C and Sather versions are possible, including inspection at the instruction
level. Finally, small programs allow extensive simulations of cache performance, something which
isn’t always feasible with bigger programs.

The following microbenchmark programs were used:

daxpy The well-known inner loop from the LINPACK benchmark that performs double precision
add and multiply on vectors. The program does 100 passes over two vectors of 1000 elements
each. Daxpy is intended to measure tight floating point loop performance and array access.
Versions include the standard C version, and a direct translation to Sather. As a result of this
evaluation the loop-code generated by Sather was substantially optimized. We evaluate both
the original and the improved Sather program.

bubble A bubble sort program sorting an array of integers. The program randomly initializes and
then sorts a list of 10 elements 10 times and is an example for more general kinds of iterative
algorithms that operate on integer arrays.

perm A recursive algorithm that generates all the possible permutations of an array of integers.
The program permutes an array of 6 elements 100 times, generating 1237 recursive procedure
calls each time.

Ist Exercises a stack data structure implemented with self-extending arrays. Creates a list and
pushes 5000 integer values onto it.

int_set An implementation of integer sets using extensible hash tables. Various sets are created
and operated on using set insertion, union, intersection, and difference.

The first three programs were coded specifically for benchmark purposes, while the last two
are extracted from the Sather library. lst and int_set are typical examples of efficient, general-
purpose data structures forming the backbone of most Sather applications. In an object-oriented
programming environment they can be reused in a variety of context (due to type parametrization),
and by comparing them against hand-coded, specialized C versions we are investigating whether
Sather programmers pay an undue performance prize for the programming flexibility gained.
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2.1.2 Macrobenchmarks

To complement the data obtained from the microbenchmarks, we also ran one macrobenchmark
intended to exercise all language features in a more realistic way. As our benchmark program we
took the Sather compiler cs itself, applied to a very small ‘hello world’ type program (the Sather
compiler is the biggest piece of Sather code to date).

Since there is no Sather compiler written directly in C, we had no way of setting up a direct
comparison between C and Sather for cs in absolute terms. However, we can usefully compare
relative performance characterizations, such as the relative opcode distribution, against that of C
programs carrying out comparable tasks. Hence, as reference points for the Sather data in this case
we used the instruction set usage data for C programs published in Hennessy & Patterson [4].

We also used the ¢s macrobenchmark to compare different versions of Sather code generation
against each other.

2.2 Measurements

As our benchmarking platform we chose a MIPS R2000 based machine, running the RISC/os 4.52
operating system. The main reason for this choice was the availability of profiling tools (pizie(1),
see below). Also, the MIPS instruction set is closer to DLX than, e.g., the SPARC architecture,
making the comparison of our data with those from [4] more straightforward.

2.2.1 Execution timing

For a first assessment of overall relative performance of the C and Sather microbenchmarks, program
runs were timed using the time(1) available command in UNIX. Except for startup overhead and
a small number of memory allocations, the benchmark programs contained no system calls. We
therefore compared user CPU time only.

It should be noted that we had to increase the number of top level iterations by factors of 100
or 1000 to obtain enough significant digits from #ime. The run times reported in this context are
therefore not comparable to the ones estimated by pizie.

All C code, hand-generated or Sather-generated, were compiled with the same maximum opti-
mization level possible®

2.2.2 Instruction set usage

Program binaries (compiled from hand-coded or Sather-generated C code) were submitted to pizie, a
tool that inserts execution profiling code into MIPS loadable object files. During trial runs the binary
then generates profiling data that is collected for later analysis. Specifically, we were interested in

e Total number of cycles (i.e., execution time modulo memory system performance, interrupts,
and other influences external to the CPU).

o Total number of instructions executed.

e Absolute opcode distribution (i.e., a breakdown of the total number of instructions executed).

Relative opcode distribution (percentages of total number of instructions executed).

Instruction concentration (what number of static instructions accounts for a certain percentage
of instructions dynamically executed).

50n the MIPS, this was not the best optimization level actually available, because that would have precluded
separate compilation.
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2.2.3 Cache performance

Pixified binaries can also generate address traces. We used the trace data to evaluate cache perfor-
mance using the dinero cache simulator [1]. In particular, we collected data for

e Instruction, data, and combined cache hit rates.
e Memory traffic.

The goal of the cache performance study was to determine the sensitivity of the benchmark
programs to varying cache sizes. We therefore varied instruction and data cache size between 1k
and 64k bytes, while maintaining a fixed, fairly standard cache architecture, with a block size of 64
bytes, 1-way (direct mapped) associativity, write-back policy, and separate instructions and data.

2.2.4 Data collection

The process of data generation and collection was automated using makefiles. For easy visualization
of the results awk scripts extracted and formatted the relevant data for graphing.
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3 Benchmark Results

3.1 Code size

The Sather compiler and the Sather libraries in their current version have not been optimized yet
to minimize executable size, i.e.; a lot of unused library code is linked with the main program.

Thus, when comparing Sather programs to their C counterparts, Sather programs yield executa-
bles that are between three and eight times as big (both text and total size, see Table 1). This, in
turn causes longer delays on program startup and uses more virtual memory.

When comparing the count of (static) instructions actually executed, however, Sather programs
turn out to use only about 30% to 60% more instructions. The Sather overhead percentage decreases
with the overall size of the program, indicating that Sather programs incur a certain fixed overhead
on startup (Table 2).

3.2 Execution time

Table 3 compares overall execution times of C and Sather programs.

Sather programs are very close to their C coded rivals, from slightly better to up to 32% slower.
These preliminary (and not very accurate) timing results were meant as a plausibility check for later
measurements, which are all based on simulation. The results here are a good enough match to the
pizie results reported below to lead us to believe that there was no major inaccuracy in those later
measurements (such as that pixie does not take varying memory latencies into account).

3.3 Absolute opcode frequencies

We now turn to the absolute opcodes frequencies (including total number of instructions and cycles)
determined for the microbenchmarks. Since each of the benchmarks exhibits one or more interesting
phenomena we will discuss each in some detail.

3.3.1 DAXPY

The graph (Fig. 1(a)) shows opcode counts for three versions of the daxpy benchmark. The first
on is the C version (daxpy/c), the second one is the Sather program as compiled by the original
compiler (daxpy/sa.old), and the third one is the same Sather program after some changes to the
compiler that improved loop optimization by the C compiler (daxpy/sa). Before the change, the
C compiler would generate code to recompute the index into the array anew on every iteration,
accounting for the singular peek in SHIFT instructions (cf. section 4.2).

Considering now only the C and the improved Sather version, the major difference found is that
the C compiler unrolls the DAXPY loop only in the hand-coded C version. As a result, the C
version has only 25% of the ADDs (index increments) and branches. The C code is also optimized
to implement the loop with a decreasing index, thus eliminating the need for a SET instruction
immediately preceding each branch. On the other hand, the C version also incurs more NOPs,
which are part of the reason that the substantial advantage in instruction count does not show up
in the number of cycles actually used.

As expected from the nature of the benchmark, the number of LOADs, STOREs and floating
point operations (FLOPs) in all three versions are identical.

3.3.2 Bubble

The distributions graphed in Fig. 2(a) are from the C version (bubble/c), a natural, ‘object-
oriented’ Sather coding that makes use of object attributes (bubble/sa.00), and a Sather version
that is optimized in two ways (bubble/sa). The first optimization was to make the random number
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C version Sather version Ratio
Program text | total text | total | text | total
daxpy 8192 | 13088 | 65536 | 93424 | 8.00 | 7.14
bubble 16384 | 24896 | 65536 | 98128 | 4.00 | 3.94
perm 16384 | 24864 | 65536 | 97888 | 4.00 | 3.94
Ist 8192 | 16384 | 65536 | 97504 | 8.00 | 5.95
int_set 20480 | 29088 | 65536 | 98784 | 3.20 | 3.40

Table 1: Executable sizes in bytes for corresponding C and Sather programs.
Symbol table and other non-runtime overhead are not included (from size(1) output).

Program | C version | Sather version | Ratio
daxpy 354 574 | 1.62
bubble 496 713 | 1.44
perm 470 637 | 1.35
Ist 498 708 | 1.42
int_set 880 1171 | 1.33

Table 2: Number of static instructions executed in corresponding C and Sather programs.

Program | C version | Sather version Ratio
daxpy 5.31 5.33 1.00
bubble 7.25 7.94-9.60 | 1.09-1.32
perm 2.22 2.11 0.95
Ist 1.20-1.28 1.28-1.36 | 1.00-1.13
int_set 3.72 3.65-4.37 | 0.98-1.17

Table 3: User CPU times consumed by benchmark programs.
Times are in second, as determined by the the time(1) command. Ranges indicate the minimum
and maximum values obtained from different version of the same program.
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generator used for initialization part of the same class as the sorting routine, avoiding access to
a separate class. The second optimization involved using local procedure variables to ‘cache’ the
object attributes (bubble/sa), similar to what the C version does. This also allowed reusing the
same object for each iteration of the test, avoiding object creation overhead. Because of the many
qualitative differences between the unoptimized Sather version and the C version we consider this
somewhat of an unfair comparison.

Replacing class attributes with local variables results in a substantial reduction in the number
of memory accesses (LOADs, STOREs and ADDs used in address computation). The reason for
the higher number of LOADs and STOREs in the optimized Sather version compared to C was
harder to find. A substantial part of the runtime is spent initializing the array to be sorted, using
a function of no arguments returning a random number. In Sather this function turns into one of
one parameter, namely the self object, causing a word to be pushed onto the stack for each call. It
would be a relatively straightforward optimization for the Sather compiler to omit the self argument
if the callee is known not to use it. In this case, however, that wouldn’t help, because the Sather
version of rand() does make use of self, namely to access the random generator state that is part
the object. In C this state is kept in a global variable, but the object-oriented philosophy demands
that all data be attached to objects. The resulting argument passing is fairly expensive on modern
architectures (memory access) and can be a noticeable overhead, as the example shows.

Control flow at an abstract level is identical in all three versions. However, the number of
branches and jumps shows that the C compiler was able to optimize control flow at the machine
level, in the following order of optimization quality: C, optimized Sather, standard Sather.

3.3.3 Perm

Figure 3 compares a C (perm/c) and a Sather (perm/sa) version of the array permutation
benchmark. In the C program, the array is accessed through a pointer in a structure, whereas in
Sather, the ‘structure’ is an object that inherits from the ARRAY class, causing the array elements to
be embedded in the object itself.5 The perm benchmark shows that this language feature gives an
substantial performance advantage because many array accesses require only one pointer dereference
instead of two, showing up as decrease in the number of LOADs. Also, some offset computation is
avoided (less ADDs and shifts).

perm was also chosen as a benchmark because of its high number of procedure calls. It shows
that Sather programs which can make use of static dispatching have are as efficient in this regard
as C programs.

3.3.4 Lst

The impact of several access methods for arrays is further illustrated in the next lst benchmark
(Fig. 4). The four versions are an ‘object-oriented’ C version accessing the array through a pointer in
a structure (Ist/c.00), a simplified C version using global variables and pointers to reference arrays
(Ist/c), a Sather version using array subclassing (Ist/sa.00), and a Sather version using objects
with array attributes (1st/sa).

As expected, the simple C version is the fastest, although the code would not be very useful
in practice since it does not allow multiple list instances. The natural Sather version is almost
as efficient as the object-oriented C version, while the Sather version that relies on array pointers
(rather than subclasses) is the clear loser. Generally, the C versions seem to benefit from better
control-flow optimization.

60f course the same memory layout can be achieved in C, but only through ‘dirty tricks’. The Sather compiler
uses the same dirty tricks but makes them available through an easily understood abstract language feature — array
class inheritance.
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3.3.5 Int_set

The last microbenchmark returns to the question of how object-oriented code structuring affects
code efficiency. The set operations tested in int_set benchmark were originally coded in Sather
using cursor classes. Cursors are an object-oriented abstraction of iterations over sets. This original
Sather version (int_set/sa.o00) is compared to a C version (int_set/c) and an optimized Sather
version (int_set/sa) which both replace the cursor abstraction with inline code for the iterations.

While the C and optimized Sather version perform almost identically, the object-oriented Sather
version pays a clear price in additional memory accesses (LOADs, STORESs), pointer arithmetic
(ADD), branches and jumps. Overall, use of the cursor abstraction costs a 30% increase in the
number of cycles (according to pixie; the timings reported earlier indicate only a 17% increase).

It should be noted that something like the cursor abstraction is unlikely to be found in C, where
it is harder to write general-purpose code that can operate on a variety of data structures (one of
the fundamental ideas of object-oriented programming).

3.4 Relative opcode frequencies

While absolute opcode frequencies give an idea of the overall runtime of programs (and which features
of a program account for it), relative opcode distributions can give an indication of what part of the
instruction set is most heavily used by a certain type of application. In particular, we wanted to
know whether Sather programs would generate an instruction mix that had any marked peculiarities
compared to what can be found in average C code.

3.4.1 Microbenchmarks

The comparisons at the microbenchmark level in section 3.3 have already shown that there are
only minor difference in individual opcode distributions. This impression is confirmed by directly
comparing the opcode frequencies plotted as percentages of total (Figs. 1(b)-5(b)).

3.4.2 Macrobenchmark

Part of the reason microbenchmark profiles for C and Sather are so similar is that each microbench-
mark performs a highly specific task that largely determines the types of instructions used. It is
therefore important to complement these data with distributions from large-scale applications with
a more realistic instruction mix.

Figure 6 compares the relative opcode distrubution obtained in a run of the Sather compiler
(cs/sa) to that of two C applications, the GNU C compiler (h4+p/GCC) and the TeX text formatter
(h4+p/TeX). The C data is taken from the instruction mixes reported for DLX in [4] (DLX is
a generic, fictitious RISC instruction set architecture that is close enough to the MIPS for our
purposes).

For most opcode groups, Sather frequencies are within 1% of one of the two C programs (LOADI,
ADD, AND, SHIFT, SET, 1% being the accuracy with which this data is given). For LOADs,
STORESs, and branches, Sather falls between the values of GCC and TeX.

The only abnormality in Sather is the high number of jumps (7.44%). Closer examination of
the indidual opcodes involved reveals that this figure is entirely due to procedure calls (JAL 2.05%,
JALR 0.17%, JR (including procedure returns) 2.46%). PC-relative jumps are only slightly more
frequent than in GCC (2.75%). We attribute this pattern to the way cs was coded, as a collection
of a large number of small procedures calling each other. The nature of the code is also evident in
the average number of instructions per basic block: 5.

Note that NOPs are not accounted for in Patterson & Hennessy’s data. Nevertheless the per-
centage in Sather (17.9%) seems unusually high. Again, we think the fragmented character of the
code can account for this. A certain number of the NOPs (14%) can be attributed to the jumps
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Program | Instructions | C version | Sather version
daxpy 32 83.6% 99.7%
bubble 64 76.2% 61.8%
perm 32 74.1% 75.4%
Ist 64 90.7% 97.0%
int_set 128 74.1% 69.5%

Table 4: Instruction concentration in benchmark programs.
Shown are percentages of dynamic instructions accounted for by the most heavily used (static)
instructions (number given in the first column).

themselves. More importantly, the small average size of basic blocks seems to prevent effective
instruction reordering to circumvent NOPs in branch delay slots (52.7% of all branches) and load
NOPs inserted safeguard against read-after-write hazards (43.2% of all loads).

3.5 Instruction Concentration

As noted earlier in section 3.1, Sather programs tend to be more voluminous, although the actual
number of instructions used is only moderately higher (cf. Table 2). This fact can be characterized
more precisely in terms of instruction concentration,i.e., the number of static instructions responsible
for a certain percentage of instructions dynamically used.

Table 4 gives a rough picture by listing the percentages obtained by a fixed number of instructions.
Although the Sather versions have higher overall number of instruction in each case (Table 2), C
has lower instruction concentration in three of the benchmarks. Of these, perm and lst can be
attributed to be more efficient array memory layout. The anomalous result for daxpy is explained
by the loop unrolling, which the compiler performs only on the C version.

3.6 Cache performance

As noted before, cache effectiveness was simulated as a function of cache size, using a 64-byte block,
direct-mapped, write-back cache in all cases.

3.6.1 Instruction cache

Instruction concentration by itself has little relevance for instruction cache evaluation, although
it is intuitively related to both spatial and temporal locality. One reason is that the number of
instruction involved is small enough to fit into a realistically sized cache in all cases, but only under
the assumption that these instruction are actually adjacent in address space. Also, effects due to
cache architecture (such as cache conflicts) have to be simulated.

Direct simulation of instruction cache performance on the five microbenchmarks gives a very
consistent picture. Figures 7(a)-11(a) show that the instruction miss rates in Sather drop along
curves that are parallel to those for C programs, lagging behind by varying amounts. In most cases,
doubling the cache size is enough to achieve the same hit rate as in the corresponding C program.
The final hit rates (for large caches) are the same.

3.6.2 Data cache

The picture for data cache performance is more complex that for the instruction cache (Figs. 7(b)-

11(b)).
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Cache size varies from 1k to 64k each.
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For several benchmarks the working set size is entirely determined by the algorithm, and using
similar data structures, almost precisely the same miss rates result. This is the case for daxpy
(Fig. 7(b)), 1st (Fig. 10(b)), and int_set (Fig. 11(b)).

bubble shows the natural object-oriented Sather version slightly lagging behind the C version.
The hand-optimized Sather version is worst initially, but achieves the lowest miss rate eventually,
possibly because a cache conflict encountered in the other two version is avoided (we found no good
explanation for this behavior).

In the perm benchmark, the Sather version (using an array subclass) achieves a perfect hit rate
even with small caches, whereas the C version starts out with a high miss rate, until the cache is
big enough to hold both the array and the structure containing the array pointer. This shows nicely
that the efficient memory layout chose for Sather array subclasses can afford a substantial advantage
also with regard to memory system performance.

3.6.3 Memory traffic

Memory traffic in all benchmarks closely follows data cache miss rate. Sather versions typically
show a certain lag with respect to C versions, but follow the same profile. An example is int_set
(Fig. 12(a)). In the case of perm the performance advantage for Sather on small data caches carries
over to memory traffic ((Fig. 12(b)).

3.7 Overall performance evaluation

Overall, the microbenchmarks yield a very consistent picture of Sather performance relative to C.
In terms of both CPU resources (cycles) and memory resources (cache usage and memory traffic)
Sather programs tend to pay a slight penalty for the conveniences of ‘object-orientedness’. However,
the difference are either insignificant or small enough to be tolerable, especially given the pace of
current developments in both CPU performance and cost of memory.

In some cases (objects with a single array that can be efficiently ‘inlined’) Sather data structures
result in code that is both slightly faster and more cache-efficient than standard C data structures
for the same task.

As mentioned previously, Sather language design anticipated and accepted the need for relatively
large amounts of memory. Our cache studies show that larger caches may be even more important
than larger memories to avoid a memory bottleneck.

The most important conclusion for us at this point is that the comparison between Sather and
C yielded only quantitative differences (if any) and no qualitative ones. Instruction mixes and cache
effectiveness profiles show characteristic shapes that are strikingly similar or identical.

We take this to be an indication that reduced object-oriented languages like Sather are a good
match for standard architectures (which were originally developed for procedural languages like C),
and that they are certainly suitable for contemporary RISC architectures.
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Figure 12: Memory traffic (in words) as a function of cache size for the int_set (a) and the perm
benchmarks.
Cache size varies from 2k to 128k (instruction + data).
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4 Evaluation of Sather Implementation and Design

In this section we take a closer look at some of the details of Sather implementation and design as
they affect performance. In particular, we evaluate the results of our benchmark studies and code
analyses with respect to the implementation strategies outlined in earlier (in section 1.4).

Some familiarity with Sather [3] or object-oriented languages in general may be helpful.

4.1 Portability

The first version of the Sather compiler was written in Sather and bootstrapped on a SPARC
platform. In the introduction, we mentioned that portability was one of the reasons for using C
as an intermediate language of the Sather compiler. Since we chose MIPS as the testbed platform
for this study, we were forced to evaluate the portability goal as part of the procedure. Since we
had Sather-generated C code for the compiler on the SPARC, we simply had to move the C code
over to MIPS and made a small number of changes by hand to adjust to the different compilation
environment. In effect, the Sather compiler on the SPARC served as a cross-compiler for itself on
MIPS. The entire porting procedure took about one night, the major adjustments being

e The Sather environment needs a certain fixed directory structure, where basic classes and
command files are stored. This directory hierarchy had to be recreated on the target machine.

e Certain makefiles had to be changed to provide certain machine-dependent flags to the local
C compiler (e.g., to increase the default the symbol table size to cope with the high demands
imposed by the ¢s program).

e Some platform-specific C library functions were not available and the corresponding Sather
procedures had to be eliminated.” None of these function (e.g., for timing) were crucial for
the functioning of the compiler.

From this experience and a separate port of the compiler to Sequent,® we feel confident that the
decision to use C as an intermediate language was the right one, as it actually delivers on the promise
of portability. One caveat here is that all architectures used so far with Sather have very similar
in several crucial respects (such as memory alignment properties and the UNIX environment). It is
likely that other less standard platforms will present more of a challenge.

4.2 Loops and Array Access

From an initial study of the daxpy benchmark, we found a source of inefficiency in the Sather-
generated C code (though this does not apply to the SPARC C compiler).
First we show the loop structure of Sather-generated C code which is as follows:

while (1) {
<preliminary code>
if <cond> break;
<statements>

}

The preliminary code consists of code to perform any dispatching or runtime checks before the
test expression is evaluation. This portion of the code may be empty. Given the above loop structure,
the MIPS C compiler generates the following code sequence:

7Sather programs can call C code via the C class.
8 The Sather compiler was ported to Sequent by Franco Mazzanti.
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LS: # Start of loop
<preliminary code>
Branch to LE if <cond> holds
<statements>
Branch to LS

LE: # End of loop

Thus the MIPS C compiler was not smart enough to generate the following more efficient sequence
of loop code that eliminates one branch instruction.

<preliminary code>

Branch to LE if <cond> does not hold
LS: # Start of loop

<statements>

<preliminary code>

Branch to LE if <cond> does not hold
LE: # End of loop

Hence, we performed an experiment by manually altering the Sather-generated C code. The
transformations include:

1. Loop statement. We transform the loop statement to the following form:

<preliminary code>

if <cond> goto L1;

while (1) {
<statements>
<preliminary code>
if <cond> break;

Li:

2. Array Access. The original Sather-generated C code that accesses the ith element of an
array is (after macro expansion):

(*((double *) ((x__)+( 8 + ((i__) << 3)))))

We changed the access to the following form:
((double*)x__)[1 + (1 * (i__))]

(The hand-transformed code follows the syntax used by the Sather-generated C code.) The
performance results can be seen from the following statistics gathered from pixie. In the first hand-
altered version (a), we incorporated only the change in the loop statement. In version (b), we
incorporated both changes in the loop statement and array access.

Compiler Number of cycles | Execution Time(s)
(i) Sather 1726323 0.0691
(ii) Hand-compiled (a) 1523881 0.0610
(iii) Hand-compiled (b) 1323083 0.0529
(iv) C 1231609 0.0493
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We note that the pure C code was about 40% faster than the original Sather-generated C code.
However, the (pure) C code is only about 7.3% faster the (better) hand-compiled (Sather-generated)
code. The manual code-alteration improves the time of Sather-generated C code by about 30.6%.
Hence altering the form of the loop-code allows the C compiler to generate better code. The difference
between (iii) and (iv) is due to loop-unrolling performed by MIPS C compiler.

After altering the code generation of the Sather compiler to generate the new code sequence for
loop-statements, we obtained the following exactly the Sather performance expected from line (iii).

This shows that altering the form of Sather-generated C code can help the C compiler produce
better executable code. However, as demonstrated by (ii) and (iii) in the table, the Sather compiler
runs the risk of trying too hard in second-guessing the C compiler’s optimization strategies. For
example, when the array access was

(*((double *) ((x__)+( 8 + ((i__) << 3)))))

we obtained less speedup than when we changed the Sather-generated code for array access to®

(*((double *)((x__)+( 8 + (8 * (i__))))))

Modified compiler

Number of cycles

Execution Time(s)

(i) Loop + Array access

1323083

0.0529

(i1) Loop

1523881

0.0610

The reason is that the MIPS C compiler was able to perform strength reduction on the induction
variable i__ when i__ was multiplied by 8. However, when the left-shift operation is used, the MIPS
C compiler lost the ability to do strength reduction.

To verify the usefulness of the new loop-structure, we tested the old and new Sather compilers
on a simple code fragment (F1):

for (i = 0; i < 10000000; i++) {
jo+= (k + 1);
k=(j+3)+k * 3

}

In addition to running pixie, we did a gprof profile of the program. The results are as follows:!?

Compiler Number of cycles | Profiled Time(s)
(i) Sather (new) 80004877 3.2400
(ii) Sather (old) 110004880 4.4600
(iii) C 65000422 2.6400

Again, the difference between (i) and (iii) is due to the loop-unrolling performed by the MIPS
C compiler. To illustrate that the better performance is due to the loop-unrolling, we re-installed
the new Sather compiler on SPARC, and re-run the test-code. The SPARC C compiler does not
perform any loop-unrolling with the standard optimization option (-O). We obtained the following
results from profiling.

Compiler Profiled Time (s)
(i) Sather (new) 3.61
(ii) Sather (old) 3.63
(iii) C 3.67

®The C compiler treats ((double*)x )[1 + (1 * (i_))] and (*((double *)((x_)+( 8 + (8 * (i_)))))) as
equivalent.
10The time reported by pixie is the same as the time given by the profiler
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Hence the improvement made with respect to the MIPS C compiler was irrelevant on the SPARC,
due to the difference in the C compiler.

We wanted to find out if the Sather compiler can somehow take advantage of the loop-unrolling
done by the MIPS C compiler. By modifying the C code, we found that:

e The MIPS C compiler performs loop-unrolling for while statements as well.

e The if + break statements at the end of each loop prevented the MIPS C compiler from
performing loop-unrolling on the Sather-generated C code.

This suggests that an alternative code-template might allow us to take advantage of C compiler’s
optimization. To verify our hypothesis, we took the code fragment (F1) and hand-compiled it using
the following code template for the loop statement.

<preliminary code>

while (!(<cond>)) {
<statements>
<preliminary code>

Li:

Not surprisingly, the MIPS C compiler was able to perform loop-unrolling for the resultant C
code. Hence, in the future, we may be able to improve the Sather compiler further by using the
alternative code template for the loop statement.

4.3 Dispatch Efficiency

As discussed in the introduction, there were several assumptions implicit in the design of dispatching:

1. Most of the time, a programmer knows that a name can refer to exactly one type of object.
Hence, a language with explicit dispatch will result in programs that drastically reduce the
number of dispatches.

2. There is a certain amount of “constancy” with respect to the type of objects referred to
by a name (class locality), so that dispatch caches will be effective in reducing the costs of
dispatching mechanism.

In this section, we discuss whether the results found in our experiments support our assumptions.
There are two distinct sets of data we wish to collect.

1. Effectiveness of Explicit Dispatch. The question we want to ask here is: Given the ability
to specify dispatching explicitly in the Sather language, how effectively does a programmer
make use of his/her knowledge of the types of objects to reduce the amount of dispatching?

2. Dispatch Cache Hit/Miss Rate. How effective do dispatch caches reduce the costs of
dispatching?

For the first question, we are asking how many extra dispatches will be incurred. if a programmer
does not have the option of specifying dispatch explicitly. To gather such statistics, we modify the
Sather compiler to go through an extra pass (just before code generation) to mark all objects (whose
types are non-basic) as being dispatched.

The simulation of all-dispatched classes in Sather is made under the following assumptions:

Void Object. No invocation is made on void objects in Sather programs.

Certain valid Sather programs become invalid under the assumption that object accesses or
routine calls are dispatched. For example, if we have:
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x:ANIMAL;
X.create;

If the create routine in class ANIMAL does not access any attribute of the object, the call
x.create works perfectly well in Sather, even though x may not refer to any object. However,
in fully-dispatched object-oriented languages, during execution, the type of object referred to
by x must be known in order to call the correct create routine. Since x does not refer to any
object in this code, the execution will fail.

Code duplication. Code duplication is done to avoid dispatching; this is possible even in object-
oriented languages which assume all types to be dispatched.

Suppose we have the following definition:

class ANIMAL is

age:INT;

eat is if (age < 30) then ... end; end;
end; —— class ANIMAL

In the implementation of some object-oriented languages, if the class REPTILE inherits from
ANIMAL and does not redefine eat, objects in both classes then share the same code fragment.
This means that we do not know the exact offset of the attribute age until execution when
the type of object that invokes eat is identified. This incurs extra dispatching cost. However,
if the code for eat is duplicated for class REPTILE, then the reference to age in the duplicated
code clearly refers to a REPTILE’s age and no dispatching is necessary. This technique can also
be applied in object-oriented languages with all-dispatched types, and hence we consider this
an orthogonal alternative in our measurements.

Separate Basic Class Hierarchies. The disjoint basic class hierarchies were an independent de-
sign decision. Hence we maintained this assumption, in the measurements, so the dispatches
do not include use of INT, CHAR, BOOL, etc.

To verify the assumption of class locality, the Sather runtime support was modified to count the
number of hits and misses each time an attempt is made to dispatch an object. This arrangement
allows us to measure how effectively the implementation strategy (dispatch cache) works when
explicit dispatching is available. Intuitively, since the programmer specifies dispatching explicitly
in the program, we expect that a name x refers to objects of varying types during the course of
program execution. The question then is: How much variation is there?

Measurements are gathered for two types of dispatches. (a) The first type of dispatch is to
determine the correct feature (attribute / routine / shared / constant ) of a class to be used. (b)
The second type of dispatch is to determine the base size of an array to access the ith element of
the array.

The measurements show that the dispatch caches are actually useful in reducing the amount of
dispatch computation. (NOTE: The version of Sather compiler used to gather the following statistics
is the one that generates improved loop code (as described in section 4.2.)

P0-P3: We execute the Sather compiler with the respective inputs being (i) the compiler, (ii) a
simple program that creates two arrays, (iii) a simple test program that does dispatch, and
(iv) test program on the class INT_SET.

NI1-N3: We execute the Sather compiler with the inputs being (ii), (iii) and (iv) in the previous
case. In these cases, the programs have already being compiled before, so the Sather compiler
will try to avoid generate any new code.
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Program | No. of Hits | No. of Dispatches | Hit Rate
(i) PO 1326447 1700726 0.78
(ii) P1 29710 36517 0.81
(iii) P2 31156 38895 0.80
(iv) P3 35778 46249 0.77
(v) N1 29649 36404 0.81
(vi) N2 30787 38290 0.80
(vii) N3 34323 44086 0.79

From the above results, and other test runs (executing the compiler with different options), the
hit rate stays quite stable at around 80%. Hence we are confident that in the normal case, the
dispatch cache will be useful in reducing execution time.

The other set of measurements is to find out how many extra dispatches will be incurred if Sather
does not provide explicit dispatch as one of the language features. To measure this, we generate a
new version of the compiler which assumes that all types are dispatched. We then re-run this new
compiler with the same inputs (as in the previous table) to get the new number of dispatches, and
cache hits.

The following table shows the number of dispatches when the new compiler is executed with the
same set of inputs

Program | Type (a) Dispatch | Type (b) Dispatch | Total
(i) P1 190752 188920 379672
(i) P2 202903 197638 400541
(iii) P3 228964 216635 445599
(iv) N1 194181 188611 382792
(v) N2 204394 196926 401320
(vi) N3 225715 214737 440452

The following table shows the reduction in the number of dispatches by having explicit dispatch
in the Sather language.

Program | Explicit Dispatch | All Dispatch | % Reduction
(ii) P1 36517 379672 939.7
(iii) P2 38895 400541 929.8
(iii) P3 46249 445599 863.5
(iv) N1 36404 382792 951.5
(v) N2 38290 401320 948.1
(vi) N3 44086 440452 899.1

If we disregard the dispatch done to access base size of array objects, the table is as follows:

Program | Current | Type (a) Dispatch | % Reduction
(i) P1 36517 190752 422 .4
(iii) P2 38895 202903 421.7
(iii) P3 46249 228964 395.1
(iv) N1 36404 194181 433.4
(v) N2 38290 204394 433.8
(vi) N3 44086 225715 412.0

Timing execution time of the compiler on the hello-world program we get:
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Explicit Dispatch | All Dispatch
Total No. of Dispatches 35648 373653
Timing Profile (s) 0.638 0.710

The reduction in execution time is 11.3 % as compared to 947.0 % in the number of dispatches.
Even though the reduction is not drastic, it is still quite significant.

To take a look at the cost of dispatching, from the compilation of the hello-world program, we
get:

Explicit Dispatch | All Dispatch
No. of Misses 6512 8091
No. of Cycles 543257 720899
Avg. Miss Cost (cycles) 83.4 89.1

The above table does not include the cost of testing the object type (when there is a hit) and
cost of updating the cache (when there is a miss). There is room for improvement in the dispatching
mechanism, though the cache has served well so far. Fig. 13 gives a breakdown of the absolute
opcode frequencies, using three different versions of the Sather compiler.

cs/sa.dsp This version of the compiler was generated using a compiler option that ignores dis-
patching and generates code to do dispatching for all object accesses and routine calls. It was
compiled with the C optimization flag on.

cs/sa.unopt This version of the Sather compiler uses explicit dispatching and was compiled without
C optimization.

cs/sa This version of the Sather compiler uses explicit dispatching and was compiled with the C
optimization flag on.

One point to note is that while the sa.dsp uses 11.3% more cycles than sa, sa.unopt performs
even worse, consuming 16% more cycles than sa. This illustrates the importance of C optimization
in Sather code efficience as C optimization allows us to get more speedup than the explicit dispatch
feature in the language.

From the previous table and Fig. 13, we can conclude that there is a definite performance
advantage to be gained by having explicit dispatch in the Sather language.

4.4 Code Duplication

In section 1.4.3, we discussed the reasons for duplicating code in the case of inherited procedures.
Although the importance of this feature seem quite obvious by itself, we verify the performance
impact by generating a version of the perm benchmark that simulates the effect of non-duplicated
code. Instead of altering the compiler for this purpose, we use the compiler option that turns off
explicit dispatch. The perm code is modified so that each reference to a feature in the same class
is explicitly accessed via self. For example, a code fragment:

class ANIMAL is

age:INT;
eat is if (age < 30) then ... end; end;
end; —- class ANIMAL

1s modified to become
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Absolute Opcode Frequencies
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Figure 13: Opcode frequencies for different versions of Sather compiler.



4.4 Code Duplication

Absolute Opcode Frequencies
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Figure 14: Opcode frequencies for the perm benchmark with and without code duplication.

class ANIMAL
age:INT;

eat is if (self.age < 30) then ...

is

end; —- class ANIMAL

end; end;

Both code fragments are semantically equivalent in the Sather language and implementation.
However, if the ‘dispatch all’ compiler option is set, then the call self.age becomes a dispatched
call. This is exactly the code that would be generated if there were no code duplication.

The effect of having code duplication can be seen in Figure 14. Pixie profiling shows that
eliminating code duplication would have resulted in about a 146% increase in the number of execution
cycles. In particular, the number of LOADs and branches is greatly increased by the dispatching
code generating for each call and attribute access.

Again this confirms the implementation strategy of trading space for time.
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5 Other Issues

In the following, we complement the previous results and discussions with a more detailed comparison
to SOAR and a list of other possible evaluation criteria for Sather.

5.1 SOAR vs Sather

We discuss the differences/similarities of SOAR and Sather with respect to three object-oriented
features that have traditionally been performance bottlenecks for object-oriented programs.

5.1.1 Arithmetic/Comparison Operations

As mentioned in the introduction, these operations are supported efficiently at the machine level.
However, the generality of classes such as INT have prevented the object-oriented language compilers
from generating code that uses the machine operations directly. SOAR and Sather have different
approaches for overcoming this dilemma. We look first at SOAR.

Tagged data. SOAR supports tagged data. To reduce the cost of arithmetic and comparison
operations, SOAR checks the tags and performs the operation simultaneously. According to
[6], over 90% of the “+” operations perform integer addition. Hence, most of the time, the
result is available after 1 cycle. If the data types are wrong, SOAR traps to routines that carry
out the appropriate computation for general data types.

Tagged immediate operands. SOAR’s immediate operand format was also modified to accom-
modate tagged data. The high order 4 bits of the 12-bit field becomes the tag bits of the
operand, while the lower order 7 bits and the 8th bit of the field form the low order 7 bits of
the operand and the sign-extension respectively.

In Sather, the problem is handled by the language design itself. As discussed in section 1.3,
Sather introduces separate class hierarchies for basic types, thus eliminating any need to check data
types during execution of arithmetic and comparison operations. From experience, the disjoint basic
class hierarchies do not impose any significant constraint in programming practice.

5.1.2 Dispatch Mechanisms

Both Sather and SOAR use the idea of caching to reduce the costs of dispatching. However, the
implementations differ. In SOAR, the target address of a call is cached in-line in the instruction
stream. This requires SOAR to support non-reentrant code. On the other hand, since Sather
programs are compiled into C, the cached value is kept in a per-process data area. In addition,
Sather language has explicit dispatch, allowing the programmer to avoid dispatching where possible.

5.1.3 Garbage Collection

Both SOAR and Sather provide garbage collection. In all Sather benchmarks (including the mac-
robenchmark) garbage collection was not required since virtual memory runtime environments usu-
ally provide enough memory for short-running applications. Sather provides an off-the-shelf garbage
collector for cases where memory recycling is required. In this case the compiler helps the allocation
mechanism because it can generate an extra parameter that tells the memory allocator whether the
object to be allocated may contain additional pointers to other objects.

SOAR, on the other hand, was designed for a long-running, interactive Smalltalk system which
could not tolerate noticeable delays in response due to off-line garbage collection. This prompted
development of a high performance generation scavenging garbage collector that is certainly more
sophisticated than the one used by Sather (according to [6], it uses only 3% of the CPU time in
SOAR).
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5.2 Other Possible Evaluation Criteria

There are other criteria by which Sather programs can be evaluated against other object-oriented
systems. This is list of loose ends not followed up in this study because of time constraints.

5.2.1 Class Attribute Access

A class in Sather is almost like the struct construct in C. Hence, an attribute in a class would
correspond to a field in a C struct. The Sather compiler treats all Sather objects as consisting of
a sequence of bytes. Attribute access is performed by adding a byte offset to object pointer. One
question that arises is: Is attribute access in Sather as efficient as field access in C?

From a comparison of the assembly codes generated from Sather and C code fragments, we
obtained the following:

Sather : al.x := 2;
Sather-C : IATT_(al__,T1_24 0F_x_) = 2;
MIPS Assembly : 1i $14, 2
sW $14, 12(%$2)
C : al->x = 2;
MIPS Assembly : 1i $14, 2
sW $14, 0(%$2)

This example shows that Sather attribute access is equally efficient to field access (via pointers) in
C, at least for the implementation on MIPS.

5.2.2 Higher-dimensional array access

We compare the assembly codes generated from Sather and C programs in the daxpy program. In
the case of one-dimensional arrays, there appear to be no difference in the efficiency. For example,
storing a double-precision floating-point number 1.0 in Sather and C results in the following code
fragments:

Sather : yl[il := 1.0;
Sather-C : DATT (y__, 8 + (8 * (i__))) = 1.0;
MIPS Assembly : s.d $£0, 8($3)

C : ylil = 1.0;
MIPS Assembly : s.d $£0, 0($3)
Two-dimensional arrays in Sather are implemented by storing offsets of each row at the base
of the array. A similar idea applies to higher-dimensional arrays. Due to time constraint, we were

not able to investigate the efficiency of this implementation strategy, and evaluate other possible
implementations.

5.2.3 Virtual Memory/Swap Space Requirements

The size of compiled Sather code tends to be larger than size of compiled C code (cf. section 3.1).
The reasons are:

Code Duplication: The same Sather code may be replicated several times, each time with specific
attribute values.

Large Runtime Support: There is a large amount of code for runtime support and routines of
predefined classes.
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In our micro-benchmarks, the extra code is due to the second factor, because class inheritance is
not used. In this study, we only study the effect of code sizes on caches. There is another question
which we did not have the time to investigate: How would the support for virtual memory (e.g.
amount of swap space) affect the performance of Sather programs?

Also, there is as yet no experiment to try out different garbage collection strategies in the Sather
environment. Since different garbage collection algorithms work well with different virtual memory
strategies, another interesting problem which was not investigated will be to study the best memory
support/garbage collection strategy for Sather.
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6 Conclusion

The overall picture emerging from the study is very encouraging. The runtime studies have shown
that the principal design goal, efficiency relative to procedural languages, was met very well. In cases
where Sather programs incur an overhead compared to C it seems small enough to be justified by the
considerable advantages object-oriented programming affords in terms of programming convenience
and productivity.

Another conclusion is that Sather programs generate the same instruction mix contemporary
instruction set architectures were designed to implement efficiently. No particular object-oriented
demands on the hardware seem to be left over in a ‘reduced object-oriented language’ like Sather.

We were able to justify each of the major design and implementation decisions involved in Sather:
intermediate C code for portability and compiler optimization, disjoint class hierarchies, explicit
dispatch and code duplication for efficient object and procedure access, and call target caching to
minimize dispatching overhead.

As a result of the study, we have identified (and partially implemented) several possible improve-
ments to Sather code generation, with several others certainly still to be found. Also, there are
aspects of Sather programs worth investigating in more detail for an even better understanding of
performance issues. Nevertheless we feel confident saying that Sather design and implementation
have more than held up to their goals and now represent a very attractive environment for efficient
object-oriented programming.
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