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Abstract. Learning when limited to modification of some parameters has a lim-
ited scope; the capability to modify the system structure is also needed to get a
wider range of the learnable. In the case of artificial neural networks, learning
by iterative adjustment of synaptic weights can only succeed if the network de-
signer predefines an appropriate network structure, i.e., number of hidden layers,
units, and the size and shape of their receptive and projective fields. This paper
advocates the view that the network structure should not, as usually done, be
determined by trial-and-error but should be computed by the learning algorithm.
Incremental learning algorithms can modify the network structure by addition
and/or removal of units and/or links. A survey of current connectionist literature
is given on this line of thought. “Grow and Learn” (GAL) is a new algorithm that
learns an association at one-shot due to being incremental and using a local rep-
resentation. During the so-called “sleep” phase, units that were previously stored
but which are no longer necessary due to recent modifications are removed to
minimize network complexity. The incrementally constructed network can later
be finetuned off-line to improve performance. Another method proposed that
greatly increases recognition accuracy is to train a number of networks and vote
over their responses. The algorithm and its variants are tested on recognition of
handwritten numerals and seem promising especially in terms of learning speed.
This makes the algorithm attractive for on-line learning tasks, e.g., in robotics.
The biological plausibility of incremental learning is also discussed briefly.
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1. INTRODUCTION

1.1. Assessing the quality of a neural network solution

There are three factors that affect the quality of a neural network solution:

e Success achieved on test data indicates how well the network generalizes to data unseen during
training which one wants to maximize. This generally is taken as the only performance criterion.

o Network complexity by itself can be very difficult to assess but two important factors are network
size and processing complexity of each unit. Network size gives the memory required which is the
product of the number of connections and the number of bits required to store each connection
weight. Processing complexity depends on how costly it is to implement processing occurring
in each unit, e.g., sigmoid vs. threshold non-linearity, fan-in, fan-out properties, precision in
storage and computation, etc. This has a negative effect on the quality as one prefers smaller
and cheaper networks.

e Learning time is the time required to learn the given training data till one gets a reasonable
amount of performance. This is to be minimized also.

In the ideal case, learning algorithms where a certain cost function is minimized should take into
account not only success but the whole quality measure including success, network complexity,
and learning time. However the actual relative importances of these three factors depend on the
application and the implementation constraints. In tasks like optical character recognition where the
environment does not change and thus learning is done only once, learning time is not a critical factor.
On the other hand, when a hardware implementation is envisaged, network complexity is important
and a smaller but less successful network can be preferred over a more complex but very successful
one. In tasks like robotics where rapid adaptation to the environment is necessary, learning time has
crucial importance. The best neural network for a given application is one having the highest quality
and thus it does not make sense to say that one algorithm is better than another one per se; only
based on a certain application and a set of implementation constraints can solutions be compared
among themselves. This implies that with different hardware and environmental constraints, for the
same training set, different networks may be required. The learning system may have a repertoire
of learning algorithms and depending on the current constraints, one is chosen and employed. For
example, when rapid adaptation is necessary, a one-shot learning method may be used to quickly
learn encountered associations. When the system later has time to spare, an iterative fine-tuning
process may be employed to improve performance.
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1.2. Why smaller and simpler is better

In the case of feed-forward layered networks, the mapping capability of a network depends on its
structure, i.e., the number of layers, and the number of hidden units (Lippman, 1987; Hanson &
Burr, 1990; Hertz et al., 1991). Given a certain application and training data, the network structure
should be pre-determined as algorithms like the back-propagation (Rumelhart et al.; 1986) can
modify only the synaptic weights but not the net structure.

Networks with more layers and hidden units can perform more complicated mappings however
better performance on unseen data, i.e., generalization ability, implies lower order mappings. Given
a certain training set, there are very many possible generalizations and one is interested in the
simplest possible generalization. One reason for this is that simpler explanations of a phenomenon,
i.e., those that require a shorter description, are more plausible and have a higher probability of
occurrence (Rissanen, 1987). By having a smaller network, one also decreases the network size and
thus less memory is required to store the connection weights, and the computational cost of each
iteration decreases. However note that although one iteration takes less in a smaller network, the
number of iterations to learn a certain training set can be more.

Frequently an analogy is made between learning and curve fitting (Duda & Hart, 1973). There are
two problems in curve fitting: finding out the order of the polynomial and finding out the coefficients
of the polynomial once the order is determined. For example given a certain data set, one first decides
on that the curve is second order thus has the form f(z) = az?+ bz + ¢ and then computes somehow
values of a, b, and ¢, e.g., to minimize sum of squared differences between required and predicted
f(z;) for x; in the training set. Once the coefficients are computed, f(z;) value can be computed
for any z; even for z; that are not in the training set. Orders smaller than the good one risk not to
lead to good approximations even for points in the data set. On the other hand, choosing a larger
order implies fitting a high order polynomial to low order data and although one hopes that the
high order terms will have zero coefficients to have their effect cancelled, this practically is not the
case; it leads to perfect fit to points in the data set but very bad f(z;) values may be computed for
z; not in the training data, i.e., the system will not generalize well.

Similarly a network having a structure simpler than necessary cannot give good approximations
even to patterns in the training set and a structure more complicated structure than necessary,
i.e., with many hidden units, “overfits” in that it leads to nice fit to patterns in the training set
performing poorly on patterns unseen. Bigger networks also need larger data samples for training;
it was pointed out (Miiller & Reinhardt, 1990) based on an information theoretic measure that the
required number of patterns in the training set grows almost linearly with the number of hidden
units.

As currently there is no formal way by which the network structure can be computed given a certain
training set or application, the usual approach is trial-and-error, i.e., a series of attempts are made
each one involving deciding on a more complicated network structure and iterating the learning
algorithm a considerable number of times until one is content with the performance, which can be
assessed by cross-validation. In determining the structure, the network designer is only guided by
his/her intuition and rather limited knowledge of the application and the learning algorithm. Any
knowledge related to the problem concerning the geometry or the topology of the input should be
introduced to the network as help (Denker et al., 1987). When the input is an image for example,
most of the constraints are local, i.e., nearby pixels have correlated output, thus it makes more sense
to define local receptive fields than completely connected layers (Le Cun et al., 1989). A recent
approach is to use a genetic algorithm to be able to “produce” better structures (Harp et al., 1990).
The problem however is that “parent” networks should be trained for their fitness to be assessed
and in tasks where training set is large or many generations are necessary, this turns out to be not
very practical.



1.3. One-shot on-line learning

The time it takes to learn a given training set is crucial in many applications. Iterative algorithms
based on gradient descent require very many iterations to converge and thus one is compelled to
learn off-line. Another reason for off-line learning besides learning time is that, network models
in which associations are distributed over a set of connections need to be introduced patterns in
an unbiased fashion which cannot be guaranteed in a real world operational environment. One
cannot for example add a certain association to network’s memory by training with one pattern
only; as weights are distributed, the whole training set should be re-learned together with the new
pattern. However in an on-line learning system, one does not have time to do this and neither there
is memory to store the whole training set. This is the case in many robotics applications where
rapid adaptation to environment is a must. Iterative algorithms or networks using a distributed
representation thus cannot learn at one-shot on-line. This fact led to the belief that neural network
models cannot learn one-shot on-line and this became a frequent point on which learning limits of
neural models are negatively judged (McCarthy, 1990; Leveit, 1990). To be able to learn on-line,
addition of a new association should be done very quickly, i.e., one-shot, and without affecting the
past existing knowledge of the network for other inputs. GAL algorithm explained in this paper
using a local representation and based on an incremental approach has both of these properties and
is a connectionist method that learns at one-shot.

2. INCREMENTAL LEARNING

The idea of incremental learning implies starting from the simplest possible network and adding
units and/or connections whenever necessary to decrease error (Alpaydin, 1990a). To be able to
decrease network size and increase generalization ability, one also wants to be able to get rid of
units/connections whose absence will not degrade significantly system’s performance. In both cases,
as opposed to a static network structure, small modifications to a dynamic network structure during
learning is envisaged. Determination of the network structure and computation of connection weights
are not done separately but together, both by the learning algorithm.

Approaches given in the connectionist literature leading to network structure modification can be
divided into two classes. There are those that start with a big network and eliminate the unnecessary
and there are others that start from small and add whatever is necessary (Fig. 1).1

1 Note that there are also incremental unsupervised learning algorithms like ART (Carpenter & Gross-
berg, 1987) and GAR (Alpaydin, 1990a) which are beyond the scope of this paper. In unsupervised incre-
mental learning, one adds a new cluster index whenever the current input is not similar to any of the existing
clusters. The similarity measure is thus done in the input space regardless of the class to which the input

patterns belong.
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Figure 1. Taxonomy of incremental learning.

2.1.

Start big and remove

In the context of polynomial curve fitting the “start big and remove” approach implies starting from
a high order polynomial and eliminating those high order terms which do not contribute significantly
to success. Such methods are also called pruning or destructive. If one starts with a large network and
if the problem in fact requires a simpler network, one likes to have the weights of all unnecessary
connections and the output of all unnecessary units equal to zero. There are two approaches in
achieving this:

(1]

One may explicitly try to compute how important is the existence of a connection/unit in
keeping the error low after the network has been trained and a number of the least important
may then be deleted. The remaining network needs to continue to be trained. In the ideal case,
understanding the importance of a connection/unit requires training two networks one with
the connection/unit and one without. As this is not practical for large networks, heuristical
approaches have been proposed with the back-propagation algorithm where the sensitivity of
the error function to the elimination of a connection/unit is estimated.

In the “skeletonization” procedure (Mozer & Smolensky, 1989), the network is trained till a
certain performance criterion is met. The “relevance” of each connection is then computed
which is given as the partial derivative of error with respect to the connection. However this
value tends to zero when error decreases thus a poor relevance is computed when error is low.
Using a linear error function for computation of relevances, i.e., the sum of the absolute value
of the differences of required and actual values, leads to better relevance values.

0 Cascade correlation (Fahiman
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(Karnin, 1990) computes the “sensitivity” in the same way but sums the values computed
throughout learning instead of computing only once at the end. More memory and computation
is required but the usual quadratic error measure can be used.

“Optimal brain damage” (Le Cun et al., 1990) uses an information theoretic measure to compute
the “saliency” of a connection using the second derivative of the error function. Training
proceeds till error reaches down to a certain value at which point saliencies are computed and
a number of the least salient are deleted and the remaining network is re-trained.

Grow and Learn (GAL) algorithm, as explained in the next section, has a “sleep” mode during
which the network is closed to the environment, the inputs are generated by the system itself,
and units that are no longer necessary due to recent additions are removed.

Siestma and Dow (1991) examine the behavior of units under the presentation of the entire
training data and decide to prune accordingly. From “broad” networks with few layers and
many units on each layer, after training, they trim as many units as possible and by adding
extra layers, generate “long narrow” networks with many layers but few units on each layer;
they discover however that networks of the latter type generalize poorly.

[2] Instead of approximating how much the error will change if the unit/connection is eliminated,
one may also modify the learning algorithm so that after training, the unnecessary connec-
tions/units will have zero weight/output.

e One may build a tendency in the learning algorithm to have those weights that are not relevant
decay to zero by decrementing them by a certain factor at each weight update (see review in
Hertz et al., 1991). Weights that are necessary to store associations will be moved away from
zero but those that are not needed will not be increased and will finally be close to zero.

e This decay can be done also implicitly by modifying the error function. Terms can be added to
the error function to penalize large weights (Chauvin, 1989) and hidden units that have small
outputs (Hanson & Pratt, 1989).

e Another possibility is to use the information theoretic idea of “minimum description length” and
add a term to the cost function that penalizes network complexity, i.e., number of connections
(Weigend et al., 1991). Thus during gradient descent, the algorithm will settle to the network
that has the best trade-off between error and complexity. Such a cost function is similar to the
quality measure proposed in the first section; however the network complexity is defined very
simply as the number of connections.

2.2. Start small and add

The other approach in dynamic modification of network structure during learning, which can be
named “start small and add,” implies starting from a simple network and adding units and/or
connections to decrease error. These methods are also called growth or constructive. In the context
of curve fitting, it implies starting with a low order polynomial and adding higher order terms
whenever the polynomial of current order cannot give a good fit for any set of coefficients. Note
that this cannot be done in a straightforward manner especially in networks where associations are
distributed over a number of shared connections; the whole training should be re-done in such a
case. One needs a certain mechanism whereby addition of a new unit improves success instead of
corrupting the harmony as one would normally expect. There are two possibilities:

[1] If one can make sure that when the new unit gets activated, none of the ancient units get
activated, there will be no problem. The units should thus somehow be able to suppress other
units when they get control. This implies a competitive strategy and a local representation.

e The first incremental neural learning algorithm is the Restricted Coulomb Energy (RCE) model
(Reilly et al., 1982) which is an incremental version of Parzen windows. Associated with each
unit is a number of prototypes where a prototype gets activated only if the input falls into its
domination region, determined by a distance computation followed by a thresholding. If an



input does not activate any prototype, a new prototype unit is created at that position with
an initially large domination region. Prototypes that get activated for inputs that belong to
different classes are penalized by having their regions decreased which is done by modifying the
threshold. The input space is thus divided into zones dominated by prototype units. A number
of sweeps is necessary to finetune the thresholds where units closer to class boundaries have
small zones and units interior have larger domination zones.

Recruitment learning (Diederich, 1988) is used in the case of structured connectionist networks
where a previously free unit is committed to represent a new concept and required connections
built up dynamically (Feldman, 1982). This is a one-shot learning algorithm, i.e., one iteration
is sufficient to learn a new concept.

In the first version of Grow-and-Learn (Alpaydin, 1988), weights in a single layer were learned
by Hebbian learning at one shot. However if an association could not be learned or if addition
of this association corrupted the previously learned associations, a new hidden unit was added
with input weights equal to the input vector. The output weight was computed in such a manner
to compensate for the effect of the input layer and thus impose any output. The problem was
that as Hebbian learning was used, orthogonality of input patterns were necessary and as this
is rarely the case, many units were allocated. However Hebbian learning made the algorithm a
one-shot learning one.

The current version of Grow-and-Learn (GAL) algorithm (Alpaydin, 1990a, 1990b), explained
in the next section, uses also a local representation by having a number of exemplars associated
with each class. It learns at one-shot but orthogonality of patterns is no longer required.
Another possibility is to divide the network into separately trained subnetworks where such
subnetworks can be added in an incremental manner. One approach is to have subnets that
have competition between subnets, another is to have each subnet as another hidden layer.

The “generation” method proposed by Honavar and Uhr (1988) enables a “recognition cone”
to modify its own topology by growing links and recruiting units whenever performance ceases
to improve during learning by weight adjustment using back-propagation.

The “stepwise procedure” uses subnets of different conceptual interpretations (Knerr et al.,
1989). In this method, one first trains a one layer network with the Perceptron learning al-
gorithm assuming that classes are linearly separable. For a class where this is not satisfied,
one adds a subnet to separate classes in a pairwise manner. For cases where this does not
work either, one performs a piecewise approximation of boundaries using logical functions by
additional subnets. As linear separability is rarely the case, one generally is obliged to separate
classes in a pairwise manner two by two. The major drawback of this is that the number of
hidden units increase exponentially with the number of class units.

Another approach named the “tiling” algorithm adds a new hidden layer whenever the required
mapping cannot be done with the existing network (Mézard & Nadal, 1989; explained also in
Hertz et al., 1991). There is a “master” unit which is trained to be the output unit by the
pocket algorithm—a variant of the Perceptron learning algorithm. If this unit cannot learn all
the required associations, additional “ancillary” units are added to learn the rest and another
layer is created with a master unit and learning proceeds till the master unit can learn to behave
like the output unit.

The “dynamic node creation” method (Ash, 1989; explained also in Miiller & Reinhardt, 1990)
trains networks with one hidden layer only. Given a certain net that is being trained, if the
rate of decrease of error falls down a certain value, a new hidden unit is added and training is
resumed when all connections are continued to be modified.

The “upstart” algorithm (Frean, 1990) uses binary units. Like the “tiling” algorithm, first
one unit is trained to learn the required associations using the pocket algorithm. If this is not
successful, “daughter” units are created to correct the output of this “parent” unit, for “wrongly
on” and “wrongly off” cases. This is repeated in a recursive manner to lead to a binary tree
which can then be “squashed” into one hidden layer.

In the “cascade correlation” algorithm (Fahlman & Lebiere, 1990), if the required mapping
cannot be learned by one layer, a hidden unit is added and trained while the previously trained
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weights are “frozen.” If this does not work either, another hidden unit is added as another
hidden layer and so on. A hidden layer has only one hidden unit but connections skip layers,
i.e., a unit has connections to all the following layers.

e Method proposed by (Hirose et al., 1991) is quite similar to that proposed by Ash (1989),
namely, using a network with only one hidden layer, if the rate of decrease for error becomes
small, additional hidden units are added. Their contribution is that, once the network converges,
the most recently added hidden unit is removed and the network is checked to determine whether
the same function can be achieved by fewer hidden units. If the network cannot converge when
a hidden unit is removed, the last network that converged is chosen as the final network.

3. GROW AND LEARN (GAL)

3.1. GAL network structure

This section explains the “Grow and Learn” (GAL) algorithm used to learn categories in an incre-
mental manner (Alpaydin, 1990a, 1990b). Class definitions are extended if need arises. The network
grows when it learns class definitions, thus the name.

A GAL network has the structure seen in Fig. 2. The first layer is the layer of input units. The
second layer is that of exemplars (prototypes) and the third is the layer of class units. The weight
vector of unit e is denoted as W,. T.. denotes the connection from exemplar e to class ¢. When
P is the input vector, the activation of an exemplar unit e, A, is the distance between P and the
weight vector of e, W,, computed using a suitable metric denoted D(), e.g., Euclidean distance. It
is assumed here that D() is normalized such that D(A, 4) is zero and D(A, B) increases as A and
B gets further apart. A winner-take-all type non-linearity then chooses the closest, i.e., minimum.
The class units’ activations are simply computed by a dot product. T,. values are 1 or 0 depending
on whether e is an exemplar of class ¢ or not.

Ve, A, = D(P,W.).

5o— 1, if A, = min;(4;);
©7 10, otherwise.

1, if e is an exemplar of class c;
T.. = .
0, otherwise.

CC :ZEe *Tec- (1)

This structure is what one would normally have to implement nearest-neighbor using a neural net-
work formalism. The input space is divided in the form of a Voronoi tesselation where exemplar
units’ domination regions are bounded by hyperplanes that pass through the medians of the two
closest exemplar units. The domination region of a class is the juxtaposition of its exemplars’ dom-
ination regions. Class boundaries are thus approximated in a piecewise manner with no restriction
on shapes, e.g., linear separability, convexity.
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Figure 2. GAL network structure. P is the input vector. W, is the weight vector of exemplar unit
e. A. is equal to the distance between input vector P and weight vector of exemplar e. Only one of
E; is active, namely that whose weight vector is closest to the input vector which in turn activates
the corresponding class unit. C' is the layer of class units.

3.2. Learning in GAL

What makes GAL incremental is that to start with, there are neither exemplar nor class units. They
are added and W and 7T values are set as follows: When a new input P is given during training as
being a member of class ¢, the response of the network is computed as given in equation (1) above
and checked if it is already correct. If it is, no modification is done. If it is not, an exemplar unit
is created and the weight vector of the newly created exemplar unit is set equal to the input vector
for it to be the closest exemplar if that input is encountered once more. The exemplar unit is then
connected to the correct class unit. Of course a class unit needs also be created if that class is
encountered for the first time.

W, = P.

L,
0, otherwise.

ifo=rg¢;

VO: Teo = {
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3.3. Example

As a didactic example to show how GAL works, a two dimensional hypothetical signal is chosen.
The complete test data and 10% of the test data chosen at random taken as the training data is given
in Fig. 3. Textures denote classes and blank points are not associated with any class. Fuclidean
distance is used as the metric.

7

Figure 3. To the left, complete test data and to the right, 10% of the test data that make up the
training data are shown. Different textures denote different classes and blanks are points that are
not associated with any class.

The evolution of the response of GAL network after having seen 10, 50, 100, and 200% (2 sweeps)
of the training set is given in figures 4 to 7.

The number of exemplars stored and classification error as a function of the learning iterations are
given in figures 8 and 9 respectively. The states shown in figures 4 to 7 are marked on charts with
letters A to D. In the beginning of training, many erroneous classifications are made and exemplars
are added to correct. As more and more iterations are made, network’s response tend to get right
more frequently and thus less additions are needed. Two or three sweeps are generally sufficient to
get 100% success on the training data.

3.4. Two spirals problem

The two spirals problem originally proposed by Alexis Wieland of MITRE Corp. is difficult unless
attempted by an incremental learning algorithm that can also modify the network structure (Fahlman
& Lebiere, 1990). GAL can learn this problem in two sweeps over the training set which make only
384 iterations ! The problem and GAL’s response is shown in Fig. 10. Out of 192 patterns in the
training set, 79 are stored as exemplars.
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e

Figure 4. After having seen 10% of the training data, 16 units are stored and error on test data is

1234 out of 7074.

g

Figure 5. After 50%, 34 units are stored and error is 310.

3.5. Forgetting in GAL

The algorithm tends to store those input patterns in the training set that are closest to boundaries
for finer approximation of the class boundaries. Unfortunately in a learning scheme as GAL’s, the
actual patterns stored as exemplars and the number of them, depend on the order in which patterns
are encountered during learning. An exemplar previously stored, when another closer to a boundary
is added, becomes useless (Fig. 11). Such exemplar units, as now they are in the domination region
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Figure 6. After 100% (one sweep), 45 units are stored and error is 67.

_____ —

Figure 7. After 200% (two sweeps), 50 units are stored and error on test data is 37. Error on training
data is 0 so no more learning iterations are necessary.

of another unit of the same class, can be thought of as useless and may be eliminated to decrease

network complexity.

To get rid of such units, a phase called sleep is introduced where the following operation is done.
One of the exemplar units is chosen at random. The input vector is set equal to the weight vector of
the chosen exemplar—the “dream”— and the response of the network is computed by equation (1).
The response is the class to which that exemplar is connected. Then that particular exemplar is
disabled and the response is computed once more, this time without that unit. If the classes found
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No of units

50,00 D no of units

45.00 — —
40.00 — —
35.00 — —
30.00 — —
25.00 — —
20.00 — —
15.00 — |
10.00 — |

5.00 — |

0.00 — —

| | | | | % TrainSet
000 5000 10000 15000  200.00

Figure 8. Number of exemplar units as a function of learning iterations. Letters A to D mark states
shown in figures 4 to 7.

in the two cases are the same then that exemplar is removed. Note that such a strategy may cause
error to increase as we check for the exemplar unit only, not by all the points that it dominates.

When the network sleeps after its state in figure 7, 20 units out of 50 are removed but error increases
from 37 to 337 (Fig. 12). To remedy increasing error during sleep, one uses alternating “awake”
and “sleep” phases. A number of “awake” passes are made during which units are added and error
decreased, which are followed by a “sleep” phase that gets rid of some redundant exemplars. After a
few such alternations, the GAL network settles down to a set of units where no longer additions are
necessary as one has already 100% on the training data and where all units are closest to boundaries
thus no removals are possible either. Of course success on test data depends on how well the training
data reflects it. One should also note that there may be several subsets of the training data that
lead to 100% on the training data and different success values on the test data. It is for this reason,
the same training data ordered differently may lead to different GAL networks. In section 3.8, we
will see how we can take advantage of this.
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Error x 103

I [ ] error
7.00 — —

6.50 — B
6.00 — B
550 | B
5.00 — _
450 _
4.00 — B
350 — B
3.00 B
250 B
2.00 — B
1.50 B
1.00 B
050 B
0.00 —

C D

| | | | ! % Trainset
0.00 5000 10000  150.00  200.00

Figure 9. Error as a function of learning iterations. Letters A to D mark states shown in figures 4
to 7.

3.6. GAL with reject

GAL as explained hitherto, always gives a class code as response and never rejects. When the risk of
misclassification is high, one needs a mechanism to be able to reject when the network is not “sure.”
The most straightforward way is to check the closest and next closest exemplars (named e and f
respectively):

A = min (4;)

A; = min (4;
s Z.#( )

and reject if they belong to different classes; and if there is no great difference between their activa-
tions:
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Figure 10. Training points for the two spirals problem and GAL’s output after having learned the
problem in 384 iterations (2 sweeps) with 100% success storing 79 patterns out of 192. Horizontal
and vertical lines denote points that are members of the two classes.

E h"\ i

AlC B/C

Figure 11. A and B are associated with one class and C with another. If A is seen before B, both
A and B are stored; if B is seen first, A is not stored.

class(e) # class(f) AND Ay — A, < 6

When the two closest exemplars belong to the same class, the network is rather sure, otherwise
certainty decreases as input gets closer to their median. The user defined threshold ¢ defines the
size of this reject region around the median.
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Figure 12. Following figure 7, a “sleep” phase takes place and 20 exemplars out of 50 are removed
with a parallel increase of error from 37 to 337.

3.7. Finetuning a GAL network

In the first section it was mentioned that a learning system needs to have a set of learning algorithms
and, depending on the current constraints, the most appropriate one may be chosen and used. One
constraint may be the learning time. The time it takes to learn a given training set hardly ever
has been taken into account as a quality measure in “neural” applications. The reason for this
may be that there were simply not algorithms around that could learn very fast, i.e., in the rate of
actual signal from the environment. Thus learning has been done off-line from a previously collected
sample. In real working environment, e.g., in closed-loop systems in robotics, the system may need
to learn and act accordingly very quickly. Under such circumstances, a fast algorithm is necessary
even if it may not learn optimally. The system’s knowledge may then later be re-organized when
there is enough time. Thus a two level learning system may be appropriate where the first learns
very fast but not optimally, and a second that “finetunes” the network to improve performance but
on a much slower basis.

The “sleep” mode of GAL is one such attempt to improve system quality using an off-line process
by eliminating unnecessary units. Hopfield et al. (1983) learned random vectors using a Hopfield
network with a negative factor to increase the energy of such states which may be parasitic con-
fabulation stable states. A similar idea was also used with the Boltzmann machine by Hinton and
Sejnowski (1986) which they call the phase™. These schemes are on the line of the proposal of Crick
and Mitchison (1983) related to the function of “REM sleep” which will be discussed in the section
on the biological view of incremental learning.

In GAL the only way to modify the network is by adding a new exemplar and once an exemplar is
added, the only way it is modified afterwards is by being removed during “sleep” if necessary. Other
than those, the connection weights are not modified. The advantages are:

[1] Learning is very fast as network modification is very simple.
[2] The precision required to store the connection weight values need not be more precise than that
is required to store the input pattern.?

2 For example, when input vectors are binary, binary weights and Hamming distance measure may be
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The disadvantages are:

[1] The method is not immune to noise. If there is considerable amount of noise in input patterns
or if there is teacher noise, this causes a big degradation in the response of the network.

[2] Even if there is no noise, the piecewise boundaries found by GAL may be rather different from
boundaries in the Bayesian sense as densities are not taken into account.

To alleviate these problems, an optional “finetuning” process may be employed with a GAL network
to have an averaging process near boundaries, to be able to have medians nearer to Bayes optimal
boundaries. It works as follows. When the closest exemplar and the next closest exemplar belong to
different classes, the weight vector of the closest exemplar e is moved a little bit towards the input
vector.

W, =W, +at) * (P - W.). (3)

Note that because this is a statistical averaging process; a large number of iterations will be necessary
starting from a small «(0) and decreasing it very slowly towards zero as ¢, training iteration, increases.

When learning time and network complexity is critical but the performance is not, GAL in its basic
form can be used. When there is time and machinery available to perform more precise computation,
GAL network can be finetuned off-line.

3.8. Multiple GAL networks

Another possible way to improve the success is to use a number of GAL networks and “vote” over
their responses. It was mentioned before that the same training set ordered in different ways may
lead to GAL networks with different patterns stored as exemplars. Although all give 100% on the
training set, they may lead to different success percentages with the test set. Instead of using one
GAL network, one may use a number of these and decide based on their responses:

[1] One possibility is to count how many of the networks give a certain class code as output and
set response r equal to the class having the maximum count.

Net. — 1, if the p'* net gives class ¢ as output;
PE710, otherwise.

Ve, R. = Z Netp..
P

R, = max (R.). (4)

[2] One may use a more sophisticated voting scheme by weighting the response of each network by
its “certainty” that its response is correct, computed in the same way as in the case of GAL
with reject. If the two closest exemplars belong to the same class, the network is quite certain; if
they belong to different classes, the certainty decreases as the input gets closer to their median.
When e is the closest and f is the next closest, “certainty” of net p, C},, and the response is
computed as follows:

= A, if class(e)=class(f);
P Ay — A., otherwise.

Ve, R. = ZCP * Nety,.
P

used as shown in section 4 where GAL is used for recognition of handwritten numerals.
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R, = max(R,). (5)
c
This scheme is a faster alternative to “finetuning” in improving success and may even require less
memory and simpler implementation.

4. RECOGNITION OF HANDWRITTEN NUMERALS

To test and assess utility of GAL in a real-world application, it is applied to the task of recognizing
handwritten numerals. The database is made up of 1200 examples of 10 digits written by 12 people
where each example is a bitmap normalized to the size of 16 by 16 pixels (Guyon et al., 1989). This
is a relatively easy database as writers all followed a given writing style. It is divided into two parts.
One half is used to train the network and the second to test how well the network generalizes. No
preprocessing is done. The distance measure is the Euclidean distance — equivalent to Hamming
distance when patterns are binary. Table 13 summarizes the results obtained as an average of 30
runs by variants of GAL, the nearest neighbor method, restricted coulomb energy (RCE) model
and the learning vector quantization (LVQ) (Kohonen, 1988). Note that LVQ and GAL finetuned
require more than one bit for each connection. The reason why the number of units do not increase
as rapidly as expected when one uses multiple GAL nets is that, the same vector generally needs
to act as an exemplar in different GAL nets, but instead of storing it many times, one can just
store it once performing the distance computation only once and feed the output A; to different
winner-take-all nets.

no of Average

Network type sweeps No.units Success FError Reject
Nearest neighbor 1 600 93.2 6.8 0.0
RCE 6 142.0 741 2.9  23.0
LvVQ 50 100.0 929 72 00
GAL 3 118.4  90.2 9.8 0.0
GAL with reject 4 148.2  86.3 2.5 11.2
GAL finetuned 50 118.4 914 82 0.0
3 GAL nets S 3 2475 923 7.7 0.0
5 GAL nets S 3 321.8 933 6.7 0.0
3 GAL nets W 3 2475 934 6.6 0.0
5 GAL nets W 3 321.8  94.2 5.8 0.0
7 GAL nets W 3 3717 94.6 54 0.0

Table 13. Comparison of different algorithms for recognition of handwritten numerals. In the case
of multiple GAL nets, ‘S’ and ‘W’ denote simple and weighted voting schemes respectively.

In Fig. 14, results obtained in different simulations for various GAL variants are given for the 30 runs
made. Note that when one uses multiple GAL nets, a finer pointed distribution with less variance
and a higher success mean is achieved which is an indication of better generalization. Note that
despite the fact that the dimensionality of the input is very high, i.e., 256, GAL still performs rather
well. It is also rather interesting to note that by using multiple GAL nets, one can have a success
higher than that is achieved by the nearest neighbor method although only a part of the training set
is stored !
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No of units
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Figure 13. Distribution of simulation results for different GAL network types. (1) basic GAL
network, (1f) GAL finetuned, (wn) n GAL nets with weighted voting.

5. CRITIQUE OF GAL

GAL basically is a variant of the nearest neighbor method where instead of storing all the patterns in
the training set, one stores only a subset. Successive “awake” and “sleep” phases allows the system
to choose a good subset, namely those patterns that are closest to class boundaries to be able to
approximate these boundaries in a piecewise manner. One should note that as generally training
sets tend to be big and highly redundant, the advantage of GAL in terms of minimizing memory and
computational requirements cannot be underestimated. The problem of “curse of dimensionality”
in the case of methods based on nearest neighbor also applies to GAL, namely, the percentage of the
training set that needs to be stored by GAL increases as the dimensionality of the input increases.
Results achieved in section 4 however shows that despite a very high dimensional input, one still
can achieve a good performance by GAL.

One problem is that the final set of exemplars stored depends on the order of patterns in the training
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set. For different orderings, although all give 100%, the number of exemplars stored and the success
on the test set may be different. One may use cross-validation to choose one of the GAL nets,
namely that which generalizes best to the unseen part of the training data. A GAL net may be
learned and then “finetuned” taking into account class distributions thus averaging over vectors in
the training set. Or a number of GAL nets may be employed with the result computed by voting
over them, thus averaging over the responses of a number of different GAL nets.

GAL is very simple to understand and use; there are no parameters for which optimal values need be
searched.3 No a priori knowledge of the task is required to tune network parameters simply because
there is nothing that can be tuned.

GAL does not extract any features; there are no hidden units trained to extract features common to
many classes. One just assigns patches of input space to classes. There is no limitation on the shape
of classes that can be learned, however if class boundaries are low order, GAL may not do a good job
trying to piecewise approximate with a lot of small hyperplanes. Although it is for categorization,
GAL may also be extended to learn any mapping when the range is discretized and each discrete
part (values within a certain user defined tolerance value) is taken as a different class, i.e., piecewise
constant approximation. It leads to very quick learning of a mapping. Using smaller tolerance values
lead to finer mappings at the expense of more units. Omohondro (1989) proposed independently
the same method to quickly learn function mappings. Moody and Darken (1990) pointed out the
advantages of local receptive fields in terms of decreasing learning time.

Learning incrementally by adding exemplar units is a very fast method. Actually GAL learns at
one shot and thus can learn effectively on-line. Relatively low success achieved can be improved in
a number of ways:

e The connection weights can be “finetuned,” this makes the network also immune to noise.

e A number of networks can be trained and response computed by voting over their responses.
In this way as shown in section 4, one may get a success higher than that of nearest neighbor
by actually storing only a subset of the training set.

e An application dependent preprocessing technique may be employed before input patterns are
fed to GAL.

e The GAL network may be preceded by an unsupervised learning method to extract statisti-
cally important characteristics of the input signal. The Grow and Represent (GAR) algorithm
(Alpaydin, 1990a) is an incremental unsupervised learning algorithm which has recently been
proposed for this purpose. Reduction of dimensionality by feature extraction also alleviates the
problem of “curse of dimensionality.”

3 Except the threshold value in the case of GAL with reject that needs to be tuned to get the required
reject rate that guarantees a certain maximum error percentage.
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6. BIOLOGICAL VIEW

There is no evidence that neurons are generated post-natally, so if there is any form of dynamic
allocation of previously unused units, it should have the form of recruitment learning. Instead of
dynamic addition of units, one would expect recruitment of a previously unused unit and growth of
required synapses dynamically for the necessary task. The brain is built according to some genetic
program with an abundant number of cells. The neurons are generated before birth followed by a a
migration process where young neurons migrate from one part of the brain to another. Finally, they
settle down, maturate, specialize, and form synapses (Cowan, 1979) (Kandel & Schwartz, 1985).

This initial redundant structure loses then between 15% and 85% of its components. This phe-
nomenon of “cell death” takes place both during embryonic and post-natal days. Cell death before
birth is an intrinsic phenomenon and the criteria are genetic. Post-natal cell death depends on ex-
perience where the structure during a critical development period is tested against the environment
and “sculptured” (Cowan, 1979) to better match the environment.

Before cell death starts, the majority of the axons have reached their target fields and have just
started establishing connections. The fact that these two phenemona overlap, suggests that there
is some sort of a feedback process “back-propagated” from the axons to the soma—a retrograde
transport of a “trophic,” i.e., nourishing, substance which probably is glia-derived when the axons
are growing and driven by the activity of the target cells once the synapses are formed (Clarke,

1985).

In the case of post-natal development, the utility criterion by which relevance of neurones is assessed
is related to the functional activity of the cells in the target field on which synapses were formed—
retrograde maintenance modulated by activity (Clarke, 1985). If the target field is destroyed, the
cell death increases to around 100% and if it is artificially extended, death proportion decreases
(Cowan et al., 1984). Although the dendritic branching of a neuron is determined genetically, most
neurons seem to generate many more synapses than are needed or than they are subsequently able
to maintain. It was proposed that it is not the actitivity level per se but the correlation of the
activity of the pre- and post-synaptic cells that leads to synaptic stabilization (Schmidt & Tieman,
1989). There is a phase of synapse elimination during which many (and in some cases all but one)
of the initial group of connections are withdrawn (Cowan, 1979). The relationship between activity
dependent synapse elimination and cell death is not clearly known but it was proposed (Schmidt &
Tieman, 1989) that synapse elimination might occur first and lead to cell death when the number
of synapses falls below a critical number.

It was initially proposed by Crick and Mitchison (1983) that some sort of a “reverse learning” to
get rid of parasitic memory traces occurs during Rapid Eye Movement (REM) sleep when dreaming
occurs. The idea basically is that, the system is closed to its environment, e.g., sleep, inputs are
generated by the system itself, e.g., dreaming, and unwanted modes of behaviour emerging due to
accumulation of experience are eliminated during an active process of unlearning. It is said that “we
dream in order to forget.” Jouvet (1983; Kandel & Schwartz, 1985) suggested that “species-specific
behaviours are rehearsed during sleep governed by a genetical preprogram.” It is like simulating real
life during sleep; the aim is rather similar to having military manoeuvres which can also be thought
of as a sort of off-line learning. The idea in such proposals is similar to what is proposed in the
first section, namely, having a two level learning system where the first level strategy can learn very
quickly on-line but probably not optimally, and a second level strategy that is employed whenever
there is time available to improve the memory in an off-line manner by re-structuring the previously
acquired knowledge.



[18]

[19]

[20]

[21]

[22]

[23]

[24]

23

REFERENCES

Alpaydin, E. (1988) “Grow and Learn” Internal Note, Lapui-EPF Lausanne, Switzerland.
Alpaydin, E. (1990a) Neural models of incremental supervised and unsupervised learning, PhD
dissertation, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

Alpaydin, E. (1990b) “Grow and Learn: An incremental method for category learning” Int.
Neural Network Conf., Paris, France.

Ash, T. (1989) “Dynamic node creation in backpropagation networks,” Connection Science, 1,
365-375.

Carpenter, G.A., Grossberg, S. (1987) “ART2: Self-organization of stable category recognition
codes for analog input patterns,” Applied Optics, 26, 4919-4930.

Chauvin, Y. (1989) “A back-propagation algorithm with optimal use of hidden units,” in Ad-
vances in neural information processing systems, D.S. Touretzky (ed.), 1, 519-526, Morgan
Kaufman.

Clarke, P.G.H. (1985) “Neuronal death in the development of the vertebrate nervous system,”
Trends in Neuroscience, 8, 345-349.

Cowan, W.M. (1979) “The development of the brain,” Scientific American, 241(3), 106-117.
Cowan, W.M., Fawcett, J.W., O’Leary, D.D.M., Stanfield, B.B. (1984) “Regressive events in
neurogenesis,” Science, 225, 1258-1265.

Crick, F., Mitchison, G. (1983) “The function of dream sleep,” Nature, 304, 111-114.

Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L., Hopfield, J. (1987)
“Large automatic learning, rule extraction, and generalization,” Complex Systems, 1, 877-922.
Diederich, J. (1988) “Connectionist recruitment learning” Proc. of the 8th European conf. on
Artificial Intelligence, London, UK.

Duda, R.O., Hart, P.E. (1973) Pattern classification and scene analysis, John Wiley and sons.
Fahlman, S.E., Lebiere, C. (1990) “The cascade-correlation architecture,” in Advances in neural
information processing systems, D.S. Touretzky (ed.), 2, 524-532, Morgan Kaufman.
Feldman, J. (1982) “Dynamic connections in neural networks,” Biological Cybernetics, 46,
27-39.

Frean, M. (1990) “The upstart algorithm: A method for constructing and training feedforward
neural networks,” Neural Computation, 2, 198-209.

Guyon, I., Poujoud, I., Personnaz, L., Dreyfus, G., Denker, J., le Cun, Y. (1989) “Comparing
different neural network architectures for classifying handwritten digits” Int. Joint Conf. on
Neural Networks, Washington, USA.

Hanson, S.J., Pratt, L.Y. (1989) “Comparing biases for minimal network construction with back-
propagation,” in Advances in neural information processing systems, D.S. Touretzky (ed.), 1,
177-185, Morgan Kaufmann.

Hanson, S.J., Burr, D.J. (1990) “What connectionist models learn: Learning and representation
in connectionist networks,” Behavioral and Brain Sciences, 13, 471-518.

Harp, S.A., Samad, T., Guha, A. (1990) “Designing application-specific neural networks using
the genetic algorithm,” in Advances in neural information processing systems, D.S. Touretzky
(ed.), 2, Morgan Kaufmann, 447-454.

Hertz, J., Krogh, A., Palmer, R.G. (1991) Introduction to the theory of neural computation,
Addison Wesley.

Hinton, G.E., Sejnowski, T.J. (1986) “Learning and relearning in Boltzmann machines,” in
Parallel distributed processing, D.E. Rumelhart, J.L. McClelland (eds.), 1, MIT Press, 282-
317.

Hirose, Y., Yamashita, K., Hijiya, S. (1991) “Back-propagation algorithm which varies the
number of hidden units,” Neural Networks, 4, 61-66.

Honavar, V., Uhr, L. (1988) “A network of neuron-like units that learns to perceive by generation
as well as reweighting of its links” Proc. of the 1988 Connectionist Summer School, D. Touretzky,
G. Hinton, T. Sejnowski (eds.), Morgan Kaufman.

Hopfield, J.J., Feinstein, D.I., Palmer, R.G. (1983) “Unlearning’ has a stabilizing effect in
collective memories,” Nature, 304, 158-159.



24

[26] Jouvet, M. (1983) “Neurophysiology of dreaming,” in Functions of the nervous system, M.
Monnier, M. Meulders (eds.), 4, Psycho-Neurobiology, Elsevier, 227-248.

[27] Kandel, E.R., Schwartz, J.H. (1985) Principles of neural science, 2nd edition, Elsevier.

[28] Karnin, E.D. (1990) “A simple procedure for pruning back-propagation trained neural net-
works,” IEEE trans. on neural networks, 1, 239-242.

[29] Knerr, S., Personnaz, L., Dreyfus, G. (1989) “Single layer learning revisited: A stepwise proce-
dure for building and training a neural network,” in Neurocomputing: Algorithms, architectures,
and applications, F. Fogelman-Soulié, J. Hérault (eds.), NATO ASI Series, Springer, in print.

[30] Kohonen, T. (1988) Self organization and associative memory, 2nd edition, Springer.

[31] Le Cun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jeckel, L.D.
(1989) “Backpropagation applied to handwritten zip recognition,” Neural Computation, 1, 541-
551.

[32] Le Cun, Y., Denker, J.S., Solla, S.A. (1990) “Optimal brain damage,” in Advances in neural
information processing systems, D.S. Touretzky (ed.), 2, Morgan Kaufman, 598-605.

[33] Leveit, W.J.M. (1990) “On learnability, empirical foundations, and naturalness,” Behavioral
and Brain Sciences, 13, 501.

[34] Lippman, R.P. (1987) “An introduction to computing with neural nets,” IEEE ASSP magazine,
4,492,

[35] Mézard, M., Nadal, J.-P. (1989) “Learning in feedforward layered networks: The tiling algo-
rithm,” Journal of Physics A, 22, 2191-2204.

[36] McCarthy, J. (1990) “Interview: Approaches to artificial intelligence,” IEEE Expert, 5(3),
87-89.

[37] Mozer, M.C., Smolensky, P. (1989) “Skeletonization: A technique for trimming the fat from a
network via relevance assessment,” Connection Science, 1, 3-26.

[38] Miiller, B., Reinhardt, J. (1990) Neural networks: An introduction, Springer Verlag.

[39] Omohondro, S. (1989) Geometric learning algorithms, ICSI Technical Report 89-041.

[40] Reilly, D.L., Cooper, L.N., Elbaum, C. (1982) “A neural model for category learning,” Biological
Cybernetics, 45, 35-41.

[41] Rissanen, J. (1987) “Stochastic complexity,” Journal of Royal Statistical Society B, q, 49.223~-
239 and 252-265

[42] Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986) “Learning internal representations by
error propagation,” in Parallel distributed processing, D.E. Rumelhart, J.L. McClelland (eds.),
MIT Press, 151-193.

[43] Schmidt, J., Tieman, S.B. (1989) “Activity, growth cones and the selectivity of visual connec-
tions,” Comments on Developmental Neurobiology, 1, 11-28.

[44] Siestma, J., Dow, R.J.F. (1991) “Creating artificial neural networks that generalize,” Neural
Networks, 4, 67-79.

[45] Weigend, A.S., Rumelhart, D.E., Huberman, B.A. (1991) “Generalization by weight-elimination
with application to forecasting,” in Advances in neural information processing systems, R.P.
Lippman, J. Moody, D.S. Touretzky (eds.), Morgan Kaufmann, in print.



