pSather monitors: Design,
Tutorial, Rationale and
Implementation

Jerome A. Feldman* Chu-Cheow Lim!
Franco Mazzanti
TR-91-031
September 1991

Abstract

pSather is a parallel extension of Sather aimed at shared memory parallel archi-
tectures. A prototype of the language is currently being implemented on a Sequent
Symmetry and on SUN Sparc-Stations. pSather monitors are one of the basic new
features introduced in the language to deal with parallelism. The current design is
presented and discussed in detail.

*ICSI and Computer Science Division, U.C. Berkeley. E-mail jfeldman@icsi.berkeley.edu.
t1CSI and Computer Science Division, U.C. Berkeley. E-mail clim@icsi.berkeley.edu.
+1CSI and Istituto di Elaborazione dell’Informazione, CNR Pisa Italy. E-mail mazz@icsi.berkeley.edu.

CONTENTS 1

Contents
1 Introduction 2
2 Monitor Design 5
2.1 Locking 5
2.2 Signalso 6
2.3 Forking 7
2.4 Typeless monitors 8
2.5 MONITOR within Sather Class System 8
3 Monitor Tutorial: Supported programming styles and paradigms 9
3.1 Asynchronous signal/message exchange 9
3.2 Mutual exclusion and moreo 11
3.3 Paradigms for thread-calls L o o 16
3.4 Fairness Issues 21
3.5 Parallel classes as higher level abstractions 0L, 21
3.6 Example: Parallel Stack 23
3.7 Example: Communication channelso 26
3.8 Example: Findingamax o 33
4 Monitor Rationale 36
4.1 Why a unique “monitor” construct 36
4.2 Details of the monitor design o oL 38
4.3 Inheritance 46
5 Discussion of alternative choices 47
5.1 Predefined classes vs. special entities 47
5.1.1 Monitors as special declarations 47
5.1.2 Monitors as objects 48
5.1.3 Advantages of the “monitors as special declarations” approach 48
5.1.4 Advantages of the “monitors as objects” approach 51
5.1.5 Conclusions 54
5.2 Disjunctive lockingo 54
5.3 Atomically unlocking and waiting on another condition. 35
5.4 Predefined monitor test operations L. 58
5.5 Alternatives for forking Lo L o 59
6 Implementation 61
6.1 Compilation 61
6.1.1 Monitor Classes 62
6.1.2 Deferred Assignment Lo 64
6.1.3 Locking- and Unlock-Statements 65
6.2 Runtime Support 69
6.2.1 Runtime Checks 71
6.2.2 Monitor classes 72
6.2.3 Locking 73
6.3 Possible Further Improvements 82
7 Future Directions 86

1 INTRODUCTION 2

1 Introduction

General purpose parallel programming has been an elusive goal, but continues to be essential for
the future of the field. The pSather project is an attempt to provide simple but powerful support
for the development of imperative parallel programs. A central assumption of our work is that the
abstraction and re-usability features of object-oriented languages will be even more important for
parallel codes. This report provides more than most people want to know about the pSather monitor
construct, the cornerstone of our design.

Part of this introduction is extracted from “sather_summary.txt” by Stephen M. Omohundro
(which is part of the Sather distribution). Sather ([41], [35]) is a new programming language under
development at the International Computer Science Institute. Sather has clean and simple syntax,
parameterized classes, object-oriented dispatch, multiple inheritance; strong typing, and garbage
collection. The compiler generates efficient and portable C code which is easily integrated with
existing code.

The initial beta test release of the language was in June, 1991. The compiler, debugger, Emacs
development environment, documentation, and library classes are available by anonymous ftp from
“icsi-ftp.berkeley.edu”. “sather@icsi.berkeley.edu” is a mailing list for discussing aspects of Sather
and “sather-admin@icsi.berkeley.edu” should be used for bug reports and requests to be added or
deleted from the mailing list.

Sather is based on Eiffel [37] but is more concerned with efficiency and less with some of the
formal and theoretical issues addressed by Eiffel. The language is much smaller than the current
Eiffel, it eliminates over 40 keywords and simplifies the syntax and inheritance rules. Several features
were added to increase efficiency and to simplify programming. Efficient arrays are built into the
language itself (objects may have a dynamically allocated array portion after their static features).
The typing scheme allows the programmer to distinguish between dispatched and non-dispatched
declarations. As in C++, local variables may be declared at the point of use. Sather classes may
have shared variables which are accessible from every instance of that class. For efficiency reasons,
the exception handling mechanism based on setjump and long-jump has been eliminated and the
garbage collector is not based on the Dijkstra algorithm (but on the algorithms described by Boehm
and Weiser in [13]). Many cosmetic issues have been changed (eg. more than one class may be
defined in a file).

Like Eiffel, Sather code is compiled into portable C and efficiently links with existing C code.
The Sather compiler is written in Sather and has been operational for almost a year, though it is still
being improved. Preliminary benchmarks show a performance improvement over Eiffel of between
a factor of 4 and 50 on basic dispatching and function calls. On the benchmarks used at Stanford
to test Self (including 8 queens, towers of hanoi, bubblesort, etc), Sather is even slightly faster than
C++.

The Sather compiler and libraries are publicly available under a very unrestrictive license aimed
at encouraging contribution to the public library without precluding the use of Sather for proprietary
projects. The goal is to establish a repository for efficient, reusable, well written, publicly available,
classes for most of the important algorithmsin computer science. There are currently several hundred
classes in the library. The libraries are growing quickly and will collect together classes from many
authors under the same unrestrictive license.

A GNU emacs development environment for Sather is available. In addition to automatically
indenting Sather code, it automatically generates documentation files, runs the compiler, parses
compiler error messages and puts you at the error, runs the debugger and graphically points the
current line, keeps track of the inheritance hierarchy and provides search facilities across all classes
in a program.

A debugger based on gdb from the Free Software Foundation is also available. This allows you to
set breakpoints and step through Sather code, to set variables, and browse through Sather objects.
In conjunction with the Emacs environment, it graphically displays the source code corresponding

1 INTRODUCTION 3

the the currently executing code. It switches into debugging C code when any user written C code
is encountered.

From the outset, one goal of the Sather project has been the incorporation of constructs to
support parallel programming. Parallelism is still not well understood and we explicitly allowed the
parallel constructs to lag the base language by about a year. There is now an experimental parallel
Sather (called pSather) running on the SUN Sparcstation and the Sequent Symmetry. The Sequent
implementation is the more serious effort; the current Sparcstation supports no parallelism and its
pSather is mainly useful for working out programs in the comfort of your own workstation. Section 6
discusses some of the basic implementation issues and how they affected the current design.

The references ([7], [8], [6], [21], [10], [29], [11], [38], [28], [17], [19], [22], [27], [30], [1], [18], [40],
[43], [39], [3], [4], [5], [50], [2], [53], [52], and [16].) constitute a reasonably comprehensive literature
of various designs and implementations of parallel object-oriented languages.

The design of pSather proceeded from several basic considerations. The parallel constructs had
to be a natural extension of existing Sather and had to maintain the basic design goals of supporting
the development of safe, efficient and reusable library classes. In fact, this philosophy seems even
more important in parallel programming where it is much more difficult to code effectively. We plan
to eventually merge pSather into a standard Sather release and drop the ‘p’ forever.

For a variety of reasons, pSather has been targeted for shared-memory architectures. One major
reason is that Sather (like other object-oriented languages) is committed to pointer manipulation.
We aim to support parallelism on the full range of data-structures and algorithms and these are much
more naturally expressed in a shared-memory model. Currently there is a great deal of effort on
realizing large shared-memory architectures, usually in non-uniform memory access (NUMA) fashion.
Even in distributed memory systems, one can expect to see multiple active threads of control per
processor and the language should support this. An additional goal of the pSather project, beyond
the scope of this paper, is to help support the development of large NUMA architectures. We are
not convinced that efforts to provide efficient shared-memory abstraction uniformly in hardware will
scale adequately. Our hope is that appropriate high-level constructs, like those in pSather, will enable
the user, compiler, and run-time routines to provide significant help in supporting shared-memory
abstractions.

These (perhaps overly ambitious) goals led us to consider a wide range of old and new mechanisms
for the pSather primitives. Many of the constructs in current parallel languages have their origins
in multi-programming of sequential machines, in distributed computing, or in distributed memory
architectures. We have found that the requirement of efficiently supporting high degrees of shared-
memory parallelism suggests somewhat different parallel constructs. Fortunately, the strong typing
of Sather permits solutions not possible in looser languages such as C++[49]. It turns out that the
pSather mechanisms also support loosely coupled programming quite well, but we have not seriously
studied pSather for machines without shared-memory support.

The current pSather design adds relatively few constructs to Sather. By far the most important
of these is the monitor construct! and its associated mechanisms which are the focus of this report.
The three features not discussed here are mutex classes, safe variables, and placement pragmas. We
will certainly add some statement-level parallel construct, but its form remains undecided.

There is one special kind of class, mutez, which is declared by “mutex class DUSTY”. The
system assures that only one thread at a time can be active in an object of mutex type. If a thread
attempts to enter a busy mutex object it will be suspended. Mutex classes support a crude form
of parallel programming. Mutex is useful for incorporating serial Sather code in pSather programs,
but is not sufficient. Care must be taken with user or library classes that use class access, shareds
or constants when moving serial Sather code to pSather.

Attributes, local variables, formal parameters, and return results can be specified as safe. Declar-
ing a MONITOR-type variable safe means that the expressions returned by read and take are safe.

1 Our monitor construct differs from earlier monitor concepts for which [15] gives an interesting account.

1 INTRODUCTION 4

The main use of safe variables is to support attributes that are read-only except in their defining
context. Safeness of expressions is maintained over dotting, class prefixing, subscripting and function
calling.

A safe expression can be the LHS (target) of only direct, local assignments. Syntactically, this
means that the LHS must have no suffixes and no prefix except “self”. This implies that the
assignment must be in the defining context. A safe expression of a pointer ($OB) type can not be
used in the RHS of an assignment unless this is a direct assignment to another safe variable. Similarly,
a safe pointer-type actual parameter can not be substituted for an “unsafe” formal parameter. Safe
expressions of $ARRAY type can not be assigned outside the defining context of the array and can
not be passed as actual parameters. This is because array indexing is a direct assignment primitive
and assigning an array outside its defining class violates its safety. Similarly safe $SMONITOR
expressions can not be assigned outside of the defining context or passed as actual parameters. It is
illegal to have a safe MONITOR variable as the target of a deferred assignment except in its defining
context. We expect the ‘safe’ construct to significantly help in NUMA memory placement.

The placement pragmas in pSather are quite simple, but seem to be adequate. Any call of ‘new’
or ‘copy’ can be affixed with an integer expression that specifies a logical processor number on which
the new object should be located if feasible. A typical call might be:

his.x := x.copy@his_proc

Placement pragmas can also be appended to thread calls, which are discussed in detail in this
report. The following call will (pragmatically) start a new thread executing ‘fun’ of object ‘ob’ on
logical processor ‘lightest’ and pass it a reference to a local copy of attribute ‘x’; which might, e.g.,
be an array:

ans :- ob.fun(x.copy@lightest)@lightest

Similar constructs can be used to support message-based and other loosely coupled programming
styles, but this will not be elaborated here. We also envision the placement pragmas being used by
library classes, together with system inquiries, to do data and situation dependent optimizations.

Section 2 presents the design of the monitor functionality, while in Section 3 it is shown with
some examples how they can advantageously be used to write parallel programs. In Section 4 the
reasons behind the current design are explained in more detail. Section 5 explains why several
alternative choices have not been made. In Section 6 more insights on the ongoing Sequent and
Sparc implementations are given. Finally in Section 7 are described some possible directions for
further research and our plans for the continuation of the project.

2 MONITOR DESIGN 5

2 Monitor Design

pSather is a parallel extension of Sather for programming on shared memory architectures. In
pSather, thread-calls provide the means to start new threads, executing in parallel a function call or
a routine call. monitors serve to synchronize these threads.

In particular,monitors are objects of some special built-in types. These types (called monitor
types) are the MONITORO type, and any instantiation of the parameterized version MONITOR{T}.
The user can define other monitor types via class inheritance. In the next Sections 2.1, 2.2, 2.3 is
presented the functionality of the MONITOR{T} type. The typeless version of monitors is illustrated
in Section 2.4.

2.1 Locking

Monitors have a built-in locked /unlocked status.
Two new statements (called locking statements) can be used to lock a monitor. These statements
are the lock-statement and the try-statement. They have the form:

lock <monitor-list> then try <monitor-list> then
< statement-list-1 > <statement-list-1>
end; [else
<statement-list-2>]
end;

Where <monitor-list> is a sequence of monitor expressions (each possibly suffixed by a prede-
fined test operation, as explained later in this section), separated by commas.

In the execution of a lock-statement or of a try-statement, all the expressions of the monitor-list
are pre-evaluated. It is an error if any of these expressions evaluates to “void”.

If all the denoted monitor objects are available for locking (i.e. they are not already locked by
another thread) then they are all atomically locked and the <statement-1ist-1> is executed.

If any of the denoted monitors is not available for locking the execution of the two statements
proceeds differently. In the case of a lock-statement the current thread is suspended until all the
monitors become available for locking, after which they are locked and the <statement-list-1>
is executed. In the case of a try-statement the alternative <statement-list-2> is executed (if
provided) without locking any monitor.

When a lock-statement or a try-statement is completed, all the monitors which have been locked
by the statement (and which have not been already unlocked, see below) are unlocked. Unlocking
restores the locking status existing before the execution of the locking statement. That is, if a
monitor was already locked by the same executing thread, after the nested locking statement it is
still in the original locked status.

During the execution of a locking statement the unlocking of a monitor can be anticipated by
using the unlock-statement which has the form:

unlock <monitor-expr>;

An unlock-statement can only appear inside the scope of a lock-statement or the “then-branch” of
a try-statement. It is a run-time error to try to unlock a monitor which is not one of those monitors
locked by a syntactically enclosing locking statement. As before, unlocking has the meaning of
restoring the previous locking status.

Any attempt by a first thread to lock a monitor already locked by a second thread, will result in
the first thread being suspended until the monitor is unlocked.

A break-statement appearing in the <statement-list-1> of a locking statement forces the com-
pletion of the locking statement.

2 MONITOR DESIGN 6

A return-statement appearing in the <statement-list-1> of a locking statement forces the
completion of all the locking statements of the current routine, before returning.

Beyond having a locked/unlocked status, monitors also have a built-in bound/unbound status,
and they can be used to start parallel execution of new threads. These additional functionalities
interact with the basic locking scheme, allowing users to exploit more powerful synchronization
patterns.

In particular the monitor types predefine some built-in BOOL functions which can be used to
check the status of a monitor. This functions are: is_bound, is_unbound, has_threads, no_threads. All
these operations can be performed independently of the locked/unlocked status of the monitor and
do not suspend the executing thread. Moreover their names can be used as suffixes for the monitor
expressions in the <monitor-1ist> of locking statements.

If the expression <monitor-exp>.<monitor-predicate> appears inside the <monitor-list> of
a locking statement, the monitor denoted by the expression <monitor-exp> is locked if, beyond
being available for locking, it is also in a status in which the <monitor-predicate> is true (e.g.
bound or without attached threads). If the monitor status does not satisfy this condition, in the
case of a lock-statement the executing thread is suspended until the condition becomes true, after
which it is normally locked. In the case of a try-statement the alternative sequence of statements (if
any) is executed.

The monitor types predefine additional operations related to the other aspects of the monitor
functionality. These operations are read, take, set, enqueue, clear, copy and “:=”. Any attempt to
execute these operations on a monitor which is currently locked by another thread suspends the
executing thread until the monitor is unlocked.

2.2 Signals

Beyond having a locked/unlocked status, monitors also have a built-in bound/unbound status which
is associated with a value of type T, and a queue of values generated by the completion of ”attached
threads” (presented in detail in the next section) or provided by engueue operations.

Upon creation a monitor is in the unbound status, and the queue of values is empty.

binding by set or engueue If the monitor is unbound, the execution of a sef or enqueue operation
causes the monitor to become bound. These operations also take a parameter of type T which
becomes the current value associated with the monitor bound status.

If the monitor is already bound, the execution of a set operation simply overrides the previous
value associated with the bound status with the new value provided by the operation (i.e. it is a
normal assignment). The execution of an em enqueue operation simply enqueues the new value. In
both cases the bound status remains unchanged.

binding by thread completion In the case of the completion of an “attached thread” (see next
section), if the monitor is unbound the completion makes it bound and the value returned by the
thread becomes the current value associated with the monitor bound status. If the monitor was
already bound, the completion of an attached thread simply enqueues the returned value. The
binding of a monitor (or the queuing of the return value) is performed independently of the monitor
locking status.

unbinding When the monitor is in a bound status, if the queue of values (provided by thread
completions or enqueue operations) is empty, the take operation puts the monitor again into the
unbound status. If the queue of values is not empty, the monitor remains bound but the first value
of the queue is removed and becomes the value associated with the current bound status.

2 MONITOR DESIGN 7

waiting for the bound status The take and read operations of monitors of type MONITOR{T}
are functions and return the value (of type T) which was associated with the bound status. If a read
or take operation is attempted when a monitor is unbound, the executing thread is suspended until
the monitor becomes bound.

If there is more then one read and take suspended operations when the monitor becomes bound,
they are resumed and executed in FIFO order, as far as the monitor status allows it. E.g if two
take operations are suspended, only the first one will be resumed. Similarly, if three take operations
are suspended on a locked monitor, and the monitor is finally released, if the monitor is bound and
an additional value is present in the queue, only the first two of the three take operations will be
resumed (leaving the monitor unbound).

As already mentioned, any attempt to set, enqueue, read, clear, take or copy a monitor which is
currently locked by another thread suspends the executing thread until the monitor is unlocked.

The call of a copy operation of a monitor returns a new (unlocked) monitor in the same bound
status as the copied monitor and, if the monitor is bound, with the same value associated with the
bound status. The queue of returned values from the already completed threads is not copied.

2.3 Forking
Monitors can appear in the left-hand-side of thread-calls. A thread-call has the form:

<monitor-expr> :- <routine-call>;

In the execution of a thread-call (also referred to as “deferred-assignment”), the <monitor-expr>
in the left-hand-side, and the object and actual parameters of the routine call are pre-evaluated. It
is an error if the monitor expression evaluates to “void”.

If the monitor denoted by the <monitor-expr> is currently locked by another thread, the exe-
cuting thread is suspended until the monitor becomes unlocked.

Then the routine given in the right-hand side is called with the given parameters, executing it
as a new parallel thread of control (it becomes a so-called “attached thread” of the monitor), while
the thread executing the deferred-assignment is allowed to proceed in parallel.

If the left-hand side of a thread-call is a monitor of type MONITOR{T} then the forked routine
must be a function whose result type conforms to T. On the other hand, if the monitor is of type
MONITORQO, then the forked routine may or may not return any result.

When the called thread completes its execution, returning a value, if the monitor was unbound
it is made bound, otherwise the returned value is queued (see previous section). This binding (or
queuing) is performed independently of the monitor locking status.

The monitor operation clear will detach all the “attached threads” of the monitor (if any),
disallowing them from binding the monitor or queuing their return values. Moreover the queue of
values from the already completed threads is emptied, and the monitor status is made unbound.
Finally a flag is set for each detached thread, which can be checked by a thread with a call to
the BOOL function CONFIG: :clear request. In this way threads prepared to safely abandon their
execution might take advantage of a ‘clear’ event and release all the used resources performing some
kind of “early termination”. A terminate operation, which beyond clearing a monitor, will also
attempt to cause an asynchronous termination of the attached threads, may be introduced as part
of a forthcoming exception package.

The “parallel” status of a monitor (i.e. if there is still some executing attached thread possibly
going to bind the monitor or queue a signal) can be tested by the monitor predicates has_threads or
no_threads.

The copy operation on a monitor does not copy any thread-related information from the original
monitor, like the queue of return values, or the information on the attached threads.

2 MONITOR DESIGN 8

2.4 Typeless monitors

Beyond the parameterized MONITOR{T} class, pSather defines a non-parameterized version of
monitor, called MONITORO, which has the same functionality of the parameterized version, but
without the aspects related to its type parameter.

In particular, the bound status of the monitor has no associated value of type T. This also implies
that the set and enqueue operations do not need any parameter, and that read and take are no longer
functions (they simply wait/reset the unbound status).

Finally, with respect to thread-calls, routines which are not functions are also allowed to be
forked as threads using this typeless kind of monitors. Normal functions can still be forked using
these monitors (possibly starting an heterogeneous set of parallel threads) but any return values are
discarded. In any case (whether functions or procedures) the completion of a thread or the execution
of an engueue operation either binds the monitor or enqueues a signal marking a binding event.

2.5 MONITOR within Sather Class System

Each class in Sather falls into one of the following categories:

Basic Class There are five disjoint basic class hierarchies, for CHAR, INT, BOOL, REAL, and DOUBLE.

Non-Basic Class In general, any non-basic class can be a descendent of any other non-basic class,
except for arrays. A descendent of an array class can only inherit from another non-array class
or another array class of the same dimension. This category includes a set of built-in classes
of which the compiler has some particular knowledge. Examples of these built-in classes are
the IN, OUT, FILE, ARRAY, STR, SYS, C, classes. In some cases, the redefinition of some
of the features of these classes are forbidden (e.g. the ‘extend’ feature of ARRAY).

Foreign Class This class hierarchy presents a Sather interface to foreign objects. The top-most
ancestor class is F_0B.

With respect to the above categories, MONITORO and MONITOR{T} classes are built-in, non-basic
classes with the following properties.

e A descendent of MONITORO (MONITOR{T}) class can inherit from any non-basic class including
MONITOR{T} (MONITORO). An inherited monitor class that appears later will overshadow the
earlier monitor class.

e A monitor class can inherit from any array class, with the restriction that it cannot then inherit
from an array class of a different dimension.

If a class inherits from a monitor type, the predefined operations and tests cannot be redefined

(or undefined).

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 9

3 Monitor Tutorial: Supported programming styles and
paradigms

The pSather monitor construct combines functionalities that have been kept separate in previous
parallel programming languages. Clearly, even if monitors provide a much more complex functional-
ity than a simple lock or signal, this does not mean that they cannot be used for directly supporting
in a still efficient way these very simple kinds of synchronizations and, beyond these, many other
common concurrent programming paradigms. However, apart from their “crude” use for direct
thread synchronization, one of the major roles of monitors is that of constituting the hidden build-
ing block of higher level abstractions providing more sophisticated tools (e.g. see the examples at
the end of this section).

3.1 Asynchronous signal/message exchange

One of the obvious “crude” uses of monitors, is simply to act as an asynchronous signal or message
among threads. In the following we will refer to the parameterized version of monitors, i.e. to objects
of type MONITOR{T}. There is a typeless variant MONITORO, but we will usually not explicitly
discuss it in this section.

An object of monitor type, e.g.:

mi: MONITOR{INT} := mi.new

can be seen as containing a private attribute of its parameterized type, some state, and system
queues of threads waiting to set or use the monitor. A monitor object can be used almost like
a simple variable, accessed by ‘mi.read’ and set by ‘mi.set’. The state associated with a monitor
specifies whether it is bound or unbound and whether it is locked or unlocked, and whether it has
attached threads. Here we are mainly concerned with the bound state.

A monitor is unbound if its private attribute has no value; monitors are created unbound and
are bound by a ‘mi.set’ call or by the completion of a deferred assignment (Section 2.3). A monitor
that is bound can be made unbound by the call ‘mi.take’, which also returns the current value of
the private attribute. Any thread that attempts to access an unbound monitor will be suspended
and placed on a queue waiting for the monitor to be bound. There are non-blocking predicates
‘mi.is bound’ and ‘mi.is.unbound’ with the obvious meaning. The original motivation for ‘unbound’
came from the BBN Monarch design that used the equivalent ‘stolen’ as the sole synchronization
primitive. The pSather unbound state is the only asynchronous signal in the language, but it has
several additional roles.

If only set and take operations are used on a monitor, what we obtain is a simple one-to-one
synchronization, as illustrated in the following example:

m1:MONITOR{INT}:= ml.new; -- initially unbound
m2:MONITOR{INT}:= m2.new; -- initially unbound
threadl is thread2 is
mi.set(111); —————————- > v:INT := ml.take; -- wait message
v:= m2.take; <-————————- m2.set(v+v); -- send back a message
end; end;

This one-to-one synchronization can be extended to a richer set of threads possibly generating
much more complex patterns of synchronization.

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 10

The read operation, is more naturally aimed at some kind of broadcast or one-to-many commu-
nications as illustrated by the next example:

mv:MONITOR{ARRAY{INT}}:= mv.new; -- initially unbound

writer is

v:ARRAY{INT}:= v.new(n); -- create and initialize a new vector
v[0] := ...;
vin-1] := ...;
mv.set(v); —-- make the vector available to all the readers
end;
reader_1 is reader_n is

v:= mv.read[0]; <-- wait data from writer --> v:= mv.read[n-1];
end; end;

Another example of read used to model a broadcast signal, is shown by the following implemen-
tation of a “barrier”:

class BARRIER is

private counter:INT; -- how many hits in current iteration
private all_done:MONITORO; -- used as a broadcast signal
private barrier_lock:MONITORO; -- used to get mutual exclusion among ‘hit’
private level:INT; -- the number of hits for each iteration
hit is

broadcast:MONITORO:= all_done; -- reference to shared signal

wait_needed:BOOL := true;
lock barrier_lock then

counter := counter + 1;
if counter = level then
broadcast.set; -- resume all previous hits
all_done:= MONITORO::new; -- create new signal for next iter.
counter := 0; —- reset counter for next iteration
wait_needed := false; —- this call does not need to wait
end;
end; —-- lock
if wait_needed then
broadcast.read; -— wait until a ‘set’ is domne
end;
end; —-- hit

create(level:INT):SELF_TYPE is
res:=res.new;

res.all_done = MONITORO::new; —-- create initial broadcast signal
res.barrier_lock:= MONITORO::new; —-- create barrier lock
res.level := level;

end; ——- create

end; -- BARRIER

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 11

But the set operation is not the only one which generates an asynchronous signal. The completion
of a thread can supply the bound value to a monitor, as illustrated below:

mv:MONITOR{ARRAY{INT}}:= mv.new; -- initially unbound
writer(...): ARRAY{INT} is -- now ‘writer’ is a function
res := ARRAY{INT}::new(n); -- create and initialize a new vector
res[0] =L
res[n-1] := ...;
end;
mv :- writer(...); -- the function is executed in parallel
reader_1 is reader_n is

v:= mv.read[0]; <-- wait data from writer --> v:= mv.read[n-1];
end; end;

Moreover, since monitors are standard objects of the language, they can be assigned or passed
as parameters, capturing very well the essence of “future” values.

E.g. we could also have written:

reader (future_vect:MONITOR{ARRAY{INT}}, index:INT) is
v= future_vect.read[index];
end;
creating many parallel ‘reader’ threads using the same future in the following way:

readers: MONITORO:= readers.new;
i:INT;

until i = n loop
readers:— reader(mv,i);
end;

There are several other ways in which a monitor can control a set of parallel threads, handling
their completion signals, but they will be discussed in Section 3.3

3.2 Mutual exclusion and more

The other basic state information on each monitor is whether it is locked or unlocked. As we will see,
there are several advantages to having lock status directly associated with data rather than assuming
all uses will obey some lock protocol. This seems to be particularly important for object-oriented
programming with reusable classes.

The locking discipline of pSather fits nicely into the overall design. Because we wanted a safe
and efficient locking scheme for application programmers, we adopted a critical section mechanism
that automatically releases locks on termination. There is, as usual, a blocking and a non-blocking
form of the construct:

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 12

lock <mon list> then try <mon list> then
<statement 1> <statement 1>
end; [else
<statement 2>]
end;

Simple mutual exclusion

The most basic functionality provided by locking statements is clearly the possibility of easily
modeling mutual exclusion. For example, in order to guarantee the serialization of the calls of the
routines of an object we can easily define:

class SERIALIZED is
private my_lock:MONITORO;

operationl is
lock my_lock then

end;
end;

operation2 is
lock my_lock then

end;
end;

create:SELF_TYPE is
res := res.new;
res.my_lock := MONIOTRO: :new;
end;
end; —— SERIALIZED

Simple mutual exclusion can also be expressed by mutez classes (Section 1).

But the mutual exclusion of the operations of an object can follow much more complex schemes
than a simple full serialization. Notice that already in the previous example the “create” operation
is allowed to proceed more freely than the others. Typically we could use more than one internal
lock, serializing the operations in subgroups, depending on the kind of side effects they generate.

Moreover, we might even make public some of the serializing locks, allowing the clients to explic-
itly get access privileges for a subgroup of operations. For example, in the case of parallel queue,
we might be interested to give to a client thread the possibility of becoming the only “reader” of
the queue, yet not preventing others from enqueuing elements. (A similar pattern is shown the
CHANNEL example of Section 3.7). This can be easily achieved in the following way:

Given the definition of the following queue:

class PARALLEL_QUEUE{T} is
pushers:MONITORO; -- used for simple locking
poppers:MONITORO; -- used for simple locking

create:SELF_TYPE is ...end;

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 13

push(v:T) is
lock pushers then
-- more synchronization is probably needed inside
end;
end;

pop:T is
lock poppers then
-- more synchronization is probably needed inside
end;
end;
end; —— PARALLEL_QUEUE

A thread desiring to acquire exclusive “popping” privileges for some time can simply write:

queue: PARALLEL_QUEUE{INT};

its_only_mine is
lock queue.poppers then
queue.pop;

queue.pop;

queue.pop;
end;
end;

Multiple locking

pSather, moreover, allows one to specify more than one monitor inside a locking statement,
guaranteeing that all or none of the locks in the <monitor-1list> are acquired. This simplifies many
common synchronization problems and also adds power to the monitor construct as we will see.

A quite common programming pattern captured by this functionality, is for example the splitting
of object operations into different groups according to the set of resources they need, sequentializing
all the calls of the same operation, but allowing different operations to proceed in parallel if they
require a disjoint set of resources.

class RESOURCES is
private resourcel, resource2 : MONITORO;

create:SELF_TYPE is .. end;

operation_1 is lock resourcel then ... end; end;

operation_2 is lock resource2 then ... end; end;

operation_3 is lock resourcel, resource2 then ... end; end;
end;

Using multiple locking has the advantage that it removes the danger of deadlocks, which might
otherwise easily result if a nested locking schema were followed instead (this issue is discussed in
more detail in Section 4.2)

As another example of multiple locking, we can see how the required synchronizations for the
“dining philosophers” problem might be achieved.

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 14

class SUPPER is
private chopstick:ARRAY{MONITORO}; -- One for each chopstick.
done:BOOL; —-- Set true from outside.

diner(i:INT) is
until done loop
lock chopstick[left(i)], chopstick[right(i)] then
eat(i);
end;
end; —-—- until
end; —-- diner

eat (i:INT) is
OUT: :s("number ").i(i).s(" is eating").nl; -- print the number
end; ——- eat

start (count:INT) is
chopstick:= ARRAY{MONITORO}: :new(count);
done := false;
dummy : MONITORO := dummy.new; -- For thread starting.
j,k:INT;
until j = count loop
chopstick[j]:= MONITORO: :new;
jr=j+;
end; -- until j
until k = count loop
dummy :- diner(k);
k:=k+1;
end; —-- until k
end; —--start

left(i:INT):INT is res:= (i-1).mod(chopstick.asize); end;
right (1:INT) :INT is res:= (i+1).mod(chopstick.asize); end;
end; -- class SUPPER

Early unlocking

pSather allows one to explicitly unlock a monitor while still executing the body of the lock
statement which locked it. The usefulness of this feature is quite general. We show here a small
example of how to take advantage of this feature.

For example, suppose we have a sequence of monitors giving access to a sequence of critical
sections:

mon_vect: ARRAY{MONITORO} := ...;

step (n:INT) is
switch n
when O then ..
when 1 then ..
when 2 then ..
end;
end;

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 15

Users of this pipeline of critical sections are supposed to get the first lock, perform the first step,
get the second lock and atomically release the first one, perform the second step, and so on.

Notice that we cannot first unlock the first monitor and then lock the second one, because this
might allow some other thread to lock the first monitor, do the first step, unlock the first monitor
and lock the second monitor, all in the small window between the time the first monitor is released
and the second monitor is acquired, losing the original order in the pipeline.

The above pipelining can be modeled in the following way:

lock mon_vect[0] then
step(0);
lock mon_vect[1] then
unlock mon_vect[0];
step(1);
lock mon_vect[2];
unlock mon_vect[1];
step(2);
end;
end;
end;

Since one lock is released only AFTER the next one has been acquired, there is no danger of
losing the initial sequencing of operations.

Other paradigms

When “locking” and “signals” are put together as “monitors”, new functionalities become pos-
sible.

One of these is that the flow of signals passing through a monitor by means of explicit set and take
operations (e.g. as illustrated in the first example of Section 3.1) can be frozen by a third thread
by simply locking the shared monitor. This gives additional power and flexibility in controlling
synchronizations.

Similarly, by locking a shared monitor acting as a future, we can easily prevent other threads
from taking the incoming value, or from attaching new additional threads.

Finally, and probably most important, new powerful atomic operations can be provided easily.
In the design, an element of the lock-list of a locking statement can include a binding predicate and
the lock waits until the predicate holds.

This enables us to model some kinds of event-driven or condition-driven locking, as illustrated
by the example of parallel stack of Section 3.6. In that example, the bound status of the lock will
be used to ensure mutual exclusion among the operations. It also carries the information about
whether or not the stack is empty, allowing a client to acquire the lock only if there actually is some
element to be read. This is modelled by the following:

pop:T is
lock stack_lock.is_bound then
—- Remove the element
end;
end;

The ‘push’ operation is allowed independently of the bound status of the ‘stack_lock’, and has
the additional effect of setting to ‘stack_lock’ status to bound.

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 16

push(v:T) is
lock stack_lock then
R -— Add element to the stack
stack_lock.set; —-— Enable ‘pop’ operations
end;
end;

As another example of the usefulness of this functionality, we show how an integer monitor can
be used to model a counting semaphore.

class COUNTING_SEMAPHORE is

private m: MONITOR{INT};

create:SELF_TYPE is ... end; -- initialize m
get:INT is
lock m.is_bound then -- wait for a set operation if unbound
res := m.read;

m.set(res - 1);
if res = 0 then
m.take; -- will not wait, simply makes the monitor unbound
end;
end;
end;

set (new_value:INT) is
m.set(new_value);
end;

end; -- COUNTING_SEMAPHORE

Many other useful cases of interactions between locking and signals are related to the completion
of some parallel threads. Some of these cases will be discussed in the next subsection.

3.3 Paradigms for thread-calls

The third basic use of pSather monitors is as the target of a thread call (also known as deferred
assignments). If fun(x:INT) is an INT function, the statement:

mi :- fun(some_value);

will start a new thread to evaluate ‘fun(some_value)’ and place the thread in the set of possible
binders for ‘mi’. This construct can be used in a variety of ways, both alone and in combination
with other constructs.

An important point is that a monitor also acts as a handle on the threads which have been forked
on it. For example, by using is_bound and has_threads predefined predicates, it is possible to check
whether or not at least one of the forked threads, or all of them, have terminated. Moreover, using
the clear operation on a monitor it is possible to set a flag for the forked threads notifying them
they have been detached (i.e. that their returned values are no longer wanted).

In the following, some of the more useful programming paradigms are illustrated in more detail.

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 17

Simple “futures”

The simplest way to use a thread-call is just to fork a new thread on an unbound monitor.
The returned value can be read or consumed, when available, by performing the monitor operation
“read” or “take”. In the meanwhile, the monitor itself can be passed around to other routines or
threads, acting as a reference to “a value to come”.

This way of using monitors has been already presented in Section 3.1. Here we only point out
that a single monitor can easily be “recycled” as a future, once its value has been taken.

E.g. we can write:

lock f then
f.clear; —-— reset the future status
until done loop
f:- int_fun(some_value); —— start new thread
v:INT:= f.take; -- wait and take result
end; -- loop
end; -- lock

Notice also that, since the binding of the monitor by a completing thread occurs even if the
monitor is currently locked by a different thread, we can perform the whole cycle of forking and
taking inside a lock statement (hence guaranteeing the absence of external interference) without the
danger of deadlocks.

Searching for the “first” result

Another example of parallel programming paradigm is the following: Suppose we want to start
several activities in parallel (e.g. searching for a server for a client “xwebster” application on several
connected subnetworks), with the intention that as soon as one result is available, we would like to
have it, and this “first” one is in some sense the “most interesting” for us (e.g. because the server
is the nearest).

Also this case can be easily modeled using an unbound monitor as a future, with the only
difference that more than one thread is actually forked using this monitor.

E.g. we could write:

my_server: MONITOR{STR}:= my_server.new; -- Initially unbound

my_server :- search(subnetl, ...); -— Fork three searching threads
my_server :- search(subnet2, ...);

my_server :- search(subnet3, ...);

result:STR := my_server.take; -- Wait until at least one is completed
my_server.clear; -- Reset the monitor (detach the threads)

It is quite easy to model some kind of “OR parallelism” in which we are interested in the
disjunction of the results of several parallel threads.

Modeling co-begin/co-end

Suppose we need to fork several parallel routines which are not required to return any specific
result. More generally, we might not be particularly interested in the value returned by them (if
any) but just in the fact that they have all done their job.

Monitors can be easily used to model also this kind of functionality. The first part (i.e. the
co-begin) is immediate to model, being simply a loop in which we fork all the threads we want.

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 18

Then, we want be able to wait until all the started concurrent activities are completed. Actually,
we have two predefined monitor predicates which allow us to check whether or not our condition is
met without becoming suspended. They are the predicates: has_threads and no_threads. However,
if we want to wait until our condition is satisfied we must use these predicates as monitor suffixes
inside a locking statment, to get the equivalent blocking semantics.

The result is something like:

m:MONITORO :=m.new;

i:INT;

until i=n loop
m:- foo(...); —— Start several concurrent activities
i:=i+1;

end;

lock m.no_threads then -- Wait until they are all completed
m.clear; —-- Discard their binding signals

end;

Again, if ‘m’ is a shared monitor, we might execute the cycle of thread-calls and the locking
statement inside an outer locking statement ensuring the absence of external interference. Notice,
that the pSather design allows the forked threads to return values the queue of a monitor (when
they complete) even if the monitor is locked, and that the re-locking of an already locked monitor
(by the same thread) is allowed and does not cause a deadlock.

Many threads producing many results

Yet other reasonable programming paradigm might consist in creating several threads, each
one returning some result, and then collecting all the responses for performing some kind of final
computation. Of the various styles seen so far, this is probably the most complex, and uses almost
all the monitor functionalities.

As an example, we might consider the case of the comparison of two large vectors, returning
some kind of measure of how they differ. This task could be achieved by checking in parallel the two
vectors using “n” tasks, each one working on its own section of them and then merging the results.

v1:ARRAY{INT}; -- size 100000
v2:ARRAY{INT}; -- size 100000

differences(from,to:INT): INT 1is
res:=0;
until from = to loop
if vi[from]/= v2[from] then res := res+l; end;
from := from+1;
end;
end;

m:MONITOR{INT}:= m.new;

i:INT;

until i=10 loop -- fork 10 threads
m:- differences (10000*i, 10000*(i+1));

end;

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 19

total:INT;

until not m.has_threads loop

total:= total+ m.take; -- possibly wait until next result arrives
end;
until m.is_unbound loop

total:= total+ m.take; -- read all the possibly queued results
end;

Notice how, even without knowing the number of forked threads, it is quite easy to get all the
results, by performing a loop of ‘take’ operations until all the forked threads are completed, and
until no more results are available.

Early results from parallel threads

We do not have to assume that a forked thread produces a meaningful result only when it
completes. If this is not the case, however, it is likely that the result is made available to the rest
of the program not using the same monitor on which the thread has been attached, but using some
other monitor accessible by the routine (e.g. an actual parameter, an attribute, a shared).

An example of this way of programming could be the following:

some_parallel_computation (early_res: MONITOR{INT}) is
e -- some initial computation
early_res.set(some_value); -- make available the result
-- some other computation
end;

main_activity is
my_result: MONITOR{INT}:= MONITOR{INT}::new; —-- a container for the result

just_for_forking: MONITORO:= MONITORO: :new;
just_for_forking :- some_parallel_computation(my_result);

my_result.read; -- wait the early result from the parallel activity

end;

The same pattern could be used if the forked parallel activity does not produce a single early
result, but a sequence of them. The only change is to use enqueue operations instead of set.

some_parallel_computation (early_res: MONITOR{INT}) is
- -- some initial computation
early_res.enqueue(first_value); -- make available the first result

.o -- some other computation
early_res.enqueue(other_value); -- make available some other result
.o -- some other computation
early_res.enqueue(other_value); -- make available some other result

-- some other computation

end;

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 20

main_activity is
my_result: MONITOR{INT}:= MONITOR{INT}::new; —-- a container for the result

just_for_forking: MONITORO:= MONITORO: :new;

just_for_forking :- some_parallel_computation(my_result);

viINT;

v := my_result.take; -- wait first result from the parallel activity

v := my_result.take; -- wait second result from the parallel activity
end;

Active objects

A programming style which is particularly easy to support is the case in which at most one thread
is executing inside an object, representing in some sense the object “internal agent”, communicating
with other agents by message passing or entry calls. This can be modelled in pSather defining a
private routine representing the internal activity and forking a thread executing it when the object is
created. The only public interface of the object might consist in “communication channels” (possibly
with different synchronization flavours) as those illustrated in Section 3.7.

E.g. class ACTIVE_AGENT is
interfacel (v:INT):INT is
data_in.send(v);
res := data_out.receive;
end;
interface2: CHANNEL{SOME_TYPE};

private data_in: CHANNEL{INT};
private data_out: CHANNEL{INT};
private m: MONITORO;

create is
res := res.new;
res.m := res.m.new;
res.data_in := CHANNEL{INTZ}::create(...);
res.data_out:= CHANNEL{INT}::create(...);
res.interface2:= CHANNEL{SOME_TYPE}: :create(...);
res.m :- internal_activity;

end;

private internal_activity is
data_in.receive;
data_out.send(..);

end;
end; -- ACTIVE_AGENT

Using a similar style, we can define classes simulating quite closely the behavior of Ada task

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 21

types, even though the semantics of conditional entry-calls and selective wait are more difficult to
reproduce.

In Section 3.8 it is illustrated another example of this programming style, applied to the task of
finding the maximun value inside an array.

3.4 Fairness Issues

If several threads are suspended on a single condition (i.e. involving no more than one monitor), then
the waiting threads are resumed in the FIFO order (i.e. the thread which has become suspended first
will be resumed first). This means that a queue is associated with any monitor, with the purpose of
ordering the threads waiting for some event on the monitor.

E.g.
s:MONITORO := s.new;

—-—- threadl-- —-— thread2-- —-— thread3--

lock s then
s.set; A
s.take; c..
s.read;
end;

In the above case threadl will first gain the access to s, thread2 and thread3 will become sus-
pended (both waiting for ‘s’ to become unlocked and bound). Thread2 will be resumed before
thread3d and will restore the monitor in the unbound status. This will prevent the resumption of
thread3 until a new ‘set” operation (or a thread completion) will bind ‘s’ again.

The FIFO resuming order is not guaranteed during the execution of locking statements for
threads which become suspended on more than one monitor. This issue is descussed in more detail
in Section 6.2.3. Moreover, since pSather does not specify or require any particular scheduling
strategy (e.g. FIFO, time-slicing), it is not guaranteed that all the created threads will surely be
executed. In the current implementation this might really happen if a number of threads equal to
the number of processors are concurrently executed and they never become suspended (other threads
might never be executed).

Even if partial, this degree of fairness and FIFO behaviour is quite useful because it makes it
easier to understand the actual program execution. For example, suppose that all output operations
are protected by a lock which serializes the program output. In this case the FIFO fairness of the
locking allows us to rely on the program output to have some (approximate) idea on how the program
execution has evolved. This is useful, until additional powerful tools are designed and implemented,
to at least allow some kind of simple debugging.

3.5 Parallel classes as higher level abstractions

We have seen how powerful pSather monitors are in their more or less “crude” version. However we
must remember that the basic philosophy of object oriented programming is based on the develop-
ment of new useful abstractions under the form of well-designed classes.

The constructs described in the preceding sections contribute significantly to the ease of writing
parallel programs, but it is still a difficult and error-prone task. OQur current best hope is that much
of the complexity can be hidden in general classes and that most programming will not involve the
explicit use of complex parallel constructs. This follows the philosophy of object- oriented languages
in general and Sather in particular. For this to work out in practice, library classes must be efficient,

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 22

easy to understand at a functional level and sufficiently general. We believe that pSather provides
a substrate for constructing such libraries, but have only begun to test this belief.

The following three sections contain simple examples of the kinds of classes we envision. These
are also the most complete examples of pSather programmingin the paper. The first example class is
for a general STACKT that can be used by multiple threads without explicit synchronization. It also
shows how serial Sather classes can be extended to parallel use. The second example illustrates how
the abstraction capabilities of Sather can be combined with monitors to produce a set of CHANNEL
constructs that use varying buffer disciplines invisibly to users.

The third example is less complete, but is the most indicative of what we expect to be the general
programming style. Here the class VECTORT is envisioned as containing a variety of operations,
of which max is illustrated. Operations on vectors are assumed to be done by a number of parallel
tasks, decided at execution time. The two code fragments show how this might be done with threads
sharing one structure or with separate objects having local data. A user should only deal with the
unitary vector abstraction. Qur current thinking on these parallel data abstractions is to try to keep
the data distributed in NUMA architectures with the algorithms doing as much work as possible
locally. This is fairly straightforward for arrays, but is a basic research question for sets, trees,
graphs, etc.

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 23

3.6 Example: Parallel Stack

The following example is a simple version of a concurrently usable stack.

Inheritance The original ‘pop’ and ‘top’ operations, which simply return a null value if the stack
is empty, are provided for compatibility with the original stacks in the Sather library.

Two other operations: ‘s_pop’ and ‘s_top’ are introduced to support potentially suspensive pop
and top operations (if the stack is empty).

Just to make more evident the concurrent structure of the class, we prefer not to duplicate all
the code implementing the sequential stack, but we make use of a private attribute (‘s’) which is a
standard sequential stack.

Synchronization A stack status (free/busy, empty/not-empty) can be directly modelled upon a
monitor status (busy => locked, empty => unbound). A ‘stack_mon’ monitor can be used for this
purpose, i.e. to allow access to the stack operations only in the corresponding well-defined status.
The usefulness of the is_bound suffix in lock statements is evident here. If waiting for a condition,
and locking a descriptor when the condition becomes true were not provided as an atomic language
primitive, modeling the synchronizations between the operations would be much more complex.

For example we cannot simply write:

s_pop:T is
can_read.take; -- allows only one reader when stack is not empty
lock internal_lock then —-- mutual exclusion with other operations

end;

Because, if the check on the readability of the stack and the acquisition of the internal lock are
not atomic, we are going to have problems. In particular, if a ‘clear’ operation (of the PSTACK{T}
class) is executed after the ‘take’ operation (inside the above definition of ‘s_pop’), it may succeed
in gaining the internal lock, clearing the stack itself and thus making false the precondition of the
‘s_pop’ operation.

We cannot force the stack ‘clear’ operation to take the ‘can_read’ signal as well, because ‘clear’
operations are allowed even the stack is empty.

And we clearly cannot write:

s_pop:T is
lock intermal_lock then —-- mutual exclusion with other operations
can_read.take; -- allows only one reader when stack is not empty
end;

Because if the stack is empty the executing thread becomes suspended leaving the stack locked.
Instead, the “locking when bound” facility of pSather allows us to write:

s_pop:T is
lock intermnal_lock.is_bound then

end;
end;

easily expressing the required synchronizations.

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS

class PSTACK{T} is ---- A concurrently usable stack --——--——--————-
STACK{T}; -——- Quite compatible with the standard one
——————————————————————— Public features -—-——————-——-—-—-————————-
-- create():SELF_TYPE; Creates a new empty stack |
-- size:INT; (inherited) The size of the stack
-- push(e:T); Inserts an element in the stack
-- is_empty() :BOOL; Checks whether the stack is empty |
-- pop():T; Removes last element (null if empty) |
-— s_pop():T; Removes last element (wait if empty) |
-- top():T; Returns last element (null if empty) |
-— s_top():T; Returns last element (wait if empty) |
-- clear(); Empties the stack
private s: STACK{T}; -- a sequential stack
private stack_mon:MONITORO; -- for synchronizing stack operations

create:SELF_TYPE is
-— Creates an empty stack.

res := new;
res.s := res.s.create;
res.stack_mon := MONITORO: :new;
end; —— create

push(e:T) is
—— Adds an element into the stack

lock stack_mon then -- get exclusive access
s.push(e); —-- underlying stack fixes the size
size:= s.size;
if size = 1 then stack_mon.set; end; —- enable reading if needed
end;
end; -- push

is_empty:BOOL is
-- Returns ‘true’ if stack is empty.
res := (size=0);

end; -- is_empty

pop:T is
-- Returns the top element and remove it.
-- Returns ‘null’ if empty
lock stack_mon then -- get exclusive access
res:= s.pop;
if size=1 then stack_mon.take; end;
—— If size=1, the last element has now been removed and the
-- ‘stack_mon’ signal has to be made unbound.
size:= s.size;
end;
end; -- pop

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS

s_pop:T is
-- Returns the top element and removes it.
-- Waits if empty
lock stack_mon.is_bound then -- get access when not empty
res:= s.pop;
-- if size=1, stack_mon is surely bound
size:= s.size;
if size=0 then stack_mon.take; end; -- if needed disable reading
end;
end; -- pop

top:T is
-— Returns the value of the top of the stack.
-- Returns ‘null’ if empty.
lock stack_mon then -- get exclusive access
res:= s.top;
end;
end; -- top

s_top:T is
-— Returns the value of the top of the stack.
-- Waits if empty.
lock stack_mon.is_bound then -- get access when not empty
res:= s.top;
end;
end; -- top

clear is
-- Empties the stack.
lock stack_mon then -- get exclusive access
s.clear;
if stack_mon.is_bound then
stack_mon.take; -- unbind if necesary
end;
size:= 0;
end;
end; —-- clear

end; -- class PSTACK{T}

25

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 26

3.7 Example: Communication channels

The following is an example of a data channel. This example is interesting because it shows several
kinds of synchronization schemes.

The channel can be created with a null data buffer, a bounded data buffer, or an unbounded data
buffer. If the channel has no buffer, ‘send’ and ‘receive’ operations are strictly synchronized (a ‘send’
waits until the corresponding ‘receive’ is performed, and vice-versa). If the channel has a bounded
buffer, a limited number of ‘send’ operations are allowed to proceed even if no ‘receive’ has been
executed (until the buffer is full). If the buffer is unbounded, ‘send’ operations are asynchronous
with respect to ‘receive’ operations.

This example also illustrates a way to use monitors to specify selective access rights for particular
class operations. Any user of this channel class is allowed to acquire exclusive “sending” rights, or
exclusive “receiving” rights, or both. This is easily modelled by defining a monitor attribute (used
as a lock) for each of the locking subconditions we want to associate with the channel object.

This example also shows how the use of monitors inside a class allows us to define parallel data
structures which do not fully sequentialize all calls to the public routines.

In this case, if the channel is not full or empty, ‘send’ and ‘receive’ operations are allowed to
proceed completely in parallel without any synchronizing bottleneck.

Finally, it is interesting to observe how, in order to avoid the need for explicit synchronization
between concurrent send and receive operations in accessing the same “list of free elements”, the
use of two private lists and of one “interface” variable is helpful.

class CHANNEL{T} is - -
—-— CHANNEL{T} exports two operations ‘send’ and ‘receive’ which can be
-— used to pass streams of data between threads.

—-- Depending on the ‘size’ used to create a channel, the communications are more
-- or less synchronized. If a positive number is given as the channel size,

-- the value is used as the size of a bounded data buffer for the channel.

-- This allows a certain number of send operations to proceed asynchronously

-- with respect to the receiving operations.

-- If the given channel size is zero, then there is no data buffering, and

-- communications are fully synchronous (i.e. a send must wait until a

-- receiver is ready to read the data, and vice-versa).

-- If the channel size is negative, then the channel data buffer is unbounded.
-- (i.e. send operations can be freely executed also in absence of ‘receive’).

—-— A channel can be shared among several threads (senders and receivers).
-- However, if one thread desires to gain exclusive access to the chanmnel,
-- it can obtain it by acquiring one of the two channel locks:

-- ‘exclusive_send_rights’ or ‘exclusive_receive_rights’

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS

exclusive_send_rights:MONITORO;
exclusive_receive_rights:MONITORO;
private my_channel: $VIRTUAL_CHANNEL{T}; -- the actual channel structure

create(size:INT) :SELF_TYPE is
res:=res.new;
if size = 0 then
res.my_channel := SYNCHR_CHANNEL{T}: :create;
elsif size >0 then
res.my_channel := BOUNDED_CHANNEL{T}::create(size);
else
res.my_channel := UNBOUNDED_CHANNEL{T}::create;
end;
res.exclusive_send_rights:= MONITORO: :new;
res.exclusive_receive_rights:= MONITORO: :new;
end; —— create

send(v:T) is
lock exclusive_send_rights then
my_channel.send(v); —-- proceed unless channel is locked
end;
end;

receive:T is
lock exclusive_receive_rights then
res:= my_channel.receive; -— proceed unless channel is locked
end;
end;
end; -- CHANNEL{T}

class VIRTUAL_CHANNEL{T} is
send(v:T) is end;
receive:T is end;

end; -- VIRTUAL_CHANNEL{T}

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS

class SYNCHR_CHANNEL{T} i§ —————————m—mmm oo oo oo oo

—-— create:SELF_TYPE;
-- send(v:T);
—-- receive:T;

-- This class is a specialization of a generic VIRTUAL_CHANNEL{T}.

-- A ‘send’ operation waits until a ‘receive’ operation is executed

-- (and a ‘receive’ operations waits until a ‘send’ is executed), so that
-- the data exchange occurs only when both parts have requested it.

VIRTUAL_CHANNEL{T};
private can_send, can_receive: MONITORO;
private tmp:T; -- Variable acting as a single position buffer

create:SELF_TYPE is

res := res.new;
res.can_send := MONITORO: :new;
res.can_receive := MONITORO: :new;

res.can_send.set;
end;

send(v:T) is

-- All ‘send’ operations are already sequentialized by the outer lock.

-- There is at most one concurrent ‘receive’ at any time.

tmp :=v; -- Store the value temporarily

can_receive.set; -—-- Allow the receiver to continue

can_send.take; —- Wait until the value has been received
end;

receive:T is

-- All ‘receive’ operations are already sequentialized by the outer lock.

-- There is at most one concurrent ‘send’ at any time.

can_receive.take; —— Wait until the value has been sent
res:=tmp; -— Read the value
can_send.set; ——- Allow the sender to continue

end;

end; -- SYNCHR_CHANNEL;

28

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 29

class BOUNDED_CHANNEL{T} i§ ——————————m—mmm oo oo oo

I
-- create(size:INT) :SELF_TYPE; -- size must be positive |
-- send(v:T); |
-- receive:T; |
- I
-- [0] [top] [bottom] [max_size]
- I [[[I [[
_— | -> | ->
- | _top_ | _bottom_

-- This class is a specialization of a more generic VIRTUAL_CHANNEL{T}.

—-- Moreover, in this case a channel is modelled as a specialization of array.
-- The data exchange between sender and receiver is partially buffered.

—— The sender must wait for the receiver when the buffer is full, and

-- the receiver must wait for the sender when the buffer is empty.

-- when the buffer neither empty nor full, any synchronization bottleneck |
-- between these two operations must be avoided. |
-- A possible way to achieve that is implementing the channel as a vector |
-- of more complex elements (ELEMENT{T}) each one of which contains all the |
-- needed information for enabling/disabling read or write operatiomns. |
I
I
I
I

-- Objects of type ELEMENT{T} contain also a feature (‘next’) which is not
-- used by this class (being all the elements stored as array elements),
-- but which is used by the next example.

VIRTUAL_CHANNEL{T}; -- this is a specialization of channel
ARRAY{ELEM{T}}; -- and also a particular kind of vector
top,bottom:INT; -- pointers into the vectors

private max_size:INT;

create(size:INT):SELF_TYPE is
res := SELF_TYPE: :new(size);
res.max_size:=size;

n:INT;

until n=size loop
res[nl]:= res[n].create; -- create buffer elements
n:=n+1;

end;

end;

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS

send(v:T) is

-- All ‘send’ operations are already sequentialized by the outer lock.
-— There is at most one concurrent ‘receive’ at any time.

-— Store the data in the vector (when possible),
-- and update the pointer to the bottom
self[bottom] .can_write.take;

self[bottom] .value := v;

self[bottom] .can_read.set;

bottom := (bottom+1).mod(max_size);

end; —-- send

receive:T is

-- All ‘receive’ operations are already sequentialized by the outer lock.
-— There is at most one concurrent ‘send’ at any time.

-— Retrieve the data from the vector (when possible)
-- and update the pointer to the top.
self[top].can_read.take;

res:= self[top].value;

self[top]l.can_write.set;

top := (top+1l).mod(max_size);

end; —-- receive

end;

—-— BOUNDED_CHANNEL

-- Objects of type ELEMENT{T} are used as components for the buffers in the |
-- examples of BOUNDED_CHANNEL{T} and UNBOUNDED_CHANNEL{T}. I
-- The feature (‘next’) which is only used by UNBOUNDED_CHANNEL{TZ} |
-- Each element has its own readable/writeable status. |

class ELEM{T} is
can_read:MONITORO;
can_write:MONITORO;
value:T;
create: SELF_TYPE is

res:= res.new;

res.can_read:= res.can_read.new;
res.can_write:= res.can_write.new;
res.can_write.set;

end;
next:SELF_TYPE; -- for easy constructions of lists (see UNBOUNDED_CHANNEL)

end;

30

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 31

class UNBOUNDED_CHANNEL{T} i§ ————————=———mmm oo oo oo

-— create;
—-- receive:T;

|
|
-- send(v:T); |
|
|

-- | _top_ | _bottom_

-- This class is a specialization of a more generic VIRTUAL_CHANNEL{T}.
-- The data exchange between sender and receiver is totally buffered.

-- The sender must NEVER wait for the receiver in order to proceede, but
-- the receiver must wait for the sender when the buffer is empty.

-- In order to allow ‘send’ and ‘receive’ operation to proceede independently|
-- when the buffer not empty, any possible synchronization bottleneck between|
-- these two operations must be avoided. |
-- In this case this is achieved implementing the channel buffer as a list

-- of independent elements (the same used in the BOUNDED_CHANNEL{T} case),

-- each one of which contains all the needed information for

-- enabling/disabling read or write operatiomns.

-- build list of elements (and used to build the list actually modelling the
-- channel buffer) the lists of free elements produced by the completion of
-- ‘send’ and ‘receive’ operations are explicitly modelled as explicit

-- instances of LIST{T}. This is done simply for readability reasons.

|
|
|
|
|
-- Even of object of type ELEMENT{T} cointain a ‘next’ feature usable to |
|
|
|
|
-- (the code would become too complex if all the list were manually handled) |

VIRTUAL_CHANNEL{T};

private -- these lists are used for recycling the created queue items;
send_free_list,
receive_free_list,
interface_free_list: LIST{ELEM{T}};

private top, bottom:ELEM{T}; -- head and tail of the buffer list

create:SELF_TYPE is
res := res.new;
res.top := ELEM{T}::create;
res.bottom:= res.top;
res.send_free_list:= LIST{ELEM{T}}: :create;
res.receive_free_list:= LIST{ELEM{T}}: :create;
end;

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 32

-- All the ‘send’ are already sequentialized by the outer lock
-- There is at most one concurrent ‘receive’ at any time
send(v:T) is
new_item:ELEM{T};
-— If the ‘interface_free_list’ is not empty, empty it and attach it
-- to the ‘send_free_list’.
if interface_free_list /= void then
send_free_list := send_free_list.append(interface_free_list);
interface_free_list := void;
end;
-- Store the data in the vector (when possible),
-- and update the pointer to the bottom
bottom.can_write.take;
bottom.value := v;
-— prepare new bottom element
if send_free_list.is_empty then
new_item:= new_item.create;

else —- RECYCLE!
new_item:= send_free_list.pop;
end;
bottom.next := new_item; —-- Append the new element to the end of the buffer
bottom.can_read.set; -- Allow reading of this element
bottom:= new_item; —-— Make the new element the new bottom
end; —-- send

—-— All the ‘receive’ are already sequentialized by the outer lock
-— There is at most one concurrent ‘send’ at any time
receive:T is
new_item:ELEM{T};
—-— Retrieve the data from the vector (when possible)
-- and update the pointer to the top
new_item:= top;
top.can_read.take;
res:= top.value;
top.can_write.set;
top:= top.next;
-— RECYCLE the element
new_item.next:= void;
receive_free_list := receive_free_list.push(new_item);
—-- If there is no danger of interfering with concurrent ‘send’
-- move the current list of free items to the shared interface
if interface_free_list = void then
interface_free_list := receive_free_list;
receive_free_list:= receive_free_list.create;
end;
end; —-- receive
end; -- UNBOUNDED_CHANNEL;

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 33

3.8 Example: Finding a max

The following two examples present contrasting ways to break up a task (max) into subtasks.

The first one does it using separate objects. The worker objects are of class MAX_MODULE
and each has a ‘main’. In this case, each worker copies a portion of the original array. In our simple
case such a copying is not actually needed, but this example gives an idea of how in general a more
complex task could be split in parallel subtasks. Once the workers have been created, their ‘main
routine is called in parallel, and the generated results are further elaborated by “max”.

The second example does much the same thing in one object, using threads to set up many
copies of the procedure ‘pmax’ for each call of ‘max’ (‘pmax’ and ‘max’ are two routines of the same
object). The threads all share the monitor ‘rmax’, which holds the running value of ‘max’. They
also can directly access the array of their object (using ‘self[i]’). The threads could even update this
array directly.

The big difference between the two styles is that the second example is more efficient, but less
flexible. In the first example, the separate worker objects could communicate with one another, call
each other’s functions, etc. In the second case, threads can only communicate by shared variables.

class MAX_MODULE{T} is ARRAY{T};
private my_base:VECTOR{T};
private my_start, my_grain:INT;

crt(base:VECTOR{T}; start,grain :INT):SELF_TYPE is
res:= res.new(grain);
res.my_base:=base; -- a reference to the global vector
res.my_start:=start;
res.my_grain;=grain;
end; ——- crt

main:T is

i:INT;

until i = my_grain loop -- make local copy of data
self[i] := my_basel[my_start +il; -- (in this case not quite necessary)
i:=i+1;

end;

res := self[0];

i:INT := 1;

until i = my_grain loop -- elaborate local data
if self[i] > res then

res := self[i]; -- update local max

end;
i = i+1;

end;

end; —-—- main

end; —- class MAX_MODULE

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS 34

class VECTOR{T} is ARRAY{T};

max: T is
-- adjust parameters
n:INT := 10; —- the maximum number of workers to use
grain:INT := 10000; -- the minimum number of operations per thread
if asize < n * grain then
n := asize / grain; —-- reduce number of workers
else
grain := asize / n; -- increase granularity
end;

—-— create and start workers

ans:MONITOR{T}:= ans.new; -- holds the queue of partial results
worker: MAX_MODULE{T}; -- each worker is a module object
i,start:INT;
until i >= (n - 1) loop -- fork first n-1 workers (if n>1)
worker := worker.crt(self,start,grain);
ans :— worker.main; -- start worker activity in parallel
start := start + grain;
i:= i+1;
end;

-- last thread gets remainder
worker:= worker.crt(self, start, asize - start);
ans :— worker.main; -- start activity of last worker

—-— collect results

lock ans.no_threads then end; -- wait for all workers
res := ans.take; —-- read the first result
until ans.is_unbound loop -— check the other queued results
next_result:T := ans.take;
if next_result > res then
res := next_result; -- update the final max
end;
end;
end; —-—- max

end; -- VECTOR{T}

3 MONITOR TUTORIAL: SUPPORTED PROGRAMMING STYLES AND PARADIGMS

class VECTOR{T} is ARRAY{T};
max: T is

n:INT := 10; —- the maximum number of workers to use
grain:INT := 1000; -- the minimum number of operations per thread
rmax:MONITOR{T} := rmax.new; -- running maximum, directly updated!
workers:MONITORO := workers.new; —— holds all the threads

rmax.set([0]);
if asize < n * grain then

n := asize / grain; —-- reduce number of workers
else
grain := asize / n; -- increase granularity
end;
i,start:INT;
until i >= (n - 1) loop -- fork first n-1 workers (if n>1)
workers :- pmax(start, grain, rmax);
start := start + grain;
i:= i+1;
end;
workers :- pmax(start,asize-start,rmax);-- last thread gets remainder
lock workers.no_threads then -— wait until all done
res := rmax.read; —-— return the result
end; -- join
end; —-—- max

private pmax(lower_bound, grain:INT;
rmax:MONITOR{T}) is -- workers, each update rmax
temp_max:T := self[lower_bound]; -- workers all share the big array
i:INT := lower_bound;
until i = (lower_bound + grain) loop
if self[i] > temp_max then

temp_max := self[i]; -- find local maximum
end;
i = i+1;
end; -- loop

lock rmax then
if temp_max > rmax.read then
rmax.set (temp_max); -- adjust global maximum
end;
end;
end; -- pmax
end; -- class VECTOR{T}

35

4 MONITOR RATIONALE 36

4 Monitor Rationale

4.1 Why a unique “monitor” construct

From Section 3, the advantages of having a unique powerful “monitor” construct instead of some
separate lower-level mechanisms should, at least in part, have become evident. Some of the fine-
points related to this choice will be discussed in Section 4.2 while the overall issue is summarized
here.

Monitors are the language means by which a program can support:

e Mutual exclusion

e [utures

e Signalling between threads
e Forking of new threads

Often these four basic mechanisms are kept separate in the language definition. E.g. it is
quite common to have “locks” used to support mutual exclusion of critical regions, “messages” or
“signals” used to suspend/resume a thread on some event, and “fork” operations executed to start
new parallel threads. At least at the operating system level, or at the run-time-system level, these
three mechanisms are often provided separately. Although there has been a great deal of effort along
these lines, it has not been so successful as to discourage other designs.

A first problem is that there is no general agreement of which should be some standard low-level
synchronization features. Many languages and systems define their own “basic primitive mecha-
nisms” and it is quite difficult to find two languages which have adopted the same choice. Just to
mention some of most common terms, we might consider the case of “spinlocks”; “locks”, “signals”,
“barriers”, “semaphores”, “lock-conditions”, “monitors”. Also when two languages or systems are
said to be inspired by the same generic concept (e.g. a “monitor”) the actual differences of the
provided functionalities might be very great (i.e. “MESA monitor”, “ Hoare monitor”, and now
“pSather monitor”).

Even when the functionality (or at least the syntax) could be more or less the same, the same
mechanism is supported with different “flavours” in different systems, actually resulting in completely
different semantics. This is true also for the most simple abstractions (e.g. a semaphore, or a
spinlock) which can, for example, differ in the way in which the suspended threads are handled (e.g.
resuming them in FIFO order, LIFO order, an unspecified order, ...)

The absence of any “standard” language construct or system primitive, makes easier the decision
to define a new language concept, at least because it removes the issue of the loss of a potential
portability to and from other systems and languages.

A second major problem in using separate low-level mechanisms; is that the basic locking/signal /fork
functionalities alone are not always at the desired level of abstraction for supporting most high level
programming paradigms. For example, “locks” and “signals” often need to be joined together into
another basic primitive modeling the concept of “lock-condition”, supporting an atomic operation
which suspends a thread on a certain condition contemporaneously releasing a held lock. Another
symptom of this is the continuous attempts to provide more sophisticated mechanism in the lan-
guage or in the system (e.g. “barrier” primitives are provided directly at the low levels of the system
or run-time). Higher level abstractions can always be built upon some lower level ones, but if we
leave this task to the user we would get a much lower efficiency (the user not being able to perform
the same degree of optimizations as the system) and we would lose the possibility of exploiting with
some syntactic sugar some desirable high level synchronization mechanisms.

One of the goals in pSather is exploring this aspect of parallel programming and this is done also
by experimenting the multiform concept of “pSather monitor”: a mechanism which can be used in

4 MONITOR RATIONALE 37

a simple way for achieving the same functionality of a basic “spinlock”, or a true suspending “lock”,
or a basic “signal”, but which allows also much more complex synchronization schemas. The idea
of having a unique built-in powerful, but flexible synchronization construct in the language seems
to us quite attractive, even though more experience is probably needed for a complete evaluation of
the usefulness of this choice.

A potential disadvantage of the choice of having a unique integrated mechanism (i.e. monitors)
instead of three separate ones (i.e. locks, signals, and threads) is that each one of the separate
mechanisms could be implemented in the most efficient way. Indeed, if having a unique “monitor”
concept results in a much more inefficient realization of critical sections and basic thread signalling,
probably the choice of having a unique multi-purpose construct should not be considered a good
choice. However, we believe that the choice of having a unique “monitor” construct is not in
conflict with the goal of being able to support in a very efficient way the other kinds of basic
synchronization mechanisms. This simply means that some care must be taken in fine-tuning the
monitor implementation in such a way as not to penalize its use in the simplest cases, and have the
compiler detect and optimize simpler cases.

Another potential disadvantage of the choice of a unique mechanism is related to the issue of
program readability. For example, if we see inside a class definition an attribute of the kind:

private my_lock:LOCK;

it is immediately clear that ‘mylock’ is going to be used to ensure mutual exclusion in the
execution of some code, or in the access of some data. This is particularly true when lock objects
are exported as part of some package interface. Let us consider, for example, the case study of
Section 3.7.

class CHANNEL{T} is
send(v:T) is ... end;
receive:T is ... end;
exclusive_send_rights: LOCK;
exclusive_receive_rights:LOCK;
end;

In the above case, an explicit declaration of a LOCK object (instead of a more generic MON-
ITORO object) makes it clear that the purpose of the object is exactly that one of allowing one
thread to gain exclusive read or write access access to the channel, e.g. by executing:

lock exclusive_send_rights then

send(..);
send(..);
send(..);

end;

Actually, this clarity is partially hidden anyway by the use of monitors, and we have to rely more
on informal comments and meaningful names for making explicit the purpose of some object:

class CHANNEL{T} is
send(v:T) is ... end;
receive:T is ... end;
-- The following monitors are used only for locking purposes.
—-- Their bound/unbound/parallel status is irrelevant with respect to
—— the class functionality.
exclusive_send_rights: MONITORO;
exclusive_receive_rights:MONITORO;
end;

4 MONITOR RATIONALE 38

But after all this is what we always do in programming, the many uses of integers also need to
be spelled out in nouns and comments.

The choice of introducing the monitor concept under the form of pSather class instead of as a
new language construct (another possibility was a special kind of class attribute), has been made
after a long discussion on its relative advantages and disadvantages. This discussion is reported in
detail inside Section 5.1 to which we refer.

Here we only mention that the differences between the two approaches were not big, and most
of what could be done in one approach can be done also with the other.

The current choice has been made because it is more in the philosophy of Sather, and of object
oriented languages in general, to include as much language functionalities as possible inside classes,
instead of building them using special purpose constructs.

Apart from the syntactic difference of some operations the major difference between the two ap-
proaches is that in the case of monitors as special constructs we have a really built-in functionality,
probably easier to optimize, and which has fixed and unchangeable semantics. The fixed and un-
changeable semantics can be a property also of the current approach (monitor classes) if restrictions
are imposed on what inheriting classes are allowed to do (and so it is). This approach, however,
leaves surely more freedom in experimenting with the monitor functionality and in investigating the
best kind of interface between runtime system and program code.

4.2 Details of the monitor design

The underlying idea on the pSather concept of “monitor”, is that it should exploit the advantages
of the fusion of the concepts of “lock”, “signal”, and “thread_call”. Actually, there are several
ways in which these basic concepts could be glued together and presented to the programmer.
Most of the new functionalities resulting from combination of locks, signals, and thread calls could
also be obtained from the original constructs themselves, often following appropriate programming
paradigms (in the following sections several examples are illustrated). We have followed the following
general criteria in the current design of monitors.

One of these criteria is the “usefulness” of the functionality (i.e. how likely is it to be used). If a
given functionality is supposed to be used quite often, it is probably better to make it predefined
either in the language definition or in some predefined library class. The “MONITOR” class
is obviously a candidate for packaging these useful functionalities, even if it is not necessarily
the unique class to serve for this purpose.

Another criteria to be taken into account is that one of “efficiency”. In particular this criteria is
important for deciding whether a certain functionality could be included inside some prede-
fined, but “normal” library class (i.e. a library class fully written in pSather, maybe with some
C interface, but which can be freely inherited and redefined) or whether a certain functionality
should be included in some “built-in” “system” class (as ARRAY classes are), for which the
compiler is able to perform specific optimizations, and maybe forbid the user from redefining
certain features.

Another important criteria is that one of “rigor”. Sometimes we want the language definition to
precisely define the semantics of some operation, making it implementation independent and
“user independent”. This is often (but not necessarily) achieved by associating the function-
ality with a specific new language construct, and/or defining special built-in system classes or
operations, of which the user ability to inherit and redefine has been constrained.

Sometimes it is just the “readability” or “ease of use” criteria which suggests the implementation
of certain functionality as a special language construct.

4 MONITOR RATIONALE 39

The effects of the above principles on the MONITOR design are described in the following
subsections.

Explicit “locking” statement

The usefulness of a new block-oriented construct for specifying a critical region controlled by a
lock is quite obvious.

With a construct:

lock m then ... end;

the language can guarantee that all the appropriate locks are released when the critical region is
completed, and that only the thread actually holding a lock is allowed to release the lock itself.
Moreover, all this can be done by the compiler, improving both run-time efficiency and program
readability.

The alternative solution, i.e. that one of providing two explicit “lock_acquire” and “lock_release”
operations seems much more error prone, and also resulting in less readable code.

Clearly this choice requires a “rigorous” semantics for locking/unlocking, but also this aspect
does not seem undesirable.

Multiple locking
If more then one resource is needed before entering into a critical section, a possibility is that
one of acquiring them in a known, deadlock-free order.

E.g lock monl then
lock mon2 then

end;
end;

One of the disadvantages of this style, is that the user must explicitly define and handle some
kind of ordering of the locks used by the program. It is considered desirable if the language could
simplify this kind of activity, requiring less effort by the user and reducing the risk of errors.

Another disadvantage of this style, is that while waiting for ‘mon2’, ‘mon1’ is held by the thread,
and this might prevent other threads requiring only ‘monl’, to continue their execution. This
problem might become really serious if for some reason ‘mon2’ becomes never available, because in
this way, a single thread deadlock might quickly propagate to many others.

The solution experimented in pSather is that one of providing a built-in construct in the language
to acquire a set of locks atomically.

With the statement:

lock monl, mon2 then

end;

the body of the statement is executed only when all the locks have been acquired, and that they
are acquired only when they are all available together.

In this way the risk of deadlock is greatly reduced, even if the price is paid in terms of fairness.
In particular, let us consider the following situation (already presented in Section 3.4, and further
analized in Section 6.2.3):

lock monl then lock mon2 then lock monl, mon2 then

end; end; end;

4 MONITOR RATIONALE 40

If we use the construct:
lock monl, mon2 then ... end;

instead of a pair of nested lock statements, it is true that we reduce the possibility of program
deadlocks, and that the overall parallelism of the program is increased. However, now it is much more
difficult for the thread needing both ‘monl’ and ‘mon2’ to be executed, because it is more difficult
for its two resources to be simultaneously available. In an extreme scenario, it is still possible that
the thread needing both locks never gets executed (if the others are executing unbounded loops).

This loss of fairness can be considered acceptable, since it might be considered as part of the
semantics of the multiple locking statements, (i.e. if it is never true that all the locks are available,
it is intended that the lock-statement should never be executed). In fact, if a stronger fairness is
needed, nothing prevents the programmer from explicitly using nested single locking statements.

Non-blocking locking
A functionality which has been considered quite useful, is the possibility to lock a monitor only
in the case in which it is actually available. It seems that this functionality should be part of the
language definition, since implementing it at the user lever might be quite complex and expensive.
This is why pSather defines the so-called try-statements:

try monl then

-- critical-sectl
else

-- something else not needing monl
end;

A possible user-defined mechanism for implementing this functionality might make use of a
specific class as in:

class NON_BLOCKING_LOCK is
MONITORO;
actual_lock: MONITORO;
end;

The conditional locking could be achieved by adopting the following locking paradigm:

monl: NON_BLOCKING_LOCK;

lock monl then
if monl.actual_lock.is_unlocked then
lock monl.actual_lock then -— no wait
unlock moni;
-— critical-sectl
end;
else
-- something else not needing monil
end;
end;

With a non-blocking version of locking statement (whose usefulness is also enriched by the
possibility of associating predicates to monitor expressions) we get also the advantages of:

e language efficiency: try-statement requires at most one locking, and is easy to implement very
efficiently.

4 MONITOR RATIONALE 41

e program readability: “try” is much more readable then the equivalent programming pattern.

e program safety: A programmer does not have to follow strange programming paradigms for
obtaining similar functionalities.

It seems that the advantages of a built-in implementation of non-blocking locking overcome the
disadvantages of a slightly more complex language definition and implementation.

Explicit unlocking
Currently pSather allows one to explicitly unlock a monitor while still executing the body of the
lock-statement which locked it.

E.g. lock m, n then
unlock n;
end;

This is an example of primitive functionality which otherwise would be impossible to support if
it were not provided in the language definition. The usefulness of this statement has already been
discussed in Section 3.2.

The unlock operation is lexically constrained to appear inside the body of a locking statement.
Moreover the monitor to be unlocked must not only be actually locked by the executing thread
(clearly an attempt to unlock a monitor not locked by the executing thread is an error), but must
have been locked by a lexically enclosing locking statement.

The intention, here, is to make as far as possible explicit the underlying synchronization pattern.
If unlock operations were allowed to appear anywhere (e.g. inside a routine), it can become very
difficult to understand the concurrent behavior of a pSather program. For this reason the following
piece of code would raise a run-time error.

m: MONITORO := m.new;
n: MONITORO := n.new;
foo is
lock m then
unlock n; -- Even if ‘mn’ is currently locked by the executing
end; - thread, its unlocking is a detected run-time error.
end;
main is
lock m then
foo; -- An attempt to unlock inside ‘foo’ is a run-time error.
-- At this point ‘m’ is still locked.
end;
end;

The unlock operation introduces some complexity in the implementation of locking statements,
because the implementation must keep track of which monitors should be released when a locking
statement is completed. We will describe an efficient implementation of this feature in Section 6.

The “unlock” functionality has been introduced as a new statement, instead of as a monitor
operation, for its similarity with the break-statement: In both case there are some lexical restrictions
on the places where they can appear.

4 MONITOR RATIONALE 42

“void” monitors in locking statements

During the execution of a locking statement it is considered a run-time error if any of the monitor
expressions evaluates to “void”. At a first glance this restriction might appear unnecessary, since
“void” values could be easily discarded.

The reason for this rule is related to the safety of locking statement, in a way partly similar to
the constraints on the use of early unlocking.

Let us consider the following code:

lock m then
—— critical section
end;

If for some previous error “m” evaluates to void, but this event is not considered an error, the
critical section would be executed without ensuring mutual exclusion. This can be terribly hard to
find.

Having a monitor expression which evaluates to void in the left-hand-side of :- does not have
these nasty consequences (since any attempt to take read or lock results into an error) but for
uniformity we have decided to also treat this case as an error.

Monitor predicates in locking statements

The usefulness of this monitor feature has already been presented with some examples in Sec-
tion 3.2. In Section 5 this will be further analyzed from a different point of view (why isn’t this
feature even more powerful).

One of the first questions raised by the possibility of locking a monitor only when a certain
test condition is true, is whether this functionality could be simulated easily by simple locking and
simple signal exchange. Even if in some particular cases this functionality can be obtained by not
so complex alternative programming styles, clearly in general this is not true.

The easiest predicate to simulate is surely the is_bound test. In fact we already have two similar
suspensive operations (read and take) which could be used to get part of the original functionality.

Simulating the other conditions (has_threads, no_threads, is_unbound) would require some prob-
ably drastic rewriting of the program, resulting in much less readable and efficient code.

Locking the “signal” operations
As already presented in Section 3.1, one of the properties of “monitors” is that we can use their
“lock” aspect to protect and control their other “signal” aspect. If fact, when a monitor is locked
by one thread, no other threads are allowed to perform read/set/take/thread-call operations on it.
This functionality can be almost completely modelled using separate lower-level lock and signal
abstractions, as the following example tries to illustrate:

class CONTROLLED_SIGNAL is

obj_lock:LOCK; -- only simple locking supported
private is_bound:BOOL;
private waiting:QUEUE{SIGNAL}; -- only ‘set’ and ‘take’ supported

create:SELF_TYPE is
obj_lock:=obj_lock.create;
waiting:= waiting.create;
end;

4 MONITOR RATIONALE 43

set is

lock obj_lock then -- get the lock
if not waiting.is_empty then
waiting.pop_top.set; -- resume first waiting thread;
else
is_bound:=true;
end;
end; —-— release the lock

end; —-set;

take is
my_signal:SIGNAL;
lock obj_lock then -- get the lock
if not is_bound then -- store my_signal

my_signal:= my_signal.create;
waiting.insert_bottom(my_signal);

else
is_bound:=false;

end;
end; —-— release the lock
if my_signal/=void then

my_signal.take; -- wait if necessary
end;

end; —- take

end;-- CONTROLLED_SIGNAL

An aspect which is very difficult to re-introduce and control in this way is the “parallel” status
of the monitor. Even if it were possible to execute a thread-call using this CONTROLLED_SIGNAL
instead of a MONITOR (e.g. making CONTROLLED_SIGNAL inherit from MONIOTRO, and
allowing the redefinition of ‘set’ and ‘take’), achieving a consistent handling of :- and thread com-
pletions would be extremely difficult.

Clearly this kind of user-defined functionality would also result in much lower efficiency than a
built-in definition.

Handling of thread completions

The current design, in which a signal (or return value) is associated to each thread upon comple-
tion, possibly used to bind the monitor (or add an element in the monitor queue), has been reached
after many revisions, some of which are presented in Section 5.5.

With the current design, we wanted to easily support the four programming styles presented in
Section 3.3, in the subsections:

e Simple “futures”

e Searching for the “first” result

e Modeling co-begin/co-end

e Many threads producing many results

The current design is supposed to be the simplest which allows us to achieve all the above goals.
One decision which might at first glance not appear fully justified, is that the signal caused
by a thread completion is not subject to the same locking constraints as the signal generated by

4 MONITOR RATIONALE 44

a set operation. Actually, there is another major difference between set operations and thread
completions, which is that a set operation on an already bound monitor does not “enqueue” the
signal or value, but directly overwrites the current value associated with the monitor bound status.

The fact is that, when monitors are manipulated by means of set, read or take operations, we
would like to see them as some kind of “protected” and “synchronized” variable (or attribute).

When monitors are used inside thread-calls they get the additional role of acting as a “controller”
for a set of threads (the attached threads), extending the idea of a “protected variable” to the idea
of a “protected queue of values”. The choice of making thread completions insensitive to locking is
justified mainly by the desire to preserve the same programming style while using a local monitor
or a shared one. In the second case, all we have to do is to use it inside a locking statement for
preventing external interferences. E.g.

m:MONITORO; —-— a local monitor;
m.clear;

m :— foo(..);

m.take;

shared m: MONITORO; —-- a shared monitor;
lock m then

m.clear; - (1)

m:-foo(..); -- (2)

m.take;
end;

Notice that, if in (2) we would disable the final binding performed by the thread ‘foo’, this second
case would result into a deadlock. This actually means that, once a monitor is locked, the completion
of its attached threads is not considered an “external” interference, since the “attached threads” are
already considered part of the monitor status (if we do not want this part of the monitor status to
possibly affect the subsequent execution we can still clear it as done in (1)).

Why a parameterized type
Whenever we execute thread-call:

int_mon :- int_function(...);

We rely on a predefined system operation which will get the integer result, using it for binding
the monitor, or storing it inside a queue. This is the basic reason for which we need a predefined
built-in parameterized version of monitors.

If monitors were only used for locking, setting, reading and taking, and NOT for forking, we
might define MONITOR{T} as a non-predefined type, simply constructed from MONITORO in the
following way:

class MONITOR{T} is
MONITORO;
private v:T;

read_value:T is
lock self.is_bound then
res:= v;
end;
end;

4 MONITOR RATIONALE 45

set_value(new_v:T) is
lock self then
self.set;
V = new_v;
end;
end;

take_value:T is
lock self.is_bound then
res:= v;
self.take;
end;
end;
end; -- MONITOR{T}

We have also an efficiency gain, since predefined classes are more optimizable by the compiler
and runtime system than user-defined classes.

Why a non-parameterized type

Since MONITOR{T?} is needed as a primitive type, then why don’t we get rid of MONITORO?
After all, we might suppose that if a procedure, and not a function, is forked from a monitor ‘m’ of
type MONITOR{T}, a “void” value is simply used to bind the monitor (or enqueued).

A drawback of this possible approach, is that currently we can write:

m : MONITORO;

m :— int_function(11); -— return value discarded
m :— bool_function(22); -— return value discarded
m :— real_function(33); -— return value discarded
m :— some_procedure(44);

lock m.no_threads then end; —-— wait for all

Meaning that, in the case in which we fork some function, the return value is discarded (but not
the completion signal). But now, if we use a typed monitor instead of MONITORO, as in:

m : MONITOR{SOME_TYPE};

m :- int_function(11);
m :- bool_function(22);

This would be now illegal, since INT is probably incompatible with SOME_TYPE, and in any
case incompatible with BOOL, etc. We now have stricter type rules to follow.

Another problem is that now we can write:

m : MONITORO;
m.set; -- ‘set’ has no parameters

while if we use any instantiation of the parameterized version, we have to use a dummy value as a
parameter of the ‘set’ operation. I.e. the above would become:

4 MONITOR RATIONALE 46

m : MONITOR{SOME_TYPE};
m.set (dummy_value); -— at best it could be ‘void’

If we simply need to set the bound status, having to specify some dummy value in any case is
not nice.

4.3 Inheritance

One of the effects of introducing in pSather the monitor functionality under the form of classes, is
that the user is now allowed to define new classes which inherit from the predefined ones.

We do not want to give the user the possibility of changing the semantics of lock-statement or
thread-call. This means that classes inheriting from MONITOR{T} do not have visibility of the
internal operations and structures used by the runtime system.

Not having the visibility of the internal structures, means also that the user is unable to give
any reasonable redefinition of operations like set, read or take. This is why also these operations are
made not redefinable inside the descendent classes.

Allowing the user to add new functionalities

What a user is allowed to do inside a class which inherits from a MONITOR class, is to add new
features completely unrelated to the original monitor functionality, or to extend the primitives with
extra functionality (using a new name for the extended version).

For example, a next: MONITORO feature could be added in order to simplify the handling of
lists of monitors without having to explicitly embed them inside other structures. Similarly a

“fetch_and_add” operation could be added to an INT instantiation of MONITOR{T}.

E.g. class INT_MON is
MONITOR{INT};
fetch_and_add(incr:INT):INT is
lock self.is_bound then
v:INT := self.take;
self.set(v+incr);
res:=v;
end;
end;
end; —- INT_MON

The following is an extension of the predefined take allowing to collect some kind of profiling
information on the monitor.

my_take is
lock self.is_bound then
self.take_counter:= self.take_counter + 1;
self.take;
end;
end;

For easiness of writing, finally, it could be useful to define:
join is

lock self.no_threads then end;
end;

5 DISCUSSION OF ALTERNATIVE CHOICES 47

5 Discussion of alternative choices

In this section we summarize some aspects of the monitor design for which alternative solutions had
been considered at some time, even though they were discarded eventually. Some of these points
have required long discussions and analysis before being dismissed, others have had a much shorter
life.

The reading of this section is not essential for a comprehensive understanding of the current
design and rationale (which are also structured in different sections), but might still give some
insights to the interested reader.

5.1 Predefined classes vs. special entities

Two main approaches have been discussed at length about how to introduce in pSather the “monitor”
functionality. They are first briefly introduced, and their advantages and disadvantages compared.

5.1.1 Monitors as special declarations

The first approach (referred to as “monitors as special declarations”) is to introduce in pSather a
new declarator which allows one to specify when a class feature or variable should be considered a
monitor.

i.e. if we declare:

class A is
monitor m :INT;

end;

This means that the ‘m’ attribute, beyond being an integer attribute, has also all the properties
of monitors. Upon creation it is unbound, hence any attempt to read its value before it has become
bound causes the thread to become suspended. (Similarly if ‘m’ is a local variable or a shared)

foo is

monitor m :INT;

n:INT := m; —- the thread becomes suspended
end;

The monitor entity ‘m’ becomes bound when some value is assigned to it:

foo is
al:A := A::new;
al.m := 111;
n:INT := al.m;
end;

or when a thread forked from the monitor finally terminates:

foo is

monitor m: INT;

m :- new_thread(..);

n:INT:= m; -— wait until ‘new_thread’ is terminated
end;

In addition to the operations defined by its type, a monitor attribute supports the take operation
a language keyword) and can appear inside locking statements.
guag g

5 DISCUSSION OF ALTERNATIVE CHOICES 48

foo is
al:A := A::new;
al.m := 111; -— now ‘al.m’ becomes bound
n:INT := al.m.take; -- now ‘al.m’ becomes unbound again
lock al.m.is_bound then -- wait until ‘al.m’ is bound, then lock it
al.m.take; -- at this point ‘al.m’ was surely bound,
end;
end;

5.1.2 Monitors as objects

The second approach (referred to as “monitors as objects”) consists of packaging the monitor func-
tionalities inside a parameterized class MONITOR{T};

In this case, there is no special kind of attribute, but any attribute, local variable or routine
parameter can hold a reference to a monitor object, by simply being declared of type MONITOR{T}.
This is the current design described in this report.

Since the type of a monitor object is MONITOR{T}, and not T, we have the immediate con-
sequence that m1 := m2 (if ‘m1’ and ‘m2’ are two monitor objects) now means that the variable
‘ml1’ now holds a reference to the same object as ‘m2’, and not that the T value of ‘m2’ is read
(supposing ‘m2’ is bound) and used to bind ‘m1’. If we want to get the T value associated with
a monitor object ‘ml’, now we have to use an explicit reader operation, and if we want to bind a
monitor object with a new T value we must use an explicit writer operation:

class A is
m:MONITOR{INT};

end;
foo is
al:A;
al.m.set(111); -- the object referred by ‘al.m’ becomes bound
n:INT:= al.m.read; -- the value of the monitor referred by ‘al.m’ is read
end;

5.1.3 Advantages of the “monitors as special declarations” approach

Implicit binding and reading operations A bound monitor can be accessed as simply as any
other attribute or local variable.
For example, we can write:

class A is
private monitor m: INT:

incr is
m:= m+1;
end;
end;

On the contrary, in the “monitors as objects” case we have to use the less pleasant syntax:

5 DISCUSSION OF ALTERNATIVE CHOICES 49

class A is
private m: MONITOR{INT};

incr is
m.set(m.read +1);
end;

However, we could also argue that the simpler syntax for monitor entities is even too simple
because it hides behind an apparently normal assignment and entity name evaluation a much more
complex interaction (i.e. the fact that the thread calling ‘incr’ might become suspended when reading
the integer value of ‘m’, if ‘m’ is unbound or locked).

Actually, writing m:=m+1 is much easier than writing m.set(m.read +1), and the writer is likely
to be aware of the fact that ‘m’ is a monitor.

Monitor entities are not variables When a class declares a monitor attribute, the program
syntax makes very clear the fact that the monitor is some kind of stable (constant) property of the
objects of the class.

Le. in the following example:

class A is

monitor m:INT; -— (1)
foo is
lock m then - (2)
if not m.is_unbound then -- (3)
m.take; -— (4)
end;
end;
end;
end; —— A

It is perfectly clear from the class definition that ‘m’ denotes exactly the same monitor “entity’
in all the points (1),(2),(3), (4). This increases the program readability and allows the compiler
to perform some kind of optimizations (e.g. not to check for the locked status in (3)).

The above example, in the case of “monitors as objects” would become:

class A is

m: MONITOR{INT}; -— (D
foo is
lock m then -— (2)
if not m.is_unbound then -— (3)
m.take; -— (4)
end;
end;
end;
end; —— A

Even if the structure of ‘foo’ is exactly the same, now ‘m’ denotes a necessarily non-constant
reference to a monitor. In particular, when an A object is created by a ‘A::new’ operation, ‘m’ is
“void”. In this case probably a ‘create’ operation is needed to properly initialize the value of ‘m’,

5 DISCUSSION OF ALTERNATIVE CHOICES 50

and only a global checking of the class code allows us to deduce that, once initialized, the monitor
denoted by ‘m’ is always the same. In this case, in fact, attributes of type MONITOR{T} behave
as variables holding some monitor object reference; and they no longer directly denote a constant
monitor entity.

We can probably argue that this loss of expressibility in the “monitor as objects” case is due to
the Sather weakness of not allowing object-based constant attributes (i.e. attributes which get their
initial value from their initialization expression, and which cannot be further assigned during the
lifetime of the object to which they belong).

Another annoying consequence, in the case of “monitors as objects”, is related to the fact that
they normally behave as variables. It is that directly exporting (as a public feature) an attribute of
type MONITOR{T} might give the clients of the class the wrong impression that they should have
some reason for assigning a value to the attribute itself from the outside.

Actually the declaration of a public attribute of type T is something which explicitly says: “Hi,
I am a directly READABLE and WRITABLE attribute of type T”.

If this is not what intended by the class designer, in order to have its code deliver the correct
message to the reader, we have to write:

class A is

m:MONITOR{INT} is res:= my_m; end; —-- a reader function
private my_m: MONITOR{T}; -- a private object
end;

that is, to declare the attribute as private and export a reader function which returns its value.
Alternatively we could write something like:

class A is
m:MONITOR{INT};
-- BEWARE! THE ABOVE ATTRIBUTE SHOULD NOT BE TARGET OF ASSIGNMENTS!

end;

In the previous case the first situation is formally more correct, and some language tool could
easily understand that the monitor is not updated from the outside of the class, without studying all
the program, but just noticing that it is declared as private. However the class looks more complex
for an human reader, and the code is less efficient. In the last case, the comment makes clear for
other readers the intentions of the designer of the class, but unfortunately they are usually not
correctly interpreted by most of the language tools (typically no compiler will give any warning if
some client wrongly updates the attribute value).

In any case, unless object-based constants and local attribute initializers are introduced in the
language, the clarity and efficiency achievable in the case of “monitors as special declarations” can
hardly be matched by the other approach.

No need of explicit monitor creation Since the monitor aspect of monitor attributes is directly
part of the attribute structure, we do not need any explicit creation operation to be called to set up
this kind of object information.

Le. in the case:

class A is
monitor m:INT;

end;

5 DISCUSSION OF ALTERNATIVE CHOICES 51

Each time an ‘a’ object is created (of type ‘A’), automatically a monitor entity is created and
associated with the ‘a.m’ attribute.

On the converse, in the “monitors as objects” case, there is no special kind of information
associated with any attribute, since all the needed monitor structures are part of the monitor objects
eventually pointed by the class attributes. This implies that these monitor objects have to be
explicitly created.

E.g. the above example would become:

class A is
m: MONITOR{INT};

create: SELF_TYPE is
res:= res.new;
res.m:= res.m.new;
end;
end;

For very simple classes, this might imply the definition of an additional ‘create’ routine, which
might otherwise often be avoided. Apart from the greater complexity of the resulting code, the
additional function call might have an impact also in terms of efficiency.

The situation in this second case improves if we are allowed to specify initializers at the point of
declaration of class attributes (supposing that any call to ‘A::new’ properly initializes all the class
attributes).

e.g. if we are allowed to write:

class A is
m: MONITOR{INT} := m.new;
end;

The current design allows this kind of attribute initializations, which should however be used
with care in order to avoid unbounded recursions during creations.

Stack allocation for monitor local variables Another advantage of having the monitor status
directly associated with a language construct, is that in the case of monitor local variables the
information relative to the monitor status could be stored into the current stack frame, instead of in
the heap. The advantage of this choice is essentially less memory garbage, thus reducing the need
of garbage collecting, and probably also a greater efficiency not having to ask for memory from the
program heap and achieving a greater locality of the program data.

Notice in fact that no other references to a monitor local variable can exist when the routine
declaring the monitor is terminated, because monitor entities cannot be passed as routine parameters
and cannot be assigned (only their value can be accessed).

5.1.4 Advantages of the “monitors as objects” approach

Explicit binding/ reading operations We have discussed in the previous Section the advan-
tages of a simpler syntax for monitor reading and binding, from the point of view of the programmer
who can simply write ‘m := m+1’ instead of ‘m.set(m.read +1)’.
However, classes are often written once (by one person) and read many times, by many persons.
And when reading a class routine:

5 DISCUSSION OF ALTERNATIVE CHOICES 52

foo (x:INT) is
a.m:= 111+x;
n := a.m;
b.bar(a.m);

end;

it might actually be helpful to be able to understand, at a glance, that ‘a.m’ is a monitor and
not simply an integer attribute, because this fact gives some immediate insight on the concurrent
structure and execution costs of the program.

So the fact of having explicit read/set operations might be considered an advantage from the
point of view of program readability, because it makes more evident the concurrency aspects of the
program.

Finally, if the binding operation is explicit, we can easily suppose the existence of a parameterless
‘set” operation used for binding a typeless monitor (i.e. a monitor not associated with any T value).

E.g. class A
m: MONITORO;

foo is
m.set;
m.take;
end;
end;

In the case of “monitors as special declarations” we would still be able to define a typeless monitor
entity, but we would probably need an additional explicit operation to be able to bind it.

E.g.
class A
monitor m; -- without any specific type
foo is
m.set -- instead of ‘m := ...’
m.take;
end;

Monitor objects and monitor types are sometimes necessary One of the intended uses of
monitors, is that of constituting a reference to some ongoing concurrent computation, whose result
will be used to bind the monitor itself. When this functionality is packaged inside an object, what
we obtain is a so-called “future”, that is, an object whose reference can be freely assigned or used as
actual parameter, but which initially does not yet hold a defined value. This “future” functionality
is directly modeled by the monitor abstraction in the case of “monitors as objects”, while in the
case of “monitors as special declarations” can be supported by a library class of the kind:

class MONITOR{T} is
monitor m:T;
end;

Objects of this class are very similar to the monitor objects in the “monitors as objects” case, the
main difference being the fact that the monitor properties of these objects are explicitly associated
with their ‘m’ attribute (and the syntax for binding and reading is different) and not with the object
itself.

I.e. in the “monitors as special declarations” case we have to write:

5 DISCUSSION OF ALTERNATIVE CHOICES 53

my_mon: MONITOR{INT}:= my_mon.new;

lock my_mon.m then —— Lock the monitor
my_mon.m:- forked_thread(..); -- Fork a thread
n:INT := my_mon.m.take; —— Wait the thread termination
end;

In the “monitors as declarations” case, the class MONITOR{T} plays a very important role,
because the explicit use of this type name is needed if we want, for example, an array of monitors,
a stack of monitors, or simply to pass a monitor reference to a routine.

In all these cases, in fact, we cannot avoid to use an explicit monitor type name as in:

my_vect: ARRAY{MONITOR{INT}};
my_stack: STACK{MONITOR{INT}};

foo (monitor_arg: MONITOR{INT}) is ... end;

From this point of view, the “monitors as objects” case has the advantage of generating a more
uniform language, being monitor objects. Above all, monitor types are probably unavoidable in
many cases.

Memory allocation In the previous Section we have said that an advantage of the “monitors as
special declarations” approach was the possibility to allocate the monitor data on the stack instead
of from the heap (producing less garbage, and improving data locality).

One of the disadvantages of that approach, however, is that the lifetime of a monitor is necessarily
tied to the lifetime of the declaring routine. The threads forked from a monitor declared as a monitor
local might have a much longer lifetime, and when terminating, they should be able to detect that
the original monitor no longer exists. This makes the overall semantics of forking threads a little
strange, and in any case makes the implementation of threads more complex.

If monitors are heap-allocated instead, their memory space is not released until all the forked
threads are terminated, and a forked thread can rely on the fact that its monitor still exists for the
final binding operation.

Clearly, nothing prevents an implementation from allocating monitors on the heap also in the case
of “monitors as special declarations”. However, if an implementation adopts this choice (allocating
them in the heap and not releasing their space upon the routine completion) a lot of memory garbage
is produced in an hidden way, which the programmer cannot neither see nor control.

At this point it is much better to make the creation explicit and under user control, so that, if
memory is a concern, the user might rely on its own recycling of monitors (e.g. handling a pool of
objects) instead of continuously creating them and putting them into the garbage.

Finally we could argue that, if data locality and non-heap allocation were a language goal,
probably this kind of issues should be handled in a more general way and not restrict them to the
monitor case.

One less declarator If monitor are just a particular kind of objects, of type MONITOR{T}
or MONITORQO, there is no need of the special “monitor” declarator. This makes the language a
little simpler, and maybe easier to maintain in the long term. E.g. if in the future a new kind of
synchronization type is found useful, it is much easier from the compiler point of view to introduce
a new class other than a new declarator, since this does not affect all the compiler front-end.

5 DISCUSSION OF ALTERNATIVE CHOICES 54

Sather philosophy of classes Probably it is more in the philosophy of object oriented languages
in general, and in Sather in particular, to include as much language functionality as possible inside
classes, instead of building them inside special purpose constructs. E.g. often also arrays are
introduced in the language just like a normal parameterized class, even if in Sather, for efficiency
reasons, this choice has not been adopted.

Possibility of extending the definition (inheritance) One of the major impacts of the “mon-
itor as objects” approach, is that, at least in principle, it becomes now possible to define new classes
which inherit from the predefined ones, e.g. adding new attributes and features.

If adding new independent features (which do not interfere with the original monitor semantics)
is a clean and safe practice, the possibility or redefining the main synchronization features (i.e. the
set or take operations) might be the source of major program inconsistencies.

How to constrain what can be done by the classes which inherit from a monitor class is still an
issue not completely investigated, and which poses interesting problems. From one side, in fact, we
do not want to give the user the possibility of interfering with the basic runtime system functionalities
(i.e. the semantics of locking and :- should not be affected by any user defined code). From the
other side it is really interesting to investigate the possibility of allowing the user to define new kinds
of monitors. E.g. “instrumented” monitors which collect statistics on their usage, or which log into
a file all the operations performed on them for a subsequent program execution analysis.

For now we can suppose that monitor classes behave in a way very similar to the array classes.
I.e. the user can extend them with new independent features, but not redefine predefined operations
(e.g. the meaning of indexing).

5.1.5 Conclusions

The differences between the two approaches are not big, and most of what can be done in one
approach can be done also with the other. Apart from the syntactic difference of some operation
(i.e. direct reading/ assigning vs. read/set operations), the major difference is that in the “monitors
as special declarations” case we have a really built-in functionality, probably easier to optimize,
and which has fixed and unchangeable semantics. The fixed and unchangeable semantics CAN be
a property also of the other approach (“monitors as objects”), if restrictions are imposed on what
inheriting classes are allowed to do. This second approach, however, also leaves more freedom in
experimenting with the monitor functionality and in investigating the best kind of interface between
runtime system and program code.

5.2 Disjunctive locking

Disjunctive locking is one of the features which has not been introduced in the pSather definition.
A possible syntactic presentation of “exclusive locking” might be following:

lock monl then
—-— critic-sectl
or_lock mon2 then
—-— critic-sect?2
end;

With the above we might express the intention that, if ‘monl’ is available then it is acquired and
the first critical region is executed, otherwise if ‘mon2’ is available then ‘mon2’ is acquired and the
second critical region is executed, else the thread is suspended until one of the two locks becomes
available, after which it is acquired and the corresponding critical section is executed.

While approximating the required behavior by means of busy-waiting is quite easy, achieving the
same result by thread suspension and resumption is quite harder. For example we might make use

5 DISCUSSION OF ALTERNATIVE CHOICES 35

of signals and conditional locking in the following way. Suppose that whenever one of the two locks
‘monl’ or ‘mon2’ is released, a signal ‘retry’ is set:

monl, mon2, retry: MONITORO;

until done loop
done:=true;
try monl then
-- critic-sectl
retry.set;
else
try mon2 then
-- critic-sect2
retry.set;

else
retry.take;
done:= false;
end;
end;

end;

Clearly the above implementation is less fair than what the language itself could guarantee with
an explicit lock ... or_lock ... end; statement. Moreover we must rely on the fact that a
consistent programming style is used by the programmer(s) (i.e. ‘retry’ is always set when a lock is
released). However, since this kind of functionality does not seem very common, the disadvantages
of the user-based approach seem preferable to the additional complexities which would otherwise
need to be introduced in the language.

5.3 Atomically unlocking and waiting on another condition

Suppose that, while holding the lock of a first monitor, we want to atomically release the lock and
wait on some other condition (represented by the taking of a second monitor).

Currently, if we write the following code, we simply wait on the second monitor leaving our first
monitor locked.

lock my_mon then
$££er_mon.take;
end;
On the other hand, if we write:

lock my_mon then

unlock my_mon;
other_mon.take;

end;

it might happen that between the time we release the first monitor and the time we take the
second one, some other thread locks our first monitor and takes the second one, thus violating our
atomicity assumption. (suppose the first monitor was supposed to protect the second one)

5 DISCUSSION OF ALTERNATIVE CHOICES 56

This particular kind of synchronization (releasing one monitor and taking another) could be
obtained by an extension of the monitor operations.

Suppose that we introduce a new “unlock_taking” statement which has the effect of atomically
releasing the lock of a monitor and waiting until it becomes bound. In this case we could solve the
original synchronization problem in the following way:

lock my_mon then

lock other_mon then
unlock my_mon;
unlock_taking other_mon;
end;

end;

Even more generality would be achieved by allowing the “unlock_taking” statement to work on
two different monitors (i.e. unlocking the first one and taking the second one).

But this risks to become an open door for all the possible combinations of two-monitor synchro-
nization primitives.

An example of the usefulness of a “unlock&wait” operation is the common paradigm associated
with standard (HOARE [26]/ CONCURRENT-PASCAL [14]) monitors.

The following is a typical example of HOARE-monitor construct (in Sather syntax):

class HOARE_BOUNDED_BUFFER{T} is

private non_empty:CONDITION;
private non_full:CONDITION;

append (x:T) is
if <buffer full> then
non_full.wait;
end;
<store element>
non_empty.signal;
end;

remove:T is
if <buffer empty> then
non_empty.wait;
end;
<delete element>
non_full.signal;
end;

end; -- HOARE_BOUNDED_BUFFER{T}

The underlying programming pattern is that, when any of the ‘append’ or ‘remove’ operation
is called, the buffer is locked by the executing thread (so that all the class operations are mutually
exclusive). If the operation can be completed the buffer lock is released at the end of the operation.
If the operation cannot be completed immediately, the buffer lock is released, while the thread is
contemporaneously suspended on its completing condition. When a thread is resumed, it gets again
the buffer lock and completes its previously suspended operation.

5 DISCUSSION OF ALTERNATIVE CHOICES 57

The above programming pattern can be easily supported in pSather, introducing a new attribute
in the class, explicitly modeling the buffer lock and adding two others attributes modeling the queue
of events.

E.g.

class BOUNDED_BUFFER{T} is
private buffer_lock: MONITORO;
private not_full: CONDITIONS;
private not_empty: CONDITIONS;

create(n:INT):SELF_TYPE is ... end;

append(x:T) is
buffer_lock.take;
if <buffer-full> then
not_full.wait(buffer_lock);
end;
<store the element>
non_empty.signal(buffer_lock);
end;

remove:T is
buffer_lock.take;
if <buffer empty> then

not_empty.wait(buffer_lock);

end;
<remove the element>
not_full.signal(buffer_lock);

end;

end; -- BOUNDED_BUFFER{T}

class CONDITIONS is
QUEUE{MONITORO};

wait (my_lock:MONITORO) is
my_event :MONITORO:= MONITORO: :new;
insert_bottom(my_event);
my_lock.set; -— release buffer lock
my_event.take; -- wait for my event
end;

signal (my_lock:MONITORO) is
if is_empty then

my_lock.set; —-— release the buffer lock;
else
pop_top.set; -- resume suspended operation
end; -- leaving the buffer locked for it

end;
end; -— CONDITIONS

Instead of using an explicit queue of events for modeling the wait conditions, in certain cases

5 DISCUSSION OF ALTERNATIVE CHOICES 58

(i.e. when the wait conditions are pre-conditions) we might make use of the implicit queue of the
monitor definition. For example, the bounded buffer (which is one of these simpler cases) might be
re-written in pSather as:

class BOUNDED_BUFFER{T} is

private buffer_lock:MONITORO; -- sequentialize append/remove
private not_full, not_empty:MONITORO; -- preconditions for append/remove

create(size:INT):SELF_TYPE is
end;

append(v:T) is
not_full.take; -- wait until allowed to store data
lock buffer_lock then -— ensure mutual exclusion with remove
<store element>
not_empty.set;
if <not buffer full> then
not_full.set;
end;
end; -- lock
end; —-—- send

remove:T is
not_empty.take; -- wait until allowed to read
lock buffer_lock then -- ensure mutual exclusion with append
<remove element>
not_full.set;
if <not buffer empty> then
not_empty.set;
end;
end; —--lock
end;
end; -- BOUNDED_BUFFER{T}

In conclusion since it does not seem difficult to write the appropriate abstractions explicitly using
monitors and signals, it is probably better not to introduce additional primitives to the already
available ones. After all, the HOARE-MONITOR abstraction is not the best concurrent style which
is encouraged by pSather. In fact there is in general no reason for forcing all the operation of a
class to be fully sequentialized. For example, the definition of CHANNEL (Section 3.7) provides a
better implementation of a bounded buffer, which allows append and remove operations to proceed
in parallel.

5.4 Predefined monitor test operations

We note the absence of the obvious monitor predicate is_locked. Actually, in earlier versions of the
language this predicate was defined. It has been removed for essentially three reasons:

e It can be easily defined, if needed, by explicitly introducing in a subtype of MONITOR the
definition:

5 DISCUSSION OF ALTERNATIVE CHOICES 59

is_locked:BOOL is
try self then
res:= false;
else
res:
end;
end;

true;

e The pure “is_unlocked” functionality is not so useful, in practice, because the monitor could
immediately be locked. The ‘try’ statement is much safer.

o If “is_locked” were a predefined predicate, either we had to introduce a non-uniformity in the
use of predefined predicates inside locking statements, or we had to allow the following coding:

lock m.is_locked then

end;

whose semantics is clearly inconsistent.

Another observation is that, since the bound status of a monitor is associated with a value, we
could have introduced a predefined test of the kind:

monitor.has_value(v);

Clearly the only usefulness of this predicate would be as a locking predicate, to suspend a thread
until a monitor becomes not only bound, but bound with a specific value. Notice that this predicate
would require a check of the predicate at every “set” operation, while currently a “set” operation
might affect a thread suspended on a locking statement only if the monitor was unbound.

E.g. if ‘int_mon’ is of type MONITOR{INT}
lock int_mon.has_value(0) then end;

This additional predicate has not been considered worth the additional (mainly conceptual)
MONITOR class complexity.

5.5 Alternatives for forking

The current design for controlling concurrent threads has the goals of supporting at least four major
paradigms (Section 3.3):

e Simple “futures”

e Searching for the “first” result

e Modeling co-begin/co-end

e Many threads producing many results

Actually, if a less ambitious objective is taken, it is possible to reach alternative and simpler
designs.

The simplest alternative, for example, might be aimed to support only the “simple future”
paradigm, raising a run-time error if an attempt is made to fork a thread on an already active

5 DISCUSSION OF ALTERNATIVE CHOICES 60

monitor. In this case we no longer need a queue of values inside the monitor, and its overall
functionality is quite simplified. In this case, if we really want to fork several activities in parallel,
we have to use a different monitor for each of them. New classes should probably be defined for
supporting more complex operations on more than one thread (such as waiting until one of them, or
all of them, are terminated). This alternative is attractive for its simplicity, but unfortunately the
development of the needed library classes risks to be quite difficult. Moreover, in order to get the
task done with a reasonable efficiency, we have probably to make them predefined built-in classes,
thus reintroducing the complexity in another part of the language.

Another alternative, which for some time was a good candidate for the final design, is to allow
multiple forking on the same monitor, but without queuing all the returned results. In this case,
whenever a thread completes it would perform a “set” operation possibly overwriting a previous
result. In this case we are able to support three of the four desired programming paradigms, losing
the case in which all the results are of interest. Moreover the possibility of a continuously changing
value of the monitor would introduce a certain degree of non-determinism in the program execution,
which is not at all pleasant.

6 IMPLEMENTATION 61

6 Implementation

We have prototype implementations of pSather on a Sequent running DYNIX(R) V3.0.12, and on
Sun Sparcstations running SunOS 4.1.1. The pSather compiler is derived from the Sather compiler
without the debugger support[42]. The runtime support has been extended from that of Sather.

6.1 Compilation

The extension to Sather compiler involves the expansion of the statement and expression class
hierarchy ([42]) to handle the new syntactic constructs. These classes are used in the abstract
syntax trees to represent the new constructs:

DEFER_ASSIGN_STMTOB_S. Represents deferred assignment statement.

LOCK_STMTOB_S. Represents lock-statement.

TRY _STMTOB_S. Represents try-statement.

UNLOCK_STMTOB_S. Represents unlock-statement.

LOCK_EXPROB_S. Represents expression found in the locking-statements.
The extension of the compiler has followed the design principles:

e We wanted the same compiler for both the Sparc and Sequent implementations. Thus, the
pSather compiler has to generate C code which is acceptable by both machines and gets
compiled correctly. The main differences between the versions are due to the following:

— There is a distinction between shared and private data on the Sequent.

— Shared and constant features in classes are implemented as global variables.

As a result, a minor change is needed so that shared variables are declared correctly for shared
and constant features. Using C macros, the generated code:

extern /+#shared*/ SHARED _DATA_ ptr SYS13_class_table_;

is acceptable on both machines. Our compiler is currently portable for both machines.

e We avoid any major modification of existing compiler classes. To handle new language con-
structs, it is unavoidable to construct new classes (eg LOCK_STMTOB_S). However, we have
created a new class for monitor expression (LOCK_EXPROB_S), even though it seems unnecessary
at first. This allows us to avoid modifying the other expression classes to check for the special
case when the expression occurs in a locking-statement. In this way, the object-oriented design
of the compiler has allowed us to handle extensions without major modification to the existing
compiler classes and overall compiler structure.

e We generate specialized code where possible. This allows C runtime routines to be written in
an efficient manner for the common cases. For example, a locking statement:

lock <expril>, <expr2>....<exprn> then
<statement list>

end;

1s translated into:

6 IMPLEMENTATION 62

templ <- <expri>
temp2 <- <expr2>

tempn <- <exprn>

grab_locks(templ, temp2, ..., tempn);
<statement list>
release_locks(templ, temp2, ..., tempn);

Although a general routine can handle any number of monitors to be locked, the compiler
generates calls to different runtime routines when the number of monitors is 1 and when the
number of monitors is more than 1. (With more experience at programming in pSather, we
might decide that it would be worthwhile to distinguish among 1, 2 or more than 2 monitors.)

e As both the language design and runtime support has evolved continuously, we avoid building
fixed constants into the compiler. Examples are the names of predefined monitor operations
and predicates, and the layout of monitor objects (as described in Sections 6.1.1 and 6.2.2).

e We try to retain Sather’s concept of optional runtime error checking. For example, in a deferred
assignment:

m:— £(...)

it is a runtime error if ‘m’ is void. Since this is similar to the case in which we try to access an
attribute of a void object, the strategy to handle this runtime error is similar to that described
in [42]. Runtime checking in pSather is further discussed in Section 6.2.1.

Next, we describe the extensions in the compilation process to handle:
e Predefined MONITORO and MONITOR{T} classes
e Deferred assignment

e Locking- and unlock-statements

6.1.1 Monitor Classes

MONITORO and MONITOR{T} are predefined classes in pSather. From previous sections, we see that
a monitor object needs extra slots to keep track of runtime queues, locking status etc. A simple
solution would have been to define private attributes in the definitions of MONITORO and MONITOR{T}
classes. This, however, would restrict a descendent of a monitor class from using any names used
for the private attributes. Two implementations were considered.

e One alternative is to tell the pSather compiler about extra allocated space for monitor classes.
The information would be in the form:

(<class name>, <extra number of bytes>)

However, this method will not work well because MONITOR{T} is a parametrized class and one
of the extra attributes (containing the value in a monitor) has type T. Hence the extra number
of bytes needed for a MONITOR class differs from one instantiation to another.

e The current pSather compiler dynamically decides the extra amount of space needed for a
monitor. On certain command switches, the compiler will handle differently the class defini-
tions it reads in. Normally, class definitions are installed in a global table, and instantiated
and expanded later. In this special case, the routines are marked non-redefinable, and the
attributes are marked invisible.

6 IMPLEMENTATION 63

Read a class definition.
If <Class is not previously defined>

Install class definition.
Elsif <Compiler is handling predefined class+features>

Add the new features to previous definition:

-— Routines are marked non-redefinable.

—— Attributes are marked invisible.

(There is no use for shared/constant features.)

Endif

This implementation has several advantages:

Variable Preallocated Space The total sizes required by the invisible attributes are computed
and added to the base size of the object. The extra space for a monitor object can be easily
varied by adding or removing attribute definitions in a file containing Sather class definition.
This allows us to easily experiment with different implementations of the monitor object,
without installing a new version of the compiler.

Avoid Name-Space Cluttering These invisible attributes are not considered in other phases of
computation, and a user may reuse any name of the invisible attributes without conflict. That
is, even though we may use the name ‘active_queue_size’ to specify a slot for storing the size
of active queue associated with a monitor, the user can write the following:

class M_DESCENDENT is
MONITORO;
active_queue_size:INT;
end;

and still access the user-defined attribute correctly.
Efficient Runtime Access By maintaining the following properties:

e The ordering of the invisible attributes must be preserved according to what is given in
the class definition.

e The space for these invisible attributes is always allocated before the user-defined at-
tributes.

The location of, say ‘active_queue_size’, in any monitor object is fixed and the runtime code
can access these fields in the monitor directly without consulting any runtime table. (We will
describe the layout of monitor objects in Section 6.2.)

We have seen how the compiler handles the allocation of space for monitor objects. Next we
describe how the compiler checks for monitor operations and predicates. We have the following
requirements:

e We want the predefined monitor operations and predicates to have a fixed semantics, so that
a user cannot redefine routine such as ‘is_unbound’ in a monitor class.

e On the other hand, disallowing a user to define a feature named ‘is_unbound’ in a non-monitor
class is too restrictive. A user should be able to reuse the same identifier in a non-monitor
class to denote any feature.

e Any call to a predefined monitor operation, eg m.take should call a runtime C routine directly.
This eliminates the extra costs of calls via a Sather interface.

6 IMPLEMENTATION 64

The current implementation meets these requirements by treating monitor operations and predi-
cates like any other class features. However, as described in the treatment of MONITOR class, they are
marked as non-redefinable, so that the compiler is able to check that no descendent class of MONITORO
or MONITOR{T} redefines routines such as ‘is_unbound’. Since these features are predefined only
with respect to monitor classes, a user can reuse such identifiers as ‘is_unbound’ in other classes.

In order to call the runtime C routine directly, we adopt the following name convention for non-
redefinable Sather routines. During C code generation, a predefined operation say ‘is_unbound’ will
be associated the C name formed by:

<Class-definition-name>_<Routine—name>_

Hence the code “m.is_unbound” where ‘m’ is of type MONITORO will be translated as “MONI-
TORO_is_.unbound_(m)”. This C name convention departs from that followed by user-defined rou-
tines which is described in [42]. In the case of operations such as ‘take’ which involve type parameters,
the C name is formed by:

<Class—definition-name>_<Routine-name>_<C-type-of-type-parameter>_

so that “m.take” where ‘m’ is of type MONITOR{INT} is translated into “MONITOR _take_int_(m)”.
The current compilation strategy offers the following advantages:

Flexibility for Experimentation It is easy to re-name the predefined monitor operations and
predicates. We can do this by simply editing a Sather class definition (and altering the names
of C runtime routines). Any changes in semantics involve only changes in the runtime and not
the compiler.

Reduced Code Size The executable code size is reduced. If the predefined operations and predi-
cates were written in pSather, the same routine would be generated for each monitor class, so

that for:
class M1 is class M2 is
MONITORO; MONITORO;
...m1:SELF_TYPE... ...m2:SELF_TYPE. ..
...ml.is_unbound... ...m2.is_unbound...
end; end;

each C file generated for classes ‘M1’ and ‘M2’ would get its own C routine ‘is_unbound’. In
the current strategy, all monitor classes share the same C routines (except for those operations
such as ‘take’ whose C implementation differ between MONITOR{INT} and MONITOR{DOUBLE}).

Efficiency Since predefined operations are direct C routine calls, we avoid any extra costs of proce-
dure calls that would be incurred if these operations or predicates are implemented in pSather
itself. Also, using macro-expansion and other C programming techniques, we can improve the
efficiency of runtime routines more easily.

6.1.2 Deferred Assignment

This is the basic mechanism in pSather to create new threads of execution. In general, it is treated
almost like the ordinary assignment statement in most of the compiler phases. The major difference
is the semantic check that is required. We give an outline of the semantic check in Figure 1.

Note that unlike an ordinary assignment statement, we do not need to check that the LHS
expression evaluates to an assignable location. In the generated C code, the thread creation routine
gets the following parameters:

e Pointer to monitor object

6 IMPLEMENTATION

Perform the semantic check on LHS expression.
Perform the semantic check on RHS expression.
Check that the RHS is a valid function call.
Check that LHS expression yields a monitor object.
If (LHS has MONITORO type) then

RHS expression may or may not return any value.
elsif (LHS has MONITOR{X}) then

Type of RHS expression must conform to X.
else

Error.
EndIf

Figure 1: Semantic check for deferred assignment.

C type of result value

65

e Sather type index (if runtime type-checking is required) to be checked according to Sather
conformance rules

e Number of arguments

e Function called

e List of C types of arguments

e List of argument values

We observe that this thread creation routine is like most other thread creation routines in general
threads packages, except that we need to customize it to keep track of the monitor associated with
the thread, handle return result (of various C types) from the forked routine, and keep information
to do runtime type-checking if necessary.

6.1.3 Locking- and Unlock-Statements

As mentioned in the beginning of this section, these new statements are implemented with the
introduction of new compiler classes. These compiler objects are handled like most others in the
earlier phases of the compiler. Each construct has additional properties:

Lock expression These are the expressions evaluated in the lock- and try-statements. Each lock
expression must check whether it is of the form:

or

or

<monitor expression>

<monitor expression>.<monitor predicate>

<monitor predicate>

The last form is a simplification of self.<predicate> which may occur in the following
situation.

6 IMPLEMENTATION 66

class SPECIAL_MONITOR is
MONITORO;

new_operation is
lock is_bound then ... end;

end;
end;

During C code generation, extra temporary variables must be pre-allocated to hold pointers to
the evaluated monitor objects. This ensures that each monitor expression is evaluated exactly
once, and avoids any re-evaluation if locking does not succeed on the first try.

Locking statement This description covers both the lock- and try-statements. These two con-
structs are quite similar except that the lock-statement may block the executing thread, but
not the try-statement.

We have to take special care of return- and break-statements which occur within any locking
statement.

e Return statement. Before exiting from a routine via the return-statement, all the locks
acquired in the enclosing lock-statements (or then-branch of try-statements) have to be
released.

e Break statement. A break-statement transfers control to the end of the enclosing lock-
or try-statement. Hence all the locks acquired in this enclosing locking-statement must
be released before control is transferred to the end of the locking-statement. (Note that
if a break-statement occurs in the else-branch of the try-statement, there is no need to
release any lock.)

To implement these constructs, a particular occurrence of break- or return-statement keeps
a list of the monitor expressions which are to be released before control is transferred. To
keep track of these expressions, we simply implement a stack which keeps track of the current
lock-expressions seen so far, as we traverse down the abstract syntax tree. During C code
generation, the lock-statement ensures that all monitors which are locked will be released at
the end without re-evaluating the lock-expressions.

Unlock statement One of the requirements of an unlock-statement is that it occurs lexically within
alock-statement (or then-branch of try-statement). This check is done just like the requirement
for break-statement to occur lexically within the loop-statement. However, there is an added
complexity:

e The monitor object evaluated in the unlock-statement must have been locked in an en-
closing locking-statement in the current routine. That is, if we have:

lock <expril>, <expr2>....<expr-n> then
unlock <expr>;

end;

The monitor object evaluated from <expr> must be equal to one of those evaluated by
<expril>, <expr2>,...<expr-n>.

6 IMPLEMENTATION 67

This is a runtime requirement and cannot in general be checked by the compiler. If we try
to implement this by a stack of monitors locked by the thread so far, this stack has to be
delimited by the routine call boundaries. Otherwise, we might have:

-- Assume ‘m’ and ‘n’ refer to distinct monitor objects.
f is
lock m then
- SR
end;
end;

g is
lock n then

unlock m;
end;
end;

The monitor object ‘m’ is unsuspectingly unlocked by ‘g’ and this violates our requirement.

We handle this using a combination of code-generation and runtime strategies. The key is that
monitors are objects and pointers to these monitor objects are kept in temporary variables. It
is simplest to illustrate this by the top-level description of the C code generated. Suppose we
have the code in Figure 2.

From Figure 2, the monitor specified in the unlock-statement is pre-evaluated and the pointer
to the monitor object stored in a temporary variable. This is then compared with the other
pointers to monitor objects that have been locked so far. (Note that in our implementation, the
pointers to monitor objects in the closest enclosing locking-statement are compared first, and
as will be illustrated later, the ordering is relevant.) If an equality is found, the corresponding
temporary variable is set to 0. This prevents the same monitor from being unlocked again in
another unlock-statement. When the final ‘release_locks’ routine is called, it ignores any void
pointer. (If the original lock expression evaluates to void, we would have encountered an error
in ‘grab_locks’ routine. Hence a void pointer in ‘release_locks’ is definitely not an error.)

This implementation ensures that the locked status of any monitor at the end of a routine call
is the same as at the beginning, or viewed in another way, every lock operation is matched by
a corresponding unlock operation in the same routine. An unlock-statement will not cause a
mismatch between the number of lock and unlock operations performed on the monitor.

A simple observation shows why the previous claim is true. Each temporary variable is used
exactly once in a locking statement. Once the monitor object is unlocked, the temporary
variable no longer contains a reference to the monitor object. Hence each temporary variable
ensures that the monitor object is locked and unlocked exactly once. Theoretically, at the
point (*) (in Figure 2b) we should set the temporary variables to void. But since no further
references to these temporary variables are possible (this is enforced by the compiler), we can
avoid nullifying the temporary variables in this case.

Another point to note is that the order of comparison for the temporary variables in the
enclosing locking-statements is important. Consider the following code:

lock m then -- ‘T1’ is the temporary variable here.

lock m then -- ‘T2’ is the temporary variable here.

6 IMPLEMENTATION

lock <expril>, <expr2>....<exprn> then

try <expr(n+1)> then
<statement list 1>
unlock <expr’1>;
<statement list 2>
end;

end;

a. pSather code.

templ <- <expri>
temp2 <- <expr2>

tempn <- <exprn>
grab_locks(templ, temp2, ..., tempn);

temp(n+1) <- <expr(n+1)>

if (grab_locks(temp(n+1)) == SUCCESS) then
<statement list 1>
temp’1l <- <expr’i>
if (temp’1l == temp(n+1)) then temp(n+1) <- 0;
elsif (temp’1 == templ) then templ <- 0;

elsif (temp’1 == tempn) then tempn <- O;
else ERROR
release_locks(temp’1)
<statement list 2>
release_locks(temp(n+1))

end;

release_locks(templ, temp2, ..., tempn);
)

b. Corresponding generated C code.

Figure 2: (a) and (b) illustrates code generation for unlock-statement.

6 IMPLEMENTATION 69

6.2

<-—- (1)
unlock m;
. <-—— (2)
end; <--- (2.a)
<--- (3)

end;

The semantics that we want is that at (1), the monitor object is locked at level 2, at (2), it is
locked at level 1, while at (3), it remains locked at level 1 because the unlock-statement only
undoes the closest enclosing locking-operation.

In this example, there are two temporary variables (say “T1’” and “T2’) containing references to
the same monitor object at (*). Whether “T1’ or ‘T2’ is nullified at the unlock-statement, at
execution point (2), the lock-level of the monitor object has been reduced to 1. The difference
is that if ‘T2 has been nullified, the monitor object will not be unlocked again at the end of
the inner lock-statement. Hence, the monitor object remains locked at level 1 at (3). This
will not be the case if “T'1’ has been nullified first. (In any case, ignoring any possible parallel
access, the lock status of the monitor object at the end of all locking statements is restored to
its state at the start of that statement).

Intuitively, the order of comparison enforces the semantics that the unlock-statement forces
an early unlocking of the monitor locked in the closest enclosing locking-statement.

Runtime Support

One over-riding concern in the runtime implementation is efficiency. We try to achieve this by several
strategies:

Where possible, we provide specialized routines that can be used in the compiler-generated C
code.

As described in the design principles of the compiler, we eliminate unnecessary checks for
runtime errors. This also allows us to avoid passing unnecessary parameters. For example,
if we decide to check for void monitor object in the ‘grab_locks’ routine, it will be useful if
the message can indicate exactly where (file name and line number) the error occurs. In such
a case, extra code has to be executed to pass the file name and line number via parameters
or assign them to global variables to be read. This will definitely slow down the program
execution.

Often we trade memory for time. An example is the additional fields in thread object to hold
pointers when the thread is in a waiting queue of the monitor object.

The runtime support routines for monitors are carefully written to release the monitor in-
ternal lock as early as possible. The layout of monitor objects has been carefully considered
for efficient execution, though further experimentation is definitely possible to look for more
improvements. Later in the description, we will point out further possible improvements where
relevant.

We have retained the thread management schemes in FastThreads package which have been
carefully designed for efficiency. An example is to keep a pool of threads and stacks so that a
completed thread and its stack are returned to the common pool.

However, sometimes we have to alter certain implementation aspects to get the desired lan-
guage semantics. For example, to ensure a FIFO semantics for the execution of forked threads,
the queue discipline in FastThreads was modified from LIFO to FIFO.

6 IMPLEMENTATION 70

Initialize global data structures, eg ready queues,
stack pool, thread pool etc.
Create a thread which will execute the Sather program.
Create N processes (real or virtual).
foreach process
Initialize local attributes of process eg id, local
queue etc.
loop
Look for an executable thread in ready queues.
if (thread available) then
Start executing thread
elsif (all other processors are idle) then
Quit
endif
endloop
endfor

Figure 3: Top-level driver code for pSather programs.

Another concern is the portability of the runtime. As a result, when the runtime was ported from
Sequent to Sparc, we modified the existing Sequent code instead of rewriting the runtime support
from scratch. From the experience so far, we have identified certain components that, if replaced,
should allow the runtime to be ported across various architectures relatively easily.?

Locking Mechanism. The basic locking primitives vary in different architectures. An example is
the ‘exchange-byte’ operation on the Sequent. Otherwise, the interface to the spinlock package
is machine independent.

Threads Package. Stack manipulation and register handling vary on different machines. The most
relevant routine is the ‘startup_thread(t)’ routine which starts the execution of a new thread.
Otherwise, the structure of thread objects has remain largely unchanged.

Real/Virtual Process Package. On shared memory (uniform or NUMA) multiprocessors (eg
Sequent, Butterfly), these are provided as C library routines. On the single processor machine
(eg Sparc), we have to implement a virtual process package that allows some data to be shared
among different virtual processes and other data to be private for each virtual processor. Since
this depends on threads package, the virtual process package should be machine-independent
for single-processor machines.

The runtime support for pSather has evolved from incorporating the FastThreads[9] into the
original runtime support for Sather. Figure 3 shows the top-level design of the driver program that
creates multiple processes, and schedules the threads.

The initial implementation of the runtime was done on the Sequent. When the runtime was
ported to the Sparc, we tried to modify the runtime package as little as possible. The major hurdles
to portability are:

e The thread suspension and resumption routines are machine-dependent.

2The efficiency would of course vary widely. The current design does not take into account the efficiency issues on

NUMA machines.

6 IMPLEMENTATION 71

N N Interfaceto runtime A A Interfaceto runtime
Process Thread Process
Ik
Thread
Sequent | mplementation Sparc Implementation

Figure 4: Process and thread packages on Sequent and Sparc.

e Since the system ‘fork’ routine on the Sparc does not support shared data across address spaces,
we have to implement a virtual processor package. A threads package is already needed to
support thread management for pSather programs. We re-used that package to simulate the
virtual processors (Figure 4).

e In the Sequent implementation, a program can specify whether a declaration is per-processor
or shared by all processors. On the Sparc, together with the virtual processors package, we
have implemented additional code to swap private data when switching virtual processors.

Otherwise, the routines that handle spinlocks, monitors, thread pools, stack pools etc and top-
level structure (Figure 3) have remain largely unchanged.
In the next sub-sections, we describe the runtime support to handle:

e Predefined MONITORO and MONITOR{T} classes (including deferred assignment)

e Locking

6.2.1 Runtime Checks

As mentioned in Section 6.2, both in the Sather generated C code and runtime routines, we avoid
extra checks for errors to improve efficiency. However, we still want to be to detect runtime errors,
such as during debugging. Following the design of the Sather compiler and runtime support, a
compiler option can be specified if runtime checks are desired. These runtime checks include those
found in the Sather compiler:

e Accessing feature of a void object.
e Accessing an array beyond its bound.

e Non-conformance of object type.

In addition, in the pSather compiler, we can detect the following:

Void monitor object The deferred assignment, lock- and try-statements all require the monitor
objects to be non-void. It is a runtime error if, for example, we have:

m:MONITORO; -— ‘m’ is void.
m :- foo; —— Runtime error.

6 IMPLEMENTATION 72

To avoid unnecessary overhead, we generate extra code to check for these kinds of error only
if the compiler option is on.

Type conformance Another type conformance problem may arise in the deferred assignment
statement. Suppose we have:

class A is ... end;
class B is A; end;
class MAIN is

foo:$A is res := A::new end;
main is

a:MONITOR{B} := MONITOR{B}::new;

a :— foo; -- ‘A’ does not conform to ‘B’
end;

end;

If the monitor object is of type MONITOR{T}, we have to make sure that the type of the
returned value conforms to that required by the monitor object. This non-conformance is
detected if runtime check is specified to the compiler.

Stack overflow This problem does not exist for sequential Sather where there is only one stack,
and as long as the recursion level does not exceed the system stack size, there is no problem.
However, in the pSather runtime support, stacks for different threads have to be explicitly
allocated. And in most cases, we cannot know a priori the stack size required. In particular, a
pSather program’s stack requirements may vary widely from few, large stacks to many, small
stacks. If the stack size is fixed, a perfectly reasonable program can get an error simply for
lack of stack space. To remedy this situation, the following strategy is adopted.

If the runtime check option is specified to the compiler, the stack space will be protected, so
that a signal handler is invoked when the stack overflows. If the default stack size is insufficient,
the compiler provides an option for the user to specify the required stack size (either in number
of pages or bytes). This involves a slight overhead, because the stack size is no longer a built-in
constant in the runtime. However, we feel that this is justified because we cannot expect the
user to re-compile the runtime support for different programs.

6.2.2 Monitor classes

Each MONITOR object has to keep track of the following:
Bound status. This indicates if the monitor is bound or not.

Internal lock. This internal lock keeps a monitor’s internal state consistent before and after a
predefined monitor operation.

Lock level. It is not sufficient to keep a toggle status about the lock status of a monitor, because
a thread may lock a monitor more than once.

Locking thread. If the monitor is currently being locked, this is a pointer to the thread which
currently locks the monitor.

Active thread queue. The initial implementation explicitly kept a list of the active threads as-
sociated with the monitor. When a thread completes, it has to be deleted from this list. In
order to keep deletion time constant, a doubly linked list was used. However, when it became
clear that this list of active threads is only used in the ‘clear’ operation, we decided on an
alternative implementation.

6 IMPLEMENTATION 73

In the current implementation, we keep a ‘clear_level’ field in the monitor which is incremented
each time the ‘clear’ operation is called. A thread knows that it has been dissociated from
the monitor if the thread’s ‘clear_level’ field is less than that in the monitor. In this case, a
‘active_queue_size’ counter has to be kept in the monitor in order for the monitor predicates
‘has_thread’ and ‘no_threads’ to work correctly. In this implementation, when a thread com-
pletes, the time taken to execute the house-keeping routine (which may set the monitor, etc)
is independent of the number of threads. Furthermore, the clear operation now takes constant
time, since we only need to increment ‘clear_level’ and set the ‘active_queue_size’ to 0. (In
the doubly linked list implementation, the ‘clear’ operation will take time proportional to the
number of active threads.)

Waiting queue. This contains all the threads that have been suspended because the monitor is
not in the correct state for the action to be executed. For example, if we have:

lock m.no_thread then ... end;

the monitor ‘m’ is suspended if active threads are still associated with the monitor.

Currently each monitor object has exactly one waiting queue associated with it. When the
monitor status changes (eg when it becomes bound), the runtime code needs to check the
waiting threads to see if any can be put back on the ready queue (of active threads). If there is
a large number of waiting threads, this may lead to significant search time for finding a thread
to be resumed. An alternative implementation is to have multiple queues, each having threads
waiting on a different condition.

In addition, a MONITOR{T} object has ‘value’ and ‘value_queue’ fields associated with it. A
MONITORO object has a counter to count the number of times it has been bound. For example if we
have:

m:MONITORO := MONITORO: :new;

m :—- f1;
m :—- £2;

when both ‘f1” and ‘2’ complete, the ‘take’ operation can be performed twice on ‘m’ without blocking.

A common characteristic of the monitor operations is that when a monitor operation cannot
be performed because the monitor state does not satisfy certain conditions, the current thread is
suspended and put on the waiting queue of the monitor. For example, a thread ‘t1’ is suspended
if it tries to perform a ‘take’ on an unbound monitor ‘m’. At a later point in time, when another
monitor operation (eg ‘set’) is performed on ‘m’ which alters the monitor state, the waiting queue is
searched to see if any thread can be resumed. In our example, ‘t1’ would be put back on the ready
queue, and the monitor’s internal lock would be held by ‘t1’. This prevents another thread ‘t2’ from
performing a ‘take’ (or any monitor operation) on ‘m’ in the time interval between ‘t1’ being put
back on the active queue, and ‘t1’ resuming execution.

In this way we enforce the FIFO semantics for threads performing operations on the same mon-
itor. (In this case, ‘t1’ is guaranteed to get the value before ‘t2’.)

One of the operations on the monitor object is the deferred assignment. All deferred assignments
are translated into C routines which get a thread and insert it into the active queue.

6.2.3 Locking

The implementation of the lock-statement involves trying to trade off among the following criteria:

6 IMPLEMENTATION

[Thread 1]

lock ml1 then
iéék m2 then
end;

end;

[Thread 2]

lock m2 then
iéék ml then
end;

end;

a. Nested locking-statements.

[Thread 1]

lock ml1 then
£1;

end;

f1 is
lock m2 then

end;
end;

[Thread 2]

lock m2 then
£2;

end;

f2 is
lock ml1 then

end;
end;

b. Nested locking-statements.

[Thread 1]
lock mil.is_bound then
m2.set;

end;

c. Locking with condition on monitor state.

Figure 5: (a), (b) and (c) illustrate possible reasons for deadlock.

[Thread 2]
lock m2.is_bound then
ml.set;

end;

74

6 IMPLEMENTATION 75

Sort mi,... m<n>
for i = 1,..,n
if (lock(m<i>) != SUCCESS)
Suspend current thread on m<i>
endif
endfor

Figure 6: An implementation of lock-statement.

e Deadlock-free.
e Maximal concurrency.
e [Efficiency.

e Fairness.

We shall discuss each of the four points next.

Deadlock-free. In pSather, there is no way to prevent the user from writing code which will result
in deadlock. Consider the examples in Figure 5.

In Figure 5(a), a deadlock may occur because pSather does not restrict nested locking-
statements. Even restricting nested locking-statements statically is not sufficient, as illustrated
by Figure 5(b). In a sense, (b) is an example of dynamic nested locking-statements. Further-
more, as illustrated in Figure 5(c), the ability to specify locking a monitor based on its state
may also result in deadlock even if there is no nested (static or dynamic) locking-statements.

From such considerations, the runtime currently does not attempt to resolve deadlocks. How-
ever, we do envision the following possibilities with respect to the deadlock problem:

Compilation warning. The compiler may be able to analyze the pSather program and give
warning of possible deadlocks.

Execution time deadlock detection. A program may be compiled with a given compiler
option to activate additional runtime routines that will detect deadlock during program
execution.

Despite the possibility of deadlock due to user programming, we do require that the runtime
support must not cause any deadlock. If two separate threads are each executing the code:

lock m1, m2, m3 then ... end; —— Thread 1
lock m3, m2, ml then ... end; —- Thread 2

the runtime support must not result in any deadlock. One way of implementing the semantics
is to simply release the monitors locked so far when not all the monitors can be locked, before
the current thread is suspended on the unavailable monitor. However, this may result in two
threads both releasing all the monitors and getting suspended, when in principle, exactly one of
them should proceed. One solution is to sort the list of monitors and acquire them according
to the sorted order (Figure 6). This, however, does not give the desired semantics for the
locking statement, and is related to the next point: maximal concurrency.

6 IMPLEMENTATION

Sort mi,... m<n>
try_again:
for i = 1,..,n
if (lock(m<i>) != SUCCESS)
for j=1,...,i-1
Release m<j>
endfor
Suspend current thread on m<i>
Goto try_again
-- Try again when the thread is woken up.
endif
endfor

Figure 7: One possible implementation of lock-statement.

Sort mi,... m<n>
try_again:
for i = 1,..,n
if (lock(m<i>) != SUCCESS)
Suspend current thread on m<i>
—-- Check thread status when it is woken up.
if (thread notified of preemption) then
Goto try_again

else
Continue
-- Continue with trying to lock the other
-— monitors.
end;
endif
endfor

Figure 8: Another implementation of lock-statement.

76

6 IMPLEMENTATION 77

Maximal concurrency. Next we describe a reason for elaborating the previous code (Figure 6) to
the form shown in Figure 7.

Suppose we have:

lock m1 then ... end; —-- Thread 1
lock m2 then ... end; —-- Thread 2
lock mi1, m2 then ... end; —-- Thread 3

respectively and the ordering is ‘m1 < m2’, and thread 2 has acquired ‘m2’. When thread 3
tries to lock both ‘m1’ and ‘m2’, it cannot succeed. Next thread 1 starts to execute. According
to the semantics of the pSather lock-statement, since thread 3 did not succeed, ‘m1’ should not
have been locked and thread 1 will be able lock ‘m1’ and proceed. If we simply acquire the locks
in sorted order, thread 3 would have locked ‘m1’ and be blocked on trying to lock ‘m2’. This
prevents thread 1 from locking ‘m1’, and violates our “maximal concurrency” requirement.

Figure 7 works correctly, except for its apparent inefficiency which we will discuss next.

Efficiency. The locking operations must be done efficiently — on the first try if the thread can
successfully grab all the monitors. Even if a thread cannot successfully grab all the monitors,
the releasing of all previously locked monitors as shown in Figure 7 may not be needed. If we
have:

lock m3 then ... end; —— Thread 1
lock m1, m2, m3 then ... end; —- Thread 2

Suppose thread 1 locks ‘m3’ successfully. When thread 2 tries to lock the monitors (assumed
in the correct order), it will lock ‘m1’ and ‘m2’, finds that ‘m3’ is locked and releases the two
monitors. This release is not absolutely necessary, because in the time interval between thread
2 getting suspended and thread 2 being resumed (when thread 1 unlocks ‘m3’), no other thread
is trying to acquire ‘m1’ or ‘m2’. It would be more efficient to leave both ‘m1’ and ‘m2’ locked

by thread 2.
Therefore the code is further elaborated as shown in Figure 8.

In the locking code, when a thread (T1) finds that a monitor is locked by another thread
(T2) which has been suspended in a locking statement, it alters the status of the thread (T2),
and surreptiously “steals” the monitor. In effect, T1 forces T2 to release the monitor (and all
others that T2 is currently locking). As a result, when T2 is finally woken up, it has to retry
locking all the monitors it needs.

On the other hand, if no other thread needs any monitor locked by the currently suspend
thread (T2), none of T2’s monitors is released. When T2 is woken up, it can continue to try
to grab the other monitors. Figure 8 only shows the code for the thread whose locks might
be stolen. Figure 9 describes the ‘lock-stealing’ mechanism in more detail. Here we give an
argument outline to show that it achieves the desired semantics.

First, we give proofs of some properties of the mechanism.

Claim 1 If a thread t1 steals a lock m from locking thread successfully, (in the semantics of
lock-statement) m should have been released by locking thread before locking thread suspends.

6 IMPLEMENTATION

—-- Monitor to be locked is denoted by ‘m’.
if (m is locked and m is not locked by current thread) then
-- ‘locking_thread’ is the thread that currently
-- locks ‘m’. Try to steal ‘m’ from ‘locking_thread’.
steal_lock <- 0
—-- Whether ‘m’ is actually stolen depends on whether the
-- value of ‘steal_lock’ is greater than O.
if (locking_thread is suspended) then
-- ‘m1’ is the monitor on which the locking thread
-- is suspended.
Grab internal lock of ml.
if (locking_thread is still suspended on ml) (*1%) and
(locking_thread is waiting for a lock) (*2%)then

-- The check at (*1%) is necessary because in the
-- time interval between finding out about ‘mi’,
-- and getting ‘ml1’’s internal lock,
-- ‘locking_thread’ may have been resumed.
—-- At this point, we know that ‘locking_thread’ is
-— suspended at a lock-statement; hence, current thread
-- can proceed to steal ‘m’.
for each ‘‘stealable’’ monitor m<i> locked by
‘locking_thread’ in the current lock-statement
if m<i> = m then
steal_lock <- 1
Notify locking_thread of pre-emption.
Mark m<i> as non-stealable.
Add 1 to counter.
—-- ‘counter’ keeps track of number of times
-- ‘m’ has been locked in current lock-statement.
endif
endfor
if (counter > 0) then
if (number of times m has been locked != counter) then
steal_lock <- 0
Restore locking_thread pre-emption status.
Re-mark m<i> as ‘‘stealable’’ for each m<i> = m.
else
Undo all other locks currently held by locking_thread,
and mark them non-stealable.
endif
endif
endif
Release internal lock of mi.
endif
endif
—-- Current thread either suspends or locks ‘m’.

Figure 9: Lock pre-emption mechanism.

78

6 IMPLEMENTATION 79

Proof: Suppose t1 succeeds in stealing the lock m. From the implementation, we see that m
must be one of the locks held by locking_thread in the current lock-statement. In addition,
locking_thread is suspended at a lock-statement by the checks at (*1*) and (*2*) (in Figure 9).
Hence m should have been released by locking thread by the semantics of the lock-statement.
O

Claim 2 If a thread t1 steals a lock m from locking_thread successfully, m has been locked by
locking thread only in the current lock-statement (on which locking thread is suspended).

Proof: Suppose t1 succeeds in stealing the lock m. From Figure 9, we must have counter equal
to the number of times m has been locked. But counter keeps track of the number of times m
has been locked in current lock-statement. Hence, m has been locked by locking_thread only
in the current lock-statement. O

Claim 3 Once a thread t1 succeeds in stealing a lock m from locking_thread, all other locks
held by locking thread in the current suspended lock-statement are released.

Proof: This is obvious from the code in Figure 9. We also note that if a monitor ml # m
is released, and becomes unlocked as a result, then another thread wanting ml can lock m1l
without executing the piece of code in Figure 9. If m1 remains locked, then because it would
have been marked as non-stealable, another thread will not be able to steal it.

Claim 4 If two threads t1 and t2 try to steal the same lock m from locking _thread in parallel,
exactly one of the threads will succeed, or none of them will succeed.

Proof: Suppose both t1 and ¢2 succeeds in stealing the lock m. Then both ¢1 and ¢2 must
have found m < i1 >, m < i2 > respectively, where il # i2 and m < il >= m < 2 >= m.
Without loss of generality, suppose 1 grabs the internal lock of m1 before ¢2. Since m <
1l >=m < 2 >= m, both m < ¢1 > and m < 12 > would have been marked non-stealable by
t1, and it is not possible for {2 to steal m again. O

It does not really matter if neither ¢1 nor ¢2 succeeds in locking m. If m has been locked in
a successful lock-statement, then it is obvious that both t1 and 2 must fail to steal lock m.
Otherwise, since the speed of execution is unknown, we can always assume that ¢1 and ¢2 are
executing at such a speed that they both fail to steal m because m has not been released.

Suppose we have the following situation:

lock mi1, m2 then ... end; —-- Thread 1

lock m1 then ... end; —- Threads 2, 3

Thread 1 could have just locked ‘m1’. Just before it gets suspended on ‘m2’, threads 2 and 3
try to lock ‘m1’. According to the lock-statement semantics, ‘m1’ is not yet released by thread
1 and both threads 2 and 3 will fail to lock ‘m1’.

From claims 1 and 2, we guarantee that a thread can only steal a lock m if m was not locked
in a successful lock-statement, and that m should have been released by locking thread which
is suspended on the lock-statement. Furthermore, claim 4 guarantees that exactly one or no
thread will succeed in stealing m. Claim 3 ensures that a successful steal attempt will make
locking thread release all its locks in the current lock-statement (which is exactly what it
should have done before it is suspended).

Intuitively, it seems that not all locks held by locking thread in the current lock-statement
need to be released. However, this would give rise to the following inconsistent situation:

6 IMPLEMENTATION 80

lock mi1, m2, m3 then ... end; —— Thread 1
lock m1 then —— Thread 2
try m2 then ..
else

-— Error, since ‘m2’ should not be locked
-- when thread 1 is suspended, and thread 2
-- can succeed in grabbing ‘mi’.

end;

end;

Suppose thread 1 locks ‘m1’ and ‘m2’ and is suspended on ‘m3’. Thread 2 then steals the
lock ‘m1’. If ‘m2’ is not released, then we have an inconsistent program state, because the
lock-statement is supposed to either grab all the locks or none.

Fairness. The following code illustrates that fairness and maximal concurrency are conflicting ob-

jectives.
lock m1 then ... end; ——- Thread 1
lock m2 then ... end; —- Thread 2
lock m1, m2 then ... end; —-- Thread 3

If we want maximal concurrency, thread 3 may be prevented from entering its critical section
by thread 1 and 2. On the other hand, if we want fairness, then concurrency must necessarily
be reduced. We can achieve a strong fairness property if the implementation follows what
outlined in Figure 6. That is, any thread trying to lock any set of monitors will eventually
succeed, provided that there is progress towards satisfying the locking condition.

The current implementation (Figure 8) does not ensure strong fairness. Intuitively, a thread
requiring fewer monitors is more likely to succeed entering the critical section, than a thread
requiring more monitors (since the latter are more likely to be ‘preempted’). We discuss two
properties of the current implementation.

o It does not ensure that locking statements are always executed in a FIFO order. Consider
Figure 10.
Even if the locking statement of ‘fool’ has been started before the locking statement of
‘fo02’, and they become both successfully executable when ‘m2’ is unlocked, it is ‘foo2’
which is executed first because ‘fool’ has in some sense lost its FIFO position when
swapping from the queue of ‘ml’ to the queue of ‘m2’. This could be repeated several
times, delaying ‘fool’ arbitrarily.

e It allows a ‘weak’ fairness property to hold. If we have the following:

lock m3 then ... end; -— Thread 1

lock m1, m2, m3 then ... end; —-- Threads 2, 3
Thread 1 succeeds in grabbing ‘m3’. Thread 2 will be blocked on ‘m3’. When thread 3

starts executing, thread 2 will be forced to unlock ‘m1’ and ‘m2’. When ‘m3’ is unlocked,
however, thread 2 will be resumed before thread 3; this time, thread 3 will be forced

6 IMPLEMENTATION

m,ml,m2:MONITORO;

fool is
foo2 is

main is

lock m1l, m2 then end; end;
lock ml, m2 then end; end; -- as fool

lock m2 then
m :- fool;
-- ‘fool’ tries to lock first ‘mi’ and then ‘m2’, failing
-- the second time and becoming suspended

lock m1 then

m :- foo2;
-- ‘fo002’ tries to lock ‘ml’ (before ‘m2’) and fails
-- immediately, becoming suspended

unlock m2;

-- ‘fool’ is resumed, and tries to re-lock ‘ml1’, failing
-- for the second time and becoming suspended, but now
-- it is enqueued waiting for ‘mi’ after ‘foo2’.

unlock mi;

-- at this point ‘foo02’ is resumed and executed, because
-- ‘foo02’ is now the first thread of the queue of ‘mil’,

-— even if ‘m2’ is now available, and ‘fool’ could have

-— been executed too.

end;

end;
end;

Figure 10: Non-FIFO locking

81

6 IMPLEMENTATION 82

to unlock ‘m1’ and ‘m2’ to be grabbed by thread 2, which will succeed, provided in the
meanwhile, no other thread has grabbed ‘m3’.3

This weak fairness property does not prevent lock-out, but any thread trying to lock
monitors will eventually get a chance to execute again, provided that the locking condition
is eventually satisfied.

6.3 Possible Further Improvements

In addition to the compiler and runtime implementation described above, we are beginning to take
the first steps to improve pSather’s overall environment.

Programmer Aids? In the process of experimenting with the language design, we find what all
other parallel programmers also encounter: parallel debugging support is inadequate to effec-
tively track down bugs, especially those related to race-conditions. As a first step to helping
the parallel programmer understand the runtime behaviour of his/her program, we incorpo-
rated an additional compiling option. When this option is specified, the compiler will generate
additional information that is used by the runtime to trace the execution of various threads.
At program termination, a trace of the threads is printed. Undoubtedly, this additional tracing
mechanism skews the relative speeds of various threads. However, we believe that this has less
impact than if the programmer has to explicitly insert print statements.

Optimization? Besides improving the runtime efficiency and generating specialized code, one way
to improve the efficiency of a parallel program is for the compiler to analyze the user code
further, and generate extra information to be used by the runtime. For example, we note that
the deferred assignment statement is almost like a function call with an assignment statement.
Furthermore, if it is impossible for the forked thread to be suspended, then, intuitively, the
semantics of the program does not change if in fact, a function call is made instead of a thread
being forked. This brings in the possibility of having the compiler generate code that avoids
forking if the system load is high. Suppose we have the code:

m:— £(...) -- ‘f’ never suspends.
the following code can be generated:

if (low system load + other criteria hold) then

Create a new thread
else

Pre-process monitor object

Perform a function call

Post-process monitor object with function result (if any)
end;

In the pre-processing phase, the current thread has to assume a new identity (in terms of thread
id, associated monitor etc) so that the program retains the original semantics of concurrent
execution. This information is restored in the thread object in the post-processing phase, and
any returned value is stored in the monitor.

We have added the capability in the compiler to analyze whether a routine is blockable or
not, and instrumented the compiler to generate the above code when requested. This feature,
however, has not been fully elaborated since it is not well-understood in several aspects:

2Even if some other thread has grabbed ‘m3’, thread 2 has been given its chance.

6 IMPLEMENTATION 83

e From the point of view of this feature acting as dynamic load-balancing, we understand
that dynamic load-balancing does not always improve the program performance. In
particular we do not know what is a good ‘low system load + other criteria’.

e Another point of view is that this feature is a form of high-level code improvement. There
are other possible code improvements which we have not explored.

6 IMPLEMENTATION 84

Characteristics Time (seconds)
(i) l-processor, Sequential 0.12
(ii) l-processor, Parallel, Normal thread creation 0.45
(iii) 1-processor, Parallel, Optional thread creation 0.16

Table 1: Times to quicksort 10,000 integers on a Sparc 2.

An example is replacing monitors by simpler objects as shown by the following example:
shared m:MONITORO := MONITORO: :new;
lock m then
-- ‘m’ is not used anywhere else.
end;

In this example, since ‘m’ is used only to protect a critical section, we may perhaps
simply use a waiting lock. (In discussing the fairness aspect of the locking statement
in Section 6.2.3, we have pointed out that the locking statement does not ensure FIFO
semantics.)

e That the transformation preserves the semantics of the program is intuitive. We need
further proof and/or analysis to show that this is always the case.

With some initial experimentation, we have a simple scheme in which a thread is forked if the
following criteria holds:

(number-of-processors > 1) and (idle processor exists)

This simple scheme allows a 1-processor execution of a parallel quicksort algorithm to be only a
little slower than the sequential quicksort algorithm. Tables 1 and 2 show some initial timings
we obtained on the Sparc 2 and Sequent from a simple fine-grained implementation of quicksort
algorithm (outlined below).

quicksort_range(1ls:LIST{T}; 1,u:INT) is
-- Use quicksort to sort the range ‘[1,u]’ of ‘ls’.
-- Divide into two ranges of values and either create
-- two threads to work on them, or perform recursive

-- calls.
if u-1>grain then
coord :- quicksort_range(ls, 1, m-1);
coord :- quicksort_range(ls, m+1, u);
else

quicksort_range(ls, 1, m-1);
quicksort_range(ls, m+1, u);
end; —— if

end; —- quicksort_range

Note that the sequential version does not create any threads during the sorting process. The
following points should be noted from tables 1 and 2.

6 IMPLEMENTATION 85

Characteristics Time (seconds)
(i) l-processor, Sequential 2.10
(ii) I-processor, Parallel, Normal thread creation 2.58
(iii) 1-processor, Parallel, Optional thread creation 2.25
(iv) 2-processor, Parallel, Normal thread creation 1.48
(v) 2-processor, Parallel, Optional thread creation 1.38
(vi) 4-processor, Parallel, Normal thread creation 1.71
(vii) 4-processor, Parallel, Optional thread creation 1.73

Table 2: Times to quicksort 10,000 integers on a Sequent (Grain-size < 30).

Characteristics Time (seconds)
(i) l-processor, Parallel, Normal thread creation 2.33
(ii) 2-processor, Parallel, Normal thread creation 1.29
(iii) 4-processor, Parallel, Normal thread creation 0.81

Table 3: Times to quicksort 10,000 integers on a Sequent (Grain-size < 100).

e Although the improvement is not substantial with 2 or 4 processors, it does allow a
parallel program to be executed on a single processor, with a lower performance penalty
than would normally be incurred.

e This example is simply to illustrate the usefulness of code improvement. Hence not much
attention was paid to the appropriate grain-size that would achieve better speedup. In
Table 2, each thread sorts 30 or fewer items. When we changed the grain size to 100 or
fewer items per thread, more substantial time improvements were obtained without the
code-improvement feature (Table 3).

This simple example gives a glimpse of the importance of careful algorithm design and implemen-
tation. As will be pointed out in the conclusion, we plan to look further in the issues of implementing
algorithms and data structures in pSather. There appears to be no inherent problem in applying
expression-level parallelism [20] to pSather programs and we will explore the possibility that some
of the same thread mechanisms can be used in such cases.

7 FUTURE DIRECTIONS 86

7 Future Directions

This paper has described the design and implementation of the monitor concept which is the basic
parallel construct in pSather. We need to study more carefully “safe” declarations, “mutex” classes
and data placement pragmas (Section 1). At the same time, our next step is to study parallel
programming using pSather on an actual MIMD uniform shared memory machine (Sequent) and
uniprocessor (Sparc) in the following respects.

e We plan to study how some of the serial library classes can be converted to work correctly in a
parallel program. The aim of this exercise is to learn more about the usefulness of the parallel
constructs and any limitations.

e Substantial theoretical work has been done in designing parallel algorithms using PRAM as the
machine model. However, the efficiency of an implementation often falls short of expectations
(eg[45]). We therefore plan to implement a number of selected graph algorithms. There are a
number of reasons for picking graph algorithms over other kinds of algorithms.

Symbolic vs Numerical The parallel implementation of symbolic algorithms as a whole are
not as well understood as numerical algorithms.

Data structures The data structures are unlike the regular arrays used in numerical code
for dense matrix computations. As a result, we need to understand how to program, so
that more than one thread can work simultaneously on the same data structure.

Availability of Theoretical Results A number of algorithms (eg connected component[48],
maximum flow[23]) have well-understood theoretical complexity. The question is whether
these algorithms can be implemented efficiently in an actual parallel environment.

Using the performance statistics of these implementations, we can further fine-tune the runtime
and compiler in the following respects.

Garbage collection The current Sather compiler uses a standard off-the-shelf garbage col-
lector and the pSather compiler does not provide any garbage collection. There is a large
body of literature on garbage collection, and we would like to study techniques which are
suitable for the pSather (parallel) environment.

Performance Improvements There are two aspects of performance improvements in the
current implementations.
The first is dynamic optimizations. We plan to study what kind of information can be
gathered and generated by the compiler for the runtime support to do some optimizations
An example of this can be found in a quicksort program shown in Section 6.3. From some
performance measurements on the Sequent, sorting 10,000 integers (with grain-size < 30
items) on 1 processor using the parallel implementation took 2.53 seconds as compared
to 2.10 seconds for the sequential implementation. As discussed, an obvious optimization
might be to avoid creating new threads in the 1-processor case.*
The alternative is static optimizations. The compiler may explicitly re-structure the
code to reduce thread-switching and synchronization. For example, an implementation
of the connected component algorithm[48] is such that for each vertex of the graph, we
create a new thread. However, each iteration of the algorithm has several points where
all the threads have to synchronize. This requires a large amount of thread-switching,
and the performance deteriorates rapidly with large number of vertices. There are two
possible approaches to this problem. The first is to redesign the algorithm to reduce
the amount of synchronization. The second is to implement the algorithm such that

4This can only be done if certain criteria, eg the thread being non-blocking, are satisfied.

7 FUTURE DIRECTIONS 87

only as many threads as processors are created, and each thread handles more than
one vertex. This exposes program pragmatics such as the number of processors, which
however could be made available in a rather machine independent way by defining a
standard class (customized by each implementation) providing general ways to get this
kind of information.

We also plan to port pSather to other machines, in particular, NUMA multiprocessors.> This
will enable us to determine the portability of the runtime support and the effectiveness of C as a
high level intermediate language. As described in Section 6.1, we currently have a pSather compiler
that generates identical C code for both Sparc and Sequent. We shall examine the portability of
this compiler when we try porting pSather to other (NUMA) machines.

The whole set of problems mentioned above require further work in a NUMA architecture.
Our strategy is to first try to solve the compiler portability issue in a NUMA machine, and then
re-examine the implemented algorithms in that environment. In addition, we plan to examine a
sufficiently large application, such as the N-body problem[24], to study data placement problems
which will arise. There has been some work done on the data allocation problem on distributed
memory machines([31], [36], [12], [25], [47], [32]), but the studies have been limited to the allocation
of arrays and/or SIMD machines (such as the Connection Machine). We are also investigating
general algorithms for parallel objects spread across a NUMA architecture, such as parallel sets and
graphs.

There are other possible directions in further research with pSather which were not mentioned
above.

e A major complaint of most parallel programmers is insufficient programming/debugging sup-
port. Parallel debuggers is still an active area of research,® and we do not yet have a good idea
of useful debugging mechanisms for parallel programs.

e Additional language constructs may be needed to do parallel programming effectively. We give
two examples here.

The first glaring language construct that is missing in the current Sather/pSather implemen-
tation is the exception mechanism. [46] gives an initial proposal for an exception mechanism
in Sather. However, since our eventual goal is to integrate both compilers, and eliminate the
distinction between Sather and pSather, we would have to review the exception mechanism
carefully before extending the language.

A second construct that we are considering adding is a statement-level parallel iterator (which
would be “paraloop” in Sather) which is similar to the parallel DO statement of numerical
languages like Fortran D.

We expect pSather to be a practical language for exploring parallel program implementation
because of the following advantages:

e As pointed out in [51], abstraction mechanisms are useful in building and debugging large
parallel programs. This is where the object-oriented aspects of pSather should come in handy.

e Unlike object-oriented languages (such as Smalltalk and Eiffel) which incur high runtime costs,
a performance evaluation of Sather[35] shows that the performance of a Sather program is close
to a comparable C program.

e It is a relatively clean language, offering certain constructs such as strong typing, storage
management and class parameterization which are not available in efficient object-oriented
languages such as C++.

5[34] and [33] are examples of work in building NUMA multiprocessors.
[44] gives a non-exhaustive list of references of work on parallel debuggers.

REFERENCES 88

Acknowledgements

Thanks to Krste Asanovic, Joachim Beer, Jeff Bilmes, Steve Omohundro, Abhiram Ranade and
Heinz Schmidt, who have contributed much to the language design and implementation.

References

[1]

[2]

[13]

Gul Agha. Concurrent object-oriented programming. Communications of the ACM, 33(9):125—
141, September 1990.

Gul Agha and Carl Hewitt. Actors: A conceptual foundation for concurrent object-oriented
programming. In Bruce Shriver and Peter Wegner, editors, Research Directions in Object-
Oriented Programming. The MIT Press, Cambridge, Massachusetts, 1987.

Pierre America. Issues in the Design of a Parallel Object-Oriented Language. Philips Research
Laboratories, Eindhoven and University of Amsterdam, March 1 1989. Part of POOL2/PTC
Distribution Package.

Pierre America. Programmer’s Guide for POOL2. Philips Research Laboratories, Eindhoven
and University of Amsterdam, January 10 1991. Part of POOL2/PTC Distribution Package.

Pierre America and Ben Hulshof. Definition of POOL2/PTC, a Parallel Object-Oriented Lan-
guage. Philips Research Laboratories, Eindhoven and University of Amsterdam, March 15 1991.
Part of POOL2/PTC Distribution Package.

Birger Andersen. Ellie - a general, fine-grained first class object based language. Technical
report, University of Copenhagen, July 1991.

Birger Andersen. Ellie Language Definition Report. PhD thesis, University of Copenhagen, De-
partment of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copen-
Hagen, Denmark, June 1991. Second edition of paper in ACM SIGPLAN Notices, 25(11):45-64,
November 1990.

Birger Andersen. Fine-grained Parallelism in Ellie. PhD thesis, University of Copenhagen, De-
partment of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copen-
Hagen, Denmark, June 1991.

Thomas E. Anderson. Fastthreads user’s manual. FastThreads software package manual, Jan-
uary 1990.

Colin Atkinson, Stephen Goldsack, Andrea Di Maio, and Rami Bayan. Object-oriented con-
currency and distribution in dragoon. Technical Report Research Report DoC 89/3, Imperial
College, June 1989.

Henri E. Bal, Andrew S. Tanenbaum, and M. Frans Kaashoek. Orca: A language for distributed
programming. SIGPLAN Notices, 25(5):17-24, 1990.

Vasanth Balasundarm, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. A static performance
estimator to guide data partitioning decisions. In Proceedings of the Third ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming PPOPP, pages 213-223, Williams-
burg, Virginia, April 1991.

H. Boehm and Weiser M. Garbage collection in an uncooperative environment. Software
Software Practice & Experience pp. 807-820, September 1988.

REFERENCES 89

[14]

[15]

[16]

[17]

P. Brinch Hansen. The programming language concurrent pascal. IEEE Transactions on Soft-
ware Engineering 1: pp. 199-207, June 1975.

P. Brinch Hansen. Monitors and concurrent pascal: A personal history, June 1991. Private
communication.

D. Caromel. A general model for concurrent and distributed object-oriented programming.

SIGPLAN Notices, 24(4), April 1989.

Rohit Chandra, Anoop Gupta, and John L. Hennessy. Cool: A language for parallel program-
ming. Technical Report CSL-TR-89-396, Computer Systems Laboratory, Stanford University,
October 1989.

Andrew A. Chien and William J. Dally. Concurrent aggregates (ca). In Proceedings of the ACM
SIGPLAN Conference on the Principles and Practice of Parallel Programming, 1990.

Michael Coffin. Par: A language for architecture-independent parallel programming. Technical
Report TR 89-18, Department of Computer Science, The University of Arizona, Tucson, Arizona
85721, September 28 1989.

David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John Wawrzynek.
Fine-grain parallelism with minimal hardware support: A compiler-controlled threaded abstract
machine. In Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 164-175, Santa Clara, California, April 8-11 1991.

Flavio De Paoli and Mehdi Jazayeri. Flame: A language for distributed programming. Hewlett-
Packard Laboratories, Palo Alto, CA 94304.

N. H. Gehani and W. D. Roome. Concurrent c¢. Software - Practice and Ezperience, 16(9):821—
844, September 1986.

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35(4):921-940, October 1988.

Leslie Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. ACM Distin-
guished Dissertations. The MIT Press, Cambridge, Massachusetts, 1988.

Seema Hiranandani, Joel Saltz, Harry Berryman, and Piyush Mehrotra. A scheme for support-
ing distributed data structures on multicomputers. Technical Report NASA Contractor Report
181987, Institute for Computer Applications in Science and Engineering, NASA Langley Re-
search Center, Hampton, Virginia 23665.

C. A. R. Hoare. Monitors: an operating system structuring concept. Communications of the

ACM 17: pp. 156-164, April 1974.

Waldemar Horwat, Andrew A. Chien, and William J. Dally. Experience with cst: Programming
and implementation. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, Oregon, June 1989.

Jin H. Hur and Kilnam Chon. Overview of a parallel object-oriented language clix. Technical
Report CS-TR-87-25, Computer Science Department, Korea Advanced Institute of Science and
Technology, Seoul, Republic of Korea, 1987.

Thomas W. Doeppner Jr. and Alan J. Gebele. C4++ on a parallel machine. Technical Report
(CS-87-26, Brown University, Department of Computer Science, Brown University, Providence,

RI 02912, November 17 1987.

REFERENCES 90

[30] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility in the
emerald system. ACM Transactions on Computer Systems, 6(1):109-133, February 1988.

[31] Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, Jr. Data optimization: Allocation of arrays
to reduce communication on simd machines. Journal of Parallel and Distributed Computing,

8:102-118, 1990.

[32] Charles Koelbel, Piyush Mehrotra, and John Van Rosendale. Supporting shared data struc-
tures on distributed memory architectures. Technical Report NASA Contractor Report 181981,
ICASE Report No. 90-7, Institute for Computer Applicationsin Science and Engineering, NASA
Langley Research Center, Hampton, Virginia 23665., Jan 1990.

[33] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-based cache
coherence protocol for the dash multiprocessor. Technical Report CSL-TR-89-404, Computer
Systems Laboratory, Stanford University, December 1989.

[34] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, J. Hennessy, M. Horowitz, and M. S.
Lam. Design of the stanford dash multiprocessor. Technical Report CSL-TR-89-403, Computer
Systems Laboratory, Stanford University, December 1989.

[35] Chu-Cheow Lim and Andreas Stolcke. Sather Language design and performance evaluation.
Technical Report TR-91-034, International Computer Science Institute, Berkeley, Ca., May
1991.

[36] Richard J. Littlefield. Efficient iteration in data-parallel programs with irregular and dynami-
cally distributed data structures. Technical Report 90-02-06, Department of Computer Science
and Engineering, FR-35 University of Washington, Seattle, Washington 98195, USA., Feb 1990.

[37] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, 1988.
[38] Betrand Meyer. Sequential and concurrent object-oriented programming. In TOOLS, 1990.

[39] Thanasis Mitsolides. The Design and Implementation of ALLOY, a Higher Level Parallel Pro-
gramming Language. PhD thesis, Department of Computer Science, New York University, June

1991.

[40] Greg Nelson, editor. Systems Programming in Modula-3. Digital Equipment Corp., October 17
1990.

[41] Stephen M. Omohundro. The Sather Language. Technical report, International Computer
Science Institute, Berkeley, Ca., 1991.

[42] Stephen M. Omohundro, Chu-Cheow Lim, and Jeff Bilmes. The Sather Language com-
piler/debugger implementation. Technical report, International Computer Science Institute,
Berkeley, Ca., 1991 (in preparation).

[43] Joseph Ira Pallas. Multiprocessor Smalltalk: Implementation, Performance and Analysis. PhD
thesis, Stanford University, June 1990. Also available as technical report CSL-TR-90-429.

[44] Cherri M. Pancake and Sue Utter. A bibliography of parallel debuggers, 1990 edition. SIGPLAN
Notices, 26(1):21-37, Jan 1991.

[45] Edward Rothberg and Anoop Gupta. Parallel iccg on a hierarchical memory multiprocessor —
addressing the triangular solve bottleneck. Technical report, Department of Computer Science,
Stanford University, Stanford, Ca., September 1990.

[46] Heinz W. Schmidt and Jeff Bilmes. Exception handling in psather, 1991. Extended Abstract.

REFERENCES 91

[47] L.R. Scott, J.M. Boyle, and B. Bagheri. Distributed data structures for scientific computation.
Technical Report IMA Preprint Series #291, January 1987, Institute for Mathematics and Its
Applications, University of Minnesota, 514 Vincent Hall, 206 Church Street S.E., Minneapolis,
Minnesota 55455.

[48] Yossi Shiloach and Uzi Vishkin. An o(log n) parallel connectivity algorithm. Journal of Algo-
rithms, 3:57-67, 1982.

[49] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mass., 1986.

[50] Jan van den Bos and Chris Laffra. Procol: A concurrent object-oriented language with protocols
delegation and constraints. Technical report, Department of Computer Science, University of
Leiden, December 6 1990.

[51] Katherine Anne Yelick. Using Abstraction in Ezplicitly Parallel Programs. PhD thesis, MIT,
MIT Laboratory for Computer Science, Cambridge, MA 02139, December 1990.

[52] Y. Yokote and M. Tokoro. Experience and evolution of concurrentsmalltalk. In Proceedings of

OOPSLA, pages 406-415, Orlando, Florida, December 1987. ACM.

[53] A. Yonezawa and M. Tokoro, editors. Object-Oriented Concurrent Programming. The MIT
Press, Cambridge, Massachusetts, 1987.

