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Abstract

We review the use of feed-forward networks as estimators of probability densities
in hidden Markov modelling. In this paper we are mostly concerned with radial
basis functions (RBF) networks. We note the isomorphism of RBF networks to tied
mixture density estimators; additionally we note that RBF networks are trained to
estimate posteriors rather than the likelihoods estimated by tied mixture density
estimators. We show how the neural network training should be modified to resolve
this mismatch. We also discuss problems with discriminative training, particularly
the problem of dealing with unlabelled training data and the mismatch between model
and data priors.
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INTRODUCTION

In continuous speech recognition we wish to estimate P(WY'|XI, M), the posterior
probability of a word sequence WY = w1, ...,wy given the acoustic evidence X] =
X1, ...,XT and the parameters of the models used ©. This probability cannot be
estimated directly; however we may re-express it using Bayes’ rule:
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Equation (1) separates the problem into two components: acoustic modelling and
language modelling. The language model is used to estimate the prior probability
of a word sequence P(W}'|®). The acoustic model is used to estimate the likelihood
of the acoustic evidence given the word sequence P(X]|WY,©). The normalising
denominator of (1) is constant at recognition time; however, during training it is not
constant, as the parameters of the models are changing.

Each unit of speech is modelled by a hidden Markov model. A typical unit is the
phone; word models consist of concatenations of phone HMMs, according to a phone-
structured lexicon. A HMM is defined by a set of states q, a topology specifying
allowed transitions between states and a set of local probability density functions
(PDFs) P(xt,q(t)|q(t — 1), X51). Making the further assumptions that the output at
time t is independent of previous outputs and depends only on the current state, we
may separate the local probabilities into state transition probabilities p(q(t)|q(t — 1))
and output PDFs P(x¢|q(t)). A set of initial state probabilities must also be specified.

The transition probabilities and the parameters of the output PDFs are frequently
estimated using a maximum likelihood training procedure, the forward-backward al-
gorithm (see e.g. [2]). This procedure is optimal if the true model is in the space of
models being searched!. However, this is not the case for speech recognition. What
is desired is not the best possible model of each class, but the best set of models
for discrimination between classes. Thus, discriminative training would seem to be
preferable to maximum likelihood training. In terms of (1), this means that the best
acoustic model would be achieved by maximising the likelihood of the correct model,
whilst simultaneously minimising the likelihoods of the competing models.

In practice, a full maximum likelihood procedure is rarely used for either recog-
nition or training. Instead, the Viterbi criterion is used. Here, the maximisation
of P(X]|WY,0) which should be computed over all allowable state sequences is re-
placed by an approximation that considers only the most probable state sequence.
This computation may be efficiently performed using a dynamic programming algo-
rithm. When used at recognition time this is referred to as Viterbi decoding.

LAnd if some other conditions are satisfied [11].



We have used discriminatively trained classifiers to estimate the output PDFs
[5, 14, 17]. It may be shown that a “l-from-n” classifier trained using a relative
entropy (or a least mean squares) objective function outputs the posterior probabil-
ities, P(q|x), of each class given the input data [6]. However, the likelihoods P(x|q)
are required; the prior probabilities, p(q) are given by the allowable sentence models
constructed from the basic HMMs using a phone-structured lexicon and the language
model. Likelihood estimates may be obtained simply by dividing the output posteri-
ors by the relative frequencies of each class?.

The classifiers we have used are layered, feed-forward networks: multi-layer per-
ceptrons (MLPs) and radial basis function (RBF) networks. MLPs consist of layers
of units that define a hyperplane over the space of the previous layer, followed by a
“soft” transfer function (typically a sigmoid). The outputs of such hidden units may
be considered as the probabilities of certain “facts” about the previous layer. An
RBF network generally has a single hidden layer, whose units may be regarded as
computing local (or approximately local) densities, rather than global decision sur-
faces. The resultant posteriors are obtained by output units that combine these local
densities.

In this paper, we are mainly concerned with RBF networks. An isomorphism to
tied mixture density modelling has been pointed out. We also remark on a mismatch
between the posteriors estimated by discriminatively trained RBF networks and the
likelihoods estimated in tied mixture density modelling. This mismatch is resolved by
redefining the transfer function of the output units of the RBF network to implement
Bayes’ rule, relating the posterior to the likelihood. The issue of a mismatch between
discriminative and maximum likelihood training is important and has implications
regarding our current approach to HMM probability estimation. We survey this
problem and discuss some possible solutions.

TIED MIXTURE HMM

Tied mixture density (or semi-continuous) HMMs have proven to be powerful PDF
estimators in continuous speech recognition [13, 3]. This method may be regarded
as intermediate between discrete vector-quantised methods and separate continuous
PDF estimates for each state. If a unified formalism for both discrete and continuous
HMMs is adopted, then tied mixture density modelling may be regarded as an in-
terpolation between discrete and continuous modelling [3]. Essentially, tied mixture
modelling has a single “codebook” of Gaussians shared by all output PDFs. Each
of these PDF's has its own set of mixture coefficients used to combine the individual
Gaussians. If fi(x|0) is the output PDF of state g, and Nj(x|y;, Z;) are the component

2These are the estimates of p(q) implicitly used during classifier training.



Gaussians, then:

(2) fi(x|aw ©) = D agN; (x|, 3))
]

dYag=1l 0<ay<1,
j

where &y is an element of the matrix of mixture coefficients (which may be interpreted
as the prior probability p(yj, Zj|0k)) defining how much component density Nj(x|y;, %)
contributes to output PDF fi(x|gk, ©).

RADIAL BASIS FUNCTIONS

The radial basis functions (RBF) network was originally introduced as a means of
function interpolation [16, 10]. A set of K approximating functions, fx(x) is con-
structed from a set of J basis functions ¢@(x):

J
(3) fx) =Y agg(x) 1<k<K

=1

This equation defines a RBF network with J RBFs (hidden units) and K outputs. The
output units here are linear, with weights a. The RBFs are typically Gaussians, with
means [ and covariance matrices 2j:

() @0) = Rexp (50— )25 — 1))

where R is a normalising constant. The covariance matrix is frequently assumed to
be diagonal®.

Such a network has been used for HMM output probability estimation in contin-
uous speech recognition [17] and an isomorphism to tied-mixture HMMs was noted.
However, there is a mismatch between the posterior probabilities estimated by the
network and the likelihoods required for the HMM decoding. Previously this was
resolved by dividing the outputs by the relative frequencies of each state. It would be
desirable, though, to retain the isomorphism to tied mixtures: specifically we wish to
interpret the hidden-to-output weights of an RBF network as the mixture coefficients
of a tied mixture likelihood function. This can be achieved by defining the transfer
units of the output units to implement Bayes’ rule, which relates the posterior gy(x)

to the likelihood fy(x):
f(x)P(a)
Yies fitx)p(an) |

3This is often reasonable for speech applications, since mel or PLP cepstral coefficients are
orthogonal.
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Such a transfer function ensures the output units sum to 1; if fy(x) is guaranteed non-
negative, then the outputs are formally probabilities. The output of such a network
is a probability distribution and we are using ‘1-from-K’ training: thus the relative
entropy E is simply:

(6) E=—logge(x).
where Q¢ is the desired output class (HMM distribution). Bridle has demonstrated
that minimising this error function is equivalent to maximising the mutual information
between the acoustic evidence and HMM state sequence [9].

It we wish to interpret the weights as mixture coefficients, then we must ensure
that they are non-negative and sum to 1. This may be achieved using a normalised
exponential (softmax) transformation:

_ exp(wy)
(7) A = =y
2 €XP(Win)
The mixture coefficients ay are used to compute the likelihood estimates, but it is
the derived variables Wy that are used in the unconstrained optimisation.

Training
Steepest descent training specifies that:

0ij JE
(8) — T

Here E is the relative entropy objective function (6). We may decompose the right
hand side of this by a careful application of the chain rule of differentiation:
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We may write down expressions for each of these partials (where gy is the Kronecker
delta and Q¢ is the desired state):
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Substituting (10), (11), (12) and (13) into (9) we obtain:
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The expression is simpler if we ignore the constraints on the weights (i.e. if wy = ay),
although f(x) is no longer guaranteed to be a PDF:
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The only difference between this gradient and the one obtained using a sigmoid output
transfer function with a relative entropy objective function is the 1/fx(x) factor, which
may be regarded as a ‘dimensional artifact’.

The required gradient is simpler if we construct the network to estimate log like-

lihoods, replacing fk(x) with z(x) = log fk(x):
(16) 2(x) = >_ Wiy @ (x)
J
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Since this is in the log domain, no constraints on the weights are required. The new
gradient we need is:

99i(x)

18 — = — Ok) -
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Thus the gradient of the error is:
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Since we are in log domain, the “1/ fy(x)” factor is additive and thus disappears from
the gradient. This network is similar to Bridle’s softmax, except here uniform priors
are not assumed; the gradient is of identical form, though. However in this case the
weights do not have a simple relationship with the mixture coefficients obtained in
tied mixture density modelling: thus we use the likelihood estimation of (3) and (5).

We may also train the means and variances of the RBFs by back-propagation of
error; alternatively they can be trained by some self-organising process. The relevant
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partials for gradient descent training are (assuming a diagonal covariance matrix with
diagonal elements gj):

og(x) _ @)X — ki)
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If the determinant of the covariance matrix det(;) is used as a scale factor for ¢(x),
then (4) becomes:

R
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and (21) becomes:
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These expressions, used with the back-propagation algorithm, enable us to adapt the
means and covariances in a discriminative fashion.

GLOBAL OPTIMISATION

The above methods for HMM probability density estimation involve only a local
optimisation of parameters. In speech recognition training we typically have a small
amount of labelled training data (used for model bootstrapping) and a large amount
of unlabelled training data. (Here labelled training data refers to speech labelled and
time-aligned at a phone level; unlabelled training data refers to speech for which only
the (non-time-aligned) word sequence is available.) The local optimisation we have
used has involved an initial maximum likelihood (or Viterbi) training to generate a
prototype segmentation of the unlabelled data. These labels are then used as the
targets for neural network training (performed on a framewise basis). This is a local
training, since only the most likely path given the initial parameter estimation is
considered.

One approach to a global optimisation method is analogous to segmental k-means
training. In this method after an initial network training on labelled data and Viterbi
segmentation, the targets used in training the unlabelled data are updated by per-
forming a Viterbi segmentation after each epoch of discriminative training. Such an
approach has been referred to as embedded MLP [5] or connectionist Viterbi train-
ing [12]. It should be noted that the transition probabilities are still optimised by a
maximum likelihood criterion (or the Viterbi approximation to it). It may be proved
that performing a Viterbi segmentation using posterior local probabilities will also



result in a global optimisation [6]: however, there is a mismatch between model and
data priors here (see next section).

It is possible to attempt a global optimisation in which all the parameters of the
HMM are optimised simultaneously according to some discriminative criterion. Such
an approach was first proposed by Bahl et al. [1] who presented a training scheme
for continuous HMMs in which the mutual information between the acoustic evidence
and the word sequence was maximised using gradient descent. More recently, Bridle
introduced the “alphanet” representation [8] of HMMs, in which the computation of
the HMM “forward” probabilities a; = P(X{,q(t) = j) is performed by the forward
dynamics of a recurrent network. Alphanets may be discriminatively trained by min-
imising a relative entropy objective function. This function has similar form to (6)
(i.e. the negative log of the posterior of the correct output): however here we are
looking at the global posterior probability of the word sequence given the acoustic
evidence P(WY|XT],0) (1), rather than the local posterior of a state given the one
frame of acoustic evidence. From (1), this posterior is the ratio of the likelihood of the
correct model to the sum of the likelihoods of all models. For continuous speech, a
model here refers to a sentence model; thus the numerator is the quantity computed
by the forward-backward algorithm in training mode (when the word sequence is
constrained to be the correct word sequence, so only time-warping variations are con-
sidered). The denominator involves a sum over all possible models: this is equivalent
to the sum computed if the forward-backward algorithm were to be run at recogni-
tion time (with the only constraints over the word sequence provided by the language
model). Computation of this quantity would be prohibitive for both training and
recognition. A simpler quantity to compute is just the sum over all possible phoneme
sequences (unconstrained by language model). This is not desirable as it assumes
uniform priors rather than those specified by the language model.

Initial work in using global optimisation methods for continuous speech recognition
has been performed by Bridle [7] and Bengio [4]; both of these involved training the
parameters of the HMM by a maximum likelihood process, using the “alphanets”
method to optimise the input parameters via some (linear or non-linear) transform.

PROBLEMS WITH DISCRIMINATIVE TRAINING

It has been shown, both theoretically and in practice, that the training and recognition
procedures used with standard HMMs remain valid for posterior probabilities [6].
Why then do we replace these posterior probabilities with likelihoods?

The answer to this problem lies in a mismatch between the prior probabilities given
by the training data and those imposed by the topology of the HMMs. Choosing the
HMM topology also amounts to fixing the priors. For instance, if classes gk represent
phones, prior probabilities p(Qx) are fixed when word models are defined as particular
sequences of phone models. This discussion can be extended to different levels of
processing: if Qg represents sub-phonemic states and recognition is constrained by a



language model, prior probabilities gk are fixed by (and can be calculated from) the
phone models, word models and the language model. Ideally, the topologies of these
models would be inferred directly from the training data, by using a discriminative
criterion which implicitly contains the priors. Here, at least in theory, it would
be possible to start from fully-connected models and to determine their topology
according to the priors observed on the training data. Unfortunately this results in
a huge number of parameters that would require an unrealistic amount of training
data to estimate them significantly. This problem has also been raised in the context
of language modelling [15].

Since the ideal theoretical solution is not accessible in practice, it is usually better
to dispose of the poor estimate of the priors obtained using the training data, replacing
them with “prior” phonological or syntactic knowledge.

A second problem arises from a mismatch between the maximum likelihood and
discriminant criteria. As is well known, if the models are correct, then maximum
likelihood training is optimal. In speech recognition, we use discriminative training
because it is known that the models being used are incorrect. The use of unlabelled
data highlights a contradiction in our current training methodology. To give unla-
belled data the labels that discriminative training requires, the current best model
estimates are used. Thus discriminative training is employed because of a belief that
the models are incorrect, yet the labels used by the discriminative training assume
model correctness.

It maybe that this mismatch is responsible for the lack of robustness of discrim-
inative training (compared with pure maximum likelihood training) in vocabulary
independent speech recognition tasks [15]. The assumption of model correctness used
to generate the labels may have the effect of further embedding specifics of the training
data into the final models.

CONCLUSION

We have a defined a feed-forward network that estimates Gaussian mixture densities
using a discriminative training criterion. Additionally we have discussed a mismatch
between maximum likelihood and discriminative training that is inherent in many
discriminative training schemes. We are currently performing speech recognition ex-
periments using the RBF networks and training procedure described above.
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