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Abstract

We design the first polynomial time (for an arbitrary and fixed field G F[q])
(e, )-approximation algorithm for the number of zeros of arbitrary polynomial
f(z1,...,z,) over GF[g]. It gives the first efficient method for estimating the
number of zeros and nonzeros of multivariate polynomials over small finite
fields other than GF[2] (like GF'[3]), the case important for various circuit
approximation techniques. The algorithm is based on the estimation of the
number of zeros of an arbitrary polynomial f(zq,...,2,) over GF[qg] in the
function on the number m of its terms. The bounding ratio number is proved
to be m(4=D1°89 which is the main technical contribution of this paper and
could be of independent algebraic interest.
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1 Introduction

Recently there has been a progress in design of efficient approximation algorithms
for algebraic counting problems. The first polynomial time (e, é)-approximation
algorithm for the number of zeros of a polynomial f(z1,...,z,) over the field GF[2]
has been designed by Karpinski and Luby ([KL 91a]) and this result was extended to

arbitrary multilinear polynomials over GGF'[q] by Karpinski and Lhotzky ([KL 91b]).

In this paper we construct the first (e, §)-approximation algorithm for the number
of zeros of an arbitrary polynomial f(z1,...,z,) with m terms over an arbitrary (but
fixed) finite field G'F[g] working in polynomial time in the size of the input, the ratio
m(e—Dlegs and L, log(3). (The corresponding (€, §)-approximation algorithm for the
number of nonzeros of a polynomial can be constructed to work in time polynomial

in the size of the input, the ratio m'°?, and I, log(3).)

2 Approximation Algorithm

We refer to Karp, Luby and Madras [KLM 89] as well as [KL 91a], [KL 91b] for the
more detailed discussion of the abstract structure of the Monte-Carlo method for

estimating cardinalities of finite sets and the related techniques.

Given f € GFlq][z1, -, z,), f = f) t;, and ¢ € GF|q]. Denote
=1

#.f = {(x1,...,2,) € GF¢]" | f(21,...,2,) =c}]|.

Our (e, 6)-approximation algorithm will have the following overall structure:
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Il'lpllt f € GF[Q][$1,,$n], S GF[Q]) €> 07 6> 07 (f ?é 0)

Output Y (such that Pr[(l — e)#.f <V < (14 e)#f] > 1-6)

1. Construct a universe set U (the size |U| of U must be efficiently computable.)

2. Choose randomly with the uniform probability distribution N members w;

from U, u; e U, 0 =1,2,..., N.

3. Construct now from a polynomial f an indicator function f : U — {0,1}

such that |f‘1(1)| =#.f.

4. Compute the number N = %41%(22/6) for g > |U|/#-f.

5. Compute for all 7, 1 <7 < N, the values f(uz) and set Y; «— |U|f(u2)

N

e

=1

6. Compute ¥ «

7. OutrpruT: Y.

Correctness of the above algorithm is guaranteed by the following Theorem.

Theorem 1  (Zero-One Estimator Theorem [KLM 89])

Let p = T{{ Lete <2. If N > %41%(22/5), then the above Monte Carlo Algorithm s

an (€, 6)-approximation algorithm for #.f.

We shall distinguish two (technically different) cases:

Case 1. Polynomial f(zq,...,z,) over GF[q] is constant free and ¢ = 0.
Case 2. Polynomial f(xq,...,z,) over GF[q] is arbitrary and ¢ # 0.
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Let us denote f = (f —¢)' =1 =21;.
The corresponding universes and indicatzor functions will be U; = GF[q]", fi (s)=1
if and only if f(s) = 1, and Uy = {(s,7) | t:(s) # 0}, fg(s,i) = 1 if and only if
f(s) =cand forno j < ¢, (s,7) € Us.
Let us observe that % < mett %73:1_1' for é(f_c)q—l_l = {(s,7) |
ti(s) # 0, thereis no j, j < i such that ¢;(s) # 0}, see figure 1. (Observe that

|é(f_c)q—1_1| = |{s | there is a term ¢; of (f — ¢)?~* — 1 such that #,(s) # 0}].)

The corresponding bounds f3; > J&U"J'c will be proven to satisfy

B <(m+ 1)(q—1)10gq and

8, < mq—l(m + 1)(q—1)10gq .

i

S

#.f =71 (1) G (s—epi-1-1

Figure 1

The rest of the paper will be devoted to the proofs of these two bounds.



We shall denote the corresponding algorithms by A; and As,.
Let us analyze the bit complexity of both algorithms (for the corresponding subrou-
tines see [KL 91a], [KL 91b], and [KLM 89]).

Denote by P(gq) the bit costs of multiplication and powering over GFlg|, P(q) =
O(log’ qloglog qlogloglog q) (cf. [We 87]). The evaluation of the polynomial takes
time O(nmP(q)) and the overall complexity of the algorithm A; is

O (m + 1)(=09%7 P(g) log(1/8)/)
and of the algorithm A,

O(nm(m + 1)+ log  P(q) log(1/6) /)

For the fixed finite field GF[g] the running time of both algorithms is bounded
by a polynomial of the degree depending on the order of the ground field. The
bounds for #; and (3, which are proven polynomial in m only, are the main technical

contribution of this paper.

Please note that the condition whether f = 0 is satisfiable can be checked deter-
ministically for arbitrary polynomial f € GFlq¢][z1,...,z,] within the bounds stated

above because of the following (for a problem of a black-box interpolation of f, see

[GKS 90]):

Proposition 1. Let f € GFl¢][z1, -, x,] and ¢ € GF|q], the equation f = ¢ is

satisfiable if and only if ¢ = (f — ¢)?”' — 1 has at least one nonconstant term.

Proof. [ = c is satisfiable iff (f — ¢)?"' = 0 is satisfiable iff the inequality
(f —¢)?™' — 1 # 0 is satisfiable. The inequality (f — ¢)?™' — 1 # 0 is satisfiable iff

there exists in (f — ¢)?~! — 1 at least one nonconstant term. a



3 Main Theorem

Given an arbitrary polynomial f € GFq][Xy,---,X,], degy. f < ¢ — 1, denote
G = Gf = {(‘flv"'axn) | f($17"'7'17n) 7é 0}7 G = Gf = {(xla"'vxn) | Elti € f :
ti(x1, - ,x,) # 0} (For notational reasons from now on in this section, variables

will be written in capital (e.g. X;) and values in small (e.g. z;)).
Denote by m = my the number of terms in f.

By the support of a term t we mean the set of indices of variables occurring in ¢.

Theorem 2 1% < miog:4

REMARK. This bound is sharp. Example: for 0 < k£ <n
ge=X{ o X (= X)) - (1= XY
In this case |G| = (¢ — 1)*¢"7* |G| = (¢ — 1)¥,m = 2"7F,

Proof.  For any subset J C {l,---,n} define an elementary cylinder C'(J) =
{(x1, -, 2,) € GF[q]" | x; # 0 for j € J and a; = 0 for ¢ ¢ J}. Observe that for
J1# Jy C(J1) N C(Jy) = 0. Define the cone of J

CON(J) ={(x1, - ,2,) EGFlq]" |x; #0for je J} = | C(J1).

J10J

By f7 € GF[q][{X;};es] we denote the polynomial obtained from f in the following

way: mutiply f by the term X; = [] Xj, replace each appeared power X! by X,
jed

make necessary cancellation, denote this intermediate result by f - X; and finally,

substitute zeroes instead of X; for all 7 ¢ J. Remark that each for term of f; its

support coincides with J, moreover my, < my.x, < my.
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Lemma 1  For every J C {1,---,n}
a) GNC(J) =Gy, (here under equality we mean a canonical isomorphism);

b) GNCON(J) = Gy.x,.

Proof.  Observe that for any point (x1,---,2,) € C(J) (respectively CON(J))
flar, - x,) # 00 f5({x;}jes) # 0 (respectively fX;(xq1,---,2,) # 0), this proves

lemma 1.

Lemma 2 o) GNC(J)#0 iff f1 £0;
b)) GNCON(J)# 0 iff f- X5 £0;
C) ’LffJ;t/'O then GQ C(J) = GfJ andGQ CON(J) = Gf.XJ.

Proof.  a) (respectively b)) follows from lemma la) (respectively 1b)).
c) follows from the statement that if f; #Z 0 then f contains a term with a support
being a subset of .J.

We call J active if f; £ 0.

. . G _
Lemma 3  Assume J is active. Then :G;j: = |(£g(cj()})| < m?fgz’q 1(§ mljf)Jng).

NoTeE. This lemma states the theorem for the case of the polynomial f;.

Proof. = We conduct by induction on |.J|. Remark that |G,| = |C(J)] = (¢—1)IVI.
Assume that for a certain jo € J the polynomial f; does not divide by (X, — a) for
each a € GF[g|*. Then f;, = f;(X;, = @) Z 0. Then by lemma 2a) we can apply
inductive hypothesis to each of these polynomials f;,. Since |Gy,| = X |Gy, ]|

a€GF[q]*
and my, < my,, we get by induction the statement of the lemma in this case.



Assume now that HJ(X]- — «;)|fs for some a; € GF[q]*, 7 € J. We claim in
this case that my, > é'e‘”. By lemma la) this would prove lemma 3. We prove the
claim by induction on |J|.

Fix some jo € J and write (uniquely) f; = 3 hy, (X;, )M, where M, are terms in
the variables {X;};en o1 and hy, (X, ) € GFq][X;,]. Then (X, — ajy)|hy, (Xj,) for
each My, hence hy, (X}, ) contains at least two terms.

Take a certain zj, € GF[q]* such that 0 # f;(X;, = z;,) € GF[q|[{X;}jenyy] and
apply inductive hypothesis of the claim to f;(X;, = zj,), taking into account that

my, > 2my(x . Lemma 3 is proved.

J0=%30)
Lemma4 IfJ C {l,---,n} is a minimal (w.r.t. inclusion relation) support of

the terms in f then J is active.

Proof.  Represent (uniquely) f = fi+ f, where f; is the sum of all terms occurring
in f with the support J. Then the polynomial f; = X;f; # 0 has the same number

of terms as f;, this proves lemma 4.

Corollary 1 G coincides with the union of the cones CON(J) for all (minimal)

active J.

Now we consider the lattice £ = 2{" and for J € £ we denote its cone
con(J) C L, cone(J) = {J'|J C J'}. We'll construct a partition P of the union G
of con(J) for all active J.

Take any linear ordering < of the active elements with the only property that if
Ji g Jy for two active elements then J; > J, (e.g. as the first element one can take
arbitrary maximal one, then a maximal in the rest set etc.).

Associate with any element J; € G an active element J minimal w.r.t. ordering <
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with the property J C J;. Then as an element of the partition P which is attached
to an active element J (denote it by P(.J)) consists of all such elements of G which

are associated with J.

For any .J; call a subset S C con(J;) a relative principal ideal with the generator

Jy1 if for any Jy; O J3 O Jy and Jy; € S we have J3 € S.

Lemma5 a) P is a partition of G;
b) For each active element J, P(J) is a relative principal ideal with the generator J

(with the unique active element .J ).

Proof. Part a) is clear. To prove part b) consider J; € P(J) and J; 2 Jy O J,
then J; € G (since G is a union of the cones). We have to prove that J corresponds
to Js.

Assume the contrary and let Jy C J; for some active Jy such that Jy < J, hence

Jo € Jq and we get a contradiction with JJ; € P(J) which proves lemma 5.

Lemma 6  For any active element J and each J; € P(J) the sum My, of the
terms occurring in fX; with the support J; equals to

X7

g=1(_ 1) \J]
i)

fi(
Proof.  We prove it by induction on |J; \ J|.
The base for J; = J is clear. Take any J; € P(J), then for each J; Q Jo O J we have
Jy € P(J) by lemma 5 and by inductive hypothesis M;, = fJ(&)q_l(—l)UQ\J'.

X7
Since J; is not active we have f; = 0. Observe that f;, = ( X MJQ)%.
JCJCJy 7
Therefore f;, = ))((—J]l(—fj();—?)q_l(—l)ul\‘” + My, ) and we obtain
X
My, = fi(ZLy=1 (=)W

X,
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taking into account that each term in f; has a support equal to J.

Induction and lemma 6 are proved.

Corollary 2 For any active element J

my > mypx, > my, - |[P(J)].

Lemma 7  For any relative principal ideal S C con(J) with the generator J the
weight K of S
K=Y (qg— 1)Vl < |Slesza,

SES

Proof. = We prove by induction on n — |J|.

The base for n = |J| (then |S| = 1) is obvious. For the inductive step take some
index ig ¢ J. Consider a partition of S = SyU.S; where S (respectively Sp) consists
of all elements containing (respectively not containing) ¢g. Then Sy can be considered
as a relatively principal ideal with the generator .J in the lattice 2{1-\io} By &
denote a subset of 211\ i} ghtained from Sy by deleting ¢ from each element.
Then 57 is also a relative principal ideal (may be empty) with the generator J and
S7 C So, in particular |S1]| < [Sol.

According to this partition represent K = Ko+ (¢ — 1)K where Ko = Y. (¢ —

50€S0
D=V Ky = 5 (g — 1)V By inductive hypothesis
51€51

K < |Sof"® 7 + (g = 1)[S1]8 7 < (|So] + [ Si])'o?

the latter inequality follows from the convexity of the function X — X827 (on the

ray IR, of nonnegative reals), namely rewrite this inequality in the form
|Sol'%827 + (254])/°82 T < [S1[%%2 7 4 (|So| + [ Sy ) B2 7.
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This completes the proof of the induction and lemma 7.

Corollary 3  For any active element J

GO O < 1GNC) | (myx ) < GO C)|(my)ee.
J1€P(J)

Proof. |GNn U C(h)| =(¢g—-DVY ¥ (¢— 1"V Bylemma 3 (¢ —
J1eP(J) J1eP(J)
V< |G C()|(my,)°829. By lemma 5b) P(.J) is a relative principal ideal, hence
> (g — DIV < | P(J)[*829 by lemma 7. Therefore we get the corollary 3
J1eP(J)
applying corollary 2.
Finally, we complete the proof of the theorem summing left and right sides of the

inequalities from corollary 3 ranging over all active elements .J, taking into account

corollary 1, lemma 5a) and lemma 2a).

4 Bounds for 3, and 35,

We shall apply now Theorem 2 to derive upper bounds for #; and ;.

Theorem 3  Given any polynomial f € GF[q|[x1,- -, x,] with m terms and with-
out constant terms. Then

n

q

< By = (mi £ 1)89 < (4 1)@ Dloga
2.7 Shi=( )t < ( )

Proof.  Consider the polynomial g = f771.
For s € GFlqg|", f(s) = 0 & (f' — 1)(s) # 0. Apply Theorem 2
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to the polynomial f9' — 1 € GFlgl[x1, -, 2., |G] = ¢°, |G| = #of,
and the number of terms of f9=! —1is m?~!'41. So the exact bound is (m?~* +1)1°gq.

O

Theorem 4  Given any polynomial f € GF[q|[x1,- -, x,] with m terms and ¢ #
0. Then

|G (= eya-1-1]

4. f < ﬂQ/mq_l = ((m+ 1)q_1 — 1)1°gq < (m+ 1)(q—1)10gq ‘

Proof. Forse GF[q|", f(s)=c& (f—c) ' (s)=0& (f—c) ! (s)—1#0.
Observe that (f — ¢)?* — 1 polynomial is constant free. Apply Theorem 2 to the
polynomial (f — ¢)?™' — 1 with |G| = #.f and m?™' — 1 terms which results in
o= ((m 411 — 1o

O

Observe that in Theorem 4, taking the set G(f_c)q—l_l is neccesary as the set

(¢ does not have a polynomial bound for the ratio fcfjl Take for example the
polynomial

T R
fcff' = ﬁ tends to infinity with growing n and does not satisfy the inequality
< g

The bounds proven in Theorems 3, and 4 are almost optimal (cf. [GK 90]).

5 Open Problem

Our method yields the first polynomial time (¢, §)-approximation algorithm for the
number of zeros of arbitrary polynomials f € GF[q¢][zy,...,x,] for the fixed field
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(G F[q]. Degree of the polynomial bounding the running time of the algorithm depend
on the order of the ground field.

Is it possible to remove dependence of the degree on ¢ in the approximation

algorithm?
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