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Introduction

In this paper we present an algorithm which, given a black box to evaluate a t-
sparse (a quotient of two t-sparse polynomials) n-variable rational function f with
integer coefficients, can find the coefficients and p-powers (for some small p) of
the exponents appearing in a t-sparse representation of f using t°*) black box
evaluations and arithmetic operations and with arithmetic depth (nt)°®) (see the
Theorem at the end of section 4 for an exact statement of this result). This is the
first genuine algorithm (that is, an algorithm whose arithmetic complexity does not
depend on the size of the coefficients of f or on the degree of f, cf. [19]) for finding
this representation. We also show how this algorithm can be modified to produce

the coefficients of such a representation.

To find the exponents appearing in some t-sparse representation of a t-sparse
univariate rational function f(X') we proceed as follows: We consider representations
of f(X) of the form (¥!_,a; X)) /(2! b;X"), where a;, b;, o;, B3; are real numbers.
Such a function is called a real quasirational function. Furthermore, we call such a
representation minimal if it has a minimal number of nonzero terms in the numerator
and denominator and is called normalized if some term is 1. We show that there are
only a finite number of minimal normalized representations and that the exponents
must be integers. We are able to produce a system T' of polynomial equalities and
inequalities (whose coefficients depend on the values of f(X) at t°®) points) that
determine all the possible values of any such «; and ;. Using the methods of
[13], we can then find all o; and §;. To find the exponents when f(Xi,...,X,)
is a multivariate polynomial, we show how to produce sufficiently many n-tuples

of integers (v1,...,v,) such that the exponents of f can be recovered from the

exponents of all the f(X*, ..., X").



Complexity issues for t-sparse polynomial and rational function interpolation
have been dealt with in several papers. Polynomial interpolation was studied in
[1],[2],]19],[12],[17],[25], [26]. For bounded degree rational interpolation (when the
bound on the degree is part of the input) see [15],[16],[23]. Approximative unbound
interpolation arises also naturally in issues of computational learnability of sparse
rational functions (cf. [20]). The present authors have previously studied the prob-
lem of interpolation of rational functions in [10], but the algorithm presented there
for finding the exponents had greater complexity and also depended on the size of
the coefficients of the rational function. The present paper significantly improves the
results of that paper by introducing the notion of a minimal representation (allowing
us to directly compute a finite set of possible exponents instead of just bounding
them) and a new technique for reducing multivariate interpolation to univariate

interpolation. As we shall see these ideas give us a more efficient algorithm.

The rest of the paper is organized as follows: In Section 1 we give formal defi-
nitions of a quasirational function and related concepts and prove some basic facts
about these functions. In Section 2 we introduce some useful linear operators on
fields of these functions. We use these operators to derive criteria for a function
to be t-sparse. In Section 3 we use these criteria to give an algorithm for {-sparse
univariate interpolation. In Section 4, we again use these operators to show how
multivariate interpolation can be reduced to univariate interpolation. Complexity

analyses of the algorithms are also given in Sections 3 and 4.



1 Quasirational Functions

A finite sum
X! (1)
J;

where [ = (a1,...,0,), 0, € €, X = X*1 . ... X% ¢; € € is called a quasipoly-
nomial of n variables. The set of quasipolynomials forms a ring under the obvious
operations and we denote this ring by € (X3,..., X,,). The subring of quasipolyno-
mials (1) with «; € IR and ¢; € IR will be referred to as the ring of real quasipoly-
nomials and will be denoted by IR(Xi,...,X,). A ratio of two quasipolynomials
(real quasipolynomials) is called a quasirational function (real quasirational func-
tion). The set of such functions forms a field that we denote by € ((X1,...,X,))
(IR((X1,...,X,))). Note that Q (Xy,...,X,) C IR{{X1,...,X,)). We use the
expressions “polynomial” or “rational function” in the usual sense, that is for a
quasipolynomial or quasirational function with non-negative integer exponents in

their terms.

We say that the quasipolynomial (1) is t-sparse if at most ¢ of the ¢; are nonzero.
If a quasirational function f can be written as a quotient of a numerator that is ¢;-
sparse and a denominator that is {y-sparse then we say that f is (¢1,%3)-sparse. For
example, (X" —1)/(X —1) = X™ ' +... 41 is (2,2)-sparse and also (m, 1)-sparse.
If fis (t1,%2)-sparse but not (t1 — 1,%3)- or (t1,12 — 1)-sparse, we say that f is
minimally (t1,12)-sparse. Note that the above example is both minimally (2,2)-
sparse and minimally (m,1)-sparse. We say that a representation f = p/q is a
minimal (¢1,%;)-sparse representation if f is minimally (¢1,?2)-sparse and p is t;-

sparse and ¢ is t;-sparse.

We will need a zero test for (¢;,t;)-sparse rational functions. This is similar



to the well known zero test for ¢-sparse polynomials (c.f., [1],[9],[11]). We assume
that we are given a black box for an n-variable rational function f with integer
coefficients in which we can put points with rational coefficients. The output of the
black box is either the value of the function at this point or some special sign, e.g.,
“o0”, if the denominator of the irreducible representation of the function vanishes

at this point (a representation f = g/h, g, h € C[Xy,...,X,], is irreducible if ¢

and h are relatively prime).

Lemma 1. Let f be a (11,t2)-sparse rational function of n variables, let p1,. .., pn
be n distinct primes and let P? = (p{,...,p%) 1 <j3<ti+ty—1. Then [ is not
tdentically zero if and only if the black box outputs a number different from 0 and

oo at one of the points P7.

Proof. Recall that if My,..., M; are distinct positive numbers then any ¢ x ¢
subdeterminant of the r x ¢t matrix (Mg)gsgt,lgjgr is non-singular (c.f., [5]). Since
the black box gives output based on an irreducible representation of f, we see that
any zero of the denominator of such a representation is zero of the denominator of a
(t1,t5)-sparse representation of f. Using the remark about the matrix (M) above
we see that the denominator can vanish at, at most, ¢; — 1 of these points. A similar
argument applies to the numerator. Therefore, the (#1,%2)-sparse function f is not
identically zero if and only if the black box outputs a number different from 0 and

oo at one of these points P7.

We note that Lemma 1 is not true for quasirational functions. For example, let
n/T : . .
p=2and f(X)= 1— X k2. We then have that f(2") = 0 for all 7. If one restricts

oneself to real quasirational functions, then Lemma 1 is also not true for n > 2. To



see this, let f( Xy, X3) = Xiogr"s — Xéogg’s and p; = 2, p; = 3. However, we do have
a zero test for univariate real quasirational functions. We will only need such a test

for real quasipolynomials which we state in the following lemma.

Lemma 2. Let p be a positive real number and let f € IR(X) be t-sparse. If
() =0 fori=0,...,t—1, then f =0.

Proof. Let f = X!_ a;X* where o; # «; for ¢ # j. Since f(p‘) = 0 for 1 =
0,...,t—1 then

1 1 | Ja] [o]
p™ P ay 0
i (poq)t—l (pat)t—l | [ I 0 |

Since the «; are real, p® # p® if ¢ # j. Therefore the above ¢t x ¢t matrix is

non-singular and so ¢y = ... =a; = 0.
If f is a quasirational function, we call a representation f = g¢/h, g¢,h €
C(X1,...,X,) normalized if g or h contains the constant term 1. For an arbi-

trary representation f = f]/iz, there are a finite number of monomials M such that

(ENI/M)/(iL/M) is normalized.

Lemma 3. a) Assume p/q =D/q are normalized representations of a multivari-
ate quasirational function and assume that p/q is a minimal (11, t2)-sparse repre-
sentation. Then the Z-module generated by the exponent vectors of p and q is a
submodule of the ZZ-module generated by the exponent vectors of p and .



b) There exist at most (1 + tg)o(t1+t2) minimal (t1, t9)-sparse representations.
Furthermore, for given exponent vectors, the coefficients in the corresponding mini-

mal representation are unique.

c) Assume the same conventions as in a). Then

max{| deg(p)|, [ deg(q)[} < 2(t1 4 5) max{|deg(p)], | deg(q)]}-

Proof. Let Iy,..., I, 4, be the exponent vectors of p/q and I,. .. be the exponent
vectors of p/g. We define a weighted graph G in the following way: The vertices
of G correspond to the t; + t; exponents of p/q. We join two vertices I;, I; of G if
I; — I; = I;, — I;, for some i; # j; and we assign the weight I;, — I;, to this edge.

We claim that G is connected. If not, let G, be the connected component which
contains the exponent vector (0,...,0). One sees that the representation p,/q,
obtained from p/q by deleting all terms with exponent vectors not belonging to this
connected component equals p/q. This contradicts the minimality of p/q and proves

the claim.

To prove a) and c), consider a spanning tree 7 of G and let (0,...,0) be the root
of 7. Any exponent vector I; equals the sum of the weights along the unique path

connecting I; with the root and so lies in the module generated by the ;.

To prove b), note that the spanning tree above uniquely determines the set of
exponent vectors that can occur in p/q. Therefore the number of exponent vectors

in the numerator and denominator is at most the product of the number of such

t1+1
weighted trees and e (the latter value being the number of choices of

b



exponents for the numerator and denominator). The number of rooted trees with

(t1 + t2) vertices is at most (¢; + tg)o(t1+t2). For a fixed tree, the number of ways
. . S — Nyttt
to assign weights of the form I; — I; from a fixed set {]z} " can be bounded

i=1
by (t; + t5)°1+2) . Thus the number of exponent vectors can also be bounded by

(t + tg)0ta ),

We now prove the last statement of b). Assume that p,/q, = p/q are two

different minimal (1, ¢;)-sparse representations with the same exponent vectors in
Po — CP _ P

qo — Cq q
is a representation that is either ({1 — 1,%3)- or (¢1,t2 — 1)-sparse, contradicting the

the corresponding numerators and denominators. For suitable ¢ € € ,

minimality of (¢1,%3). This completes the proof of Lemma 3.

We have the following immediate consequence of Lemma 3 a).

Corollary 4. If f is a minimally (t1,13)-sparse rational function then any nor-

malized minimal (11,13)-sparse representation has exponents that are integers.

2 Linear Operators

In the following sections it will be useful to consider the actions of certain linear

operators on fields of quasirational functions.

Definition. a) Let pp,...p, be distinct prime numbers and let D,
C{(Xq,...,X,) — C{Xq,...,X,)) be the €-linear operator defined by
D, (X?) = p? X2, where the number p¢ is defined to be ¢*!°¢?: for some fixed branch
of the logarithm. When n = 1 we will write € ((X)) instead of € ((X;)) and D
instead of D;.



b) Let®: € (X)) — € ((X)) be the € -linear operator defined by

[e3 d [e3 [e3
Note that D,, is a homomorphism, i.e. D, (fg) = D,(f)D,(g) while ® is a deriva-
tion, i.e. D(fg) = D(f)g + fD(g). This difference will force us to deal with these

operators separately. We begin by studying D,,.

Lemma 5. a) Let f € €(Xy,...,X,) and assume that D,(f) = f. Then
fec€.

b) Let f € IR((X)) and assume that D(f) = f. Then f € IR.

Proof. a) If D,(f) = f, then f(X1,...,X,) = f(p1X1,...,pnXn) =

fP3Xy,...,p2X,) = - . Lemma 1 implies that f(Xq,...,X,) =

f(X1Yy, ..., X,.Y,) for new variables Y3,...,Y,. If f =g/h, let g = ZCL[XI, h =
I

Z b;X7. Comparing coefficients of the corresponding monomials in X and Y we
7
have that, after a suitable re-ordering, Iy = J;, I = J,,... and a;by = a ;b for all

1, J. Therefore f € © .

b) The proof is the same as in a) using Lemma 2 instead of Lemma 1.

Note that Lemma 5 a) is not true for f € IR((X1,...,X,)) C € ((Xy,..., X)),

n > 2. To see this let f = Xiogr" 5X2_10g35, p1 =2, po = 3. Lemma 5 b) is not true

/=T
for f € € ((X)) since, for p =2, f= X oz gives a counterexample.



Lemma6. a) Ifyi,...,ym € C(X1,...,Xy) then y1,...,ym are linearly depen-
dent over € if and only if

Whp, (Y1, -, ym) = det =0
i D;n_lyl e D;n_lym |

b) Ifyi,...,ym € IR((X)), then y1,...,ym are linearly dependent over IR if and
only if Wp,(y1,- .., ym) = 0.

Proof. a) If y;,...,y, are linearly dependent over € then we clearly have
Whp, (y1,.-.,ym) = 0. Now assume that Wp, (y1,...,ym) = 0. In this case there
exist f1,..., fm € €(X1,...,X,), not all zero, such that

iyt A o = iDayn A fnDuyn = .. = ADT iyt A Dy = 0
We may assume f; = 1. Applying D, to each of these equations, we have

Diyi+ D, foDya+ ...+ D, fu DLy, =0
for e = 1,...,n. This implies that

(f2 = Dpf2)Diya+ ..+ (fo — Dof) DLty = 0

for: = 1,...,n — 1. Either f; — D,f; = 0 for « = 2,...,m, in which case we
are done by Lemma 5, or by induction there exist ay,...,a, € €, not all zero,

such that as D,y + ... + anDpym = 0. Therefore D, (azy2 + ... + anym) = 0 so
Yt ... + @pym = 0. The proof of part b) is similar and omitted.

10



Lemma 6 immediately implies the following criterion for a real quasirational

function to be (t1,1q)-sparse.

Lemma7 a) Letfe €(Xy,...,X,), fis(t1,t2)-sparse if and only if there exist
L, Ly, J,.o...Jy, € Z", I, # 1;, J; # J; fori # j such that Wp (X1, ... XIu
XAf . X f) = 0.

b) Let f € IR{(X)). f is (t1,t2)-sparse if and only if there exist

Apyeeey Oy, ﬂlv"wﬁtz S ]R} Q; # Oéj,ﬁi # 6] fO?’ U # .] such that
Wp(Xor, ..., Xou, XPf . XPef)=0.

Proof. a) f is (t1,%2)-sparse if and only if there exist I1,..., L, Ji,...,J;, €

z" I # 1;, J; # Jj for v # j and ay,...,a4, by,....b, € €, not all zero,
t t

such that ZaiXL + ijXIJf = 0. By Lemma 6 this happens if and only if

=1 7=1

WDn(Xh7 . ,Xltl, XJ1f7 . ,XJth) = 0.
The proof of b) is similar.

We now consider the other linear operator ® on € ((X)). We will need results

similar to Lemmas 5 and 6.

Lemma 8. [ff € C (X)) and®f =0 then f € C.

t t
Proof. First assume that f = ZaiXai eC(X). f0o=of= Zaiach”, then
=1 =1

t=1land a; =0,s0 fe C.

Now let f € € ((X)). fis minimally (t1,;)-sparse for some (¢1,t2). Let f = g/h

be a minimal (t1,%;)-sparse normalized representation. If ®h = 0, then we have

11



just shown that 2 € €. Since Df = ((9g)h — goh)/h* = (Dg)/h, so Dg = 0.
Therefore g € © and so f € €. We will therefore now assume ®h # 0 and derive
a contradiction. Since (Dg)h — g®h = 0, we have g/h = Dg/Dh. Since g/h is
normalized, Dg/®h is a (t; — 1,t3)- or a (t1,t3 — 1)-sparse representation of f, a

contradiction.

Lemma 9. Ifyi,...,ym € C{(X)) then y1,...,yn are linearly dependent over €
if and only iof

Dy1 0 DY
Wy, ...y ym) = det =0
I @m_lyl . @m_lym |

Proof. Lemma 8 implies that € ((X)) is a differential field with constant subfield
equal to €. The result now follows from ([18], Theorem 3.7).

3 Univariate Interpolation

Lemma 7 in the previous section allows us to characterize (¢1,1;)-sparse rational
functions and is the basis of the following algorithm for finding the exponents of a

sparse univariate rational function.

Assume we are given a black box to evaluate a univariate rational function f €

Q (X)) and assume we are told that it is minimally (¢1,?2)-sparse (the general case

12



when we are only told it is (¢1,?2)-sparse is handled below). Consider the expression

S(pa17"'7pat17 pﬁl7"'7pﬁt27 f(X)7f(pX)7"' 7f(pt1+t2_1X))

L Wp(X*, L X XA X f)
T X Xon . XP . XP

Note that S is a polynomial in the indicated terms with integer coefficients.
Replacing p™,...,p%, pP ..., p% with new variables Yi,...,Y; 1, we get a
polynomial S(Yi,.... Y, 4s,, f(X), f(pX),...,f(p"*™1X)) with at most (¢; +
ty)'t*2 terms in the variables Yi,...,Y; 14, and multilinear in the black boxes

F(X), f(pX),..., f(p"**271X). Since we are looking for the exponents of a nor-

malized minimal (%1, ;)-sparse representation of f, we may assume Y; = 1. By
lemma 7b) (0, @z, ..., a4, B1,...0) € IR™*%) will be a vector of such exponents if
and only if

S(]‘?pa27"'7pat17 pﬁl7"'7pﬁt27 f(X)7f(pX)7"') = 0 (2)

0#ai#a; Bi# B for 1#] (3)
Observe that S as a rational function from IR(X) is ((t; + t2)2(1+%2) ¢5+2) sparse,
hence by lemma 1 condition (2) is equivalent to the condition that S is either oo or 0
for X =p', 1 =0,... L 2(t o+ 1)2(“‘“2) — 1. For at least (t1+12+ 1)2(“‘“2) of these
points (being independent from ay, - -+, 3;,), S will be zero. Using the black box for
f(X), we can determine a system T' consisting of (#; + 15+ 1)?(*+%2) equations in the
unknowns Y3, ..., Y} 14, of degree at most (¢, +¢3)?, of inequalities 1 #Y; #Y; # 1,
2<i<y<t,Yi#Y;, 11 <t <j <ti+t; and of inequalities Y3 > 1,--- Y 44, > 1
that is equivalent to (2),(3) (for Y3 = p*2,---, Y, 4+, = p*2). By Lemma 3 b), T" has
a finite number of solutions in IR“*%27'. Note that Corollary 4 implies that these
solutions are integers. We can apply the algorithm of [13], [14] to this system and
find these solutions with (¢, —|—t2)0(t1+t2) arithmetic operations and depth (#; —|—t2)0(1).

13



We remark that this algorithm also implies that there are at most (¢; + tg)o(t1+t2)
solutions (cf. lemma 3b)) and that these solutions p®?,-- -, p”: are bounded by exp
(M (1 + t5)°(1+%2)) where M is a bound on the bitsize of the values yielded by the
black box when we evaluate f(p'*7) for s = 0,...,¢; +ta — 1, 7 = 0,...,2(4; +
ty + 1)2(+2) 1. Hence the exponents ay,---, 3, of the rational function f do
not exceed M (1, +1,)°1+%2) Notice that the algorithm finds p-powers p22, - - pe
genuinely, and the exponents ag, -+, B, can be found in (log(M)(t; + t,)"+%2)°()

arithmetic operations with the depth (loglog M (t; 4 t5))°®) (thus, not genuinely).

We can find the coefficients by solving a system of linear equations gotten from
{2 t1
(S6x7) ) = 3 axe
=1 =1
by letting X = p’/, j =0,1,...,%4; +t, — 1. Note that Lemma 3 b) implies that this
system will have a unique solution. This can be found genuinely with (¢, 4 #5)°(®)

arithmetic operations with depth ((log(t; + #2))°™), since to set up this system one

has to compute powers p*, p% which were computed genuinely above.

Turning to the general case where we are only told that f is ({1,%2)-sparse, we
proceed as follows: We consider all pairs (#7,1,) with 1 <] <t;, 1 <, <t;and use
the above algorithm for these pairs. The first time that the above algorithm yields a
non-empty set of solutions, we are guaranteed that, for this (¢],¢}), f has a minimal
(t],t))-sparse representation and that the algorithm has yielded the exponents and

the coeflicients.

4 Multivariate Interpolations

Let f(X1,...,X,) € Q(Xy,---,X,) be a minimally (¢, t3)-sparse rational function

given by a black box. We shall show in this section how the problem of finding

14



the exponent vectors of f can be reduced to the univariate case. In particular,
we shall show that the set of vectors v = (11,...,1,) € € such that fu(X) =
F(X™, . .., X)) is not minimally (¢1,?2)-sparse is a small set V. We will then show
that if we find the exponents of fp, for sufficiently many v ¢ V', then we can recover

the exponents appearing in f.

Lemma 10. Let f(X1,...,X,) be a minimally (t1,t3)-sparse rational function and
let v1,...,v, € € be linearly independent over ZZ. Then f(X™, ..., X") is mini-

mally (t1,12)-sparse.

Proof. Let p(X)/G(X) be a minimally (#;,7;)-sparse representation of
f(Xn ..., X"™) with ¢ < t;, #, < t5. By Lemma 3 a), we may assume that
p,g € CIX", ..., X"]. Since the map sending X" to X; induces an isomorphism
of € (X™,...,X") onto @ (X1,...,X,), we get a ({1,%,)-sparse representation of
f(X1,...,X,). Therefore, t; = t1, t; = t,.

Lemma 11. Let f be a minimally (t1,t2)-sparse rational function with integer
coefficients. The set V of vectors v € €™ such that fy is not minimally (t1,13)-
sparse lies in the union of at most (t;+15)°+2)) hyperplanes determined by linear

forms with integer coefficients.

Proof. We will first show that V is defined by a set of polynomial equalities and
inequalities with coefficients in @ (i.e. V is a Q -constructible set). Let V;,...,V,, be
variables. We shall write down conditions on V;,...,V, so that f(X"1 ..., X") is
(t1—1,1;)-sparse, let these conditions determine a set 20(") (similar conditions can be

derived for f(X"1,..., XV") to be (1,1, — 1)-sparse, let these conditions determine

15



a set w?). Thus w0 = w® Uw®. Lemma 9 implies that f(X",..., X") is
(t; — 1,12)-sparse if and only if there exist aq,...,a4-1,051,...8:, € € such that
o # aj, B # B for 1 # j and

So (0. yanr, Buyo By FXY XY, R (X X))

W (X, ..., X1 XA (XY XY, X f(XVi X))

Xo1. ... X% . XBi._ .. XPn
=0 (1)

When we clear the denominator of (4) we will get a linear function in expressions of
the form X**Vi with coefficients C,, where a = (ay,- -+ ,a,) € Z", that are polyno-
mials in aq,...,04-1, B1,..., B,y Vi,..., V, with integer coefficients. Observe that

there are at most (¢; 4 £5)°(1+%2) distinct powers X>*" that can appear

For any pair Xa;V;, £b;V; of distinct exponents, let L,;, = ¥(a; — b;)V;. Lemma
9 states that for any choice (v1,...,v,) € € " such that L,;(v1,...,v,) # 0, fis
(t1 — 1, ty)-sparse if and only if there exist aq,...,a4-1, B1,..., 0, € € such that
all the C, considered above vanish. Let ® be the formula, from the language of
algebraically closed fields, with bound variables «q,..., a1, B1,..., B3, and free
variables Vi,...,V, that expresses this latter statement. This formula contains at

most (¢ + tg)o(t1+t2) polynomials, each of degree at most (¢; + ¢3)?

Applying the results of [6] (see also [4]), we can eliminate quantifiers and get
a quantifier free formula W in variables V;,...,V, equivalent to ®. Furthermore,
the polynomials occurring in ¥ have degrees at most (¢ + #5)°((1+%2)%) and there
are at most (t; + tg)o((tl"'t?)”) of these. This formula determines a constructible set
Wy C €. As it was shown above the symmetric difference (Qﬁ(l) \ 20o) U (206 \ Qﬁ(l))
lies in a union of all (#; —|—t2)0(t1+t2) hyperplanes of the kind L, ; for considered above

integer vectors a, b. From Lemma 10, we know that for each point (v4,...,1,) € 20

16



n

there exists a relation Z ~iv; = 0 for suitable integers v4,...,7, not all zero. From
=1

Lemma 12 of the appendix we know that each irreducible component of 204 (and also

of 20) lies in a hyperplane. Therefore 20 lies in the union of at most (; 4 #5)°((f1#%2)7)

hyperplanes determined by linear forms with integer coefficients.

We now proceed to describe an algorithm to find p-powers of the exponents of a

minimally (¢, ¢3)-sparse normalized rational function f.

For any ¢ > 0 using the construction from ([11] or [12], Lemma), one can
explicitly produce, for suitable ¢; > 0, ¢ > 0, N = (1 + tQ)Cl(tl‘H?)” vectors
v = (Z/{i) ) Véi))

, 1 <12 < N where the integers 1 < l/](i) < (t1 + t2)c2(t1+t2)n
such that for any family of (¢ 4 #2)°"*%2)" hyperplanes (containing the origin) at
least n of these vectors lie in none of these hyperplanes and any n of these vectors
are linearly independent. We take ¢ > 0 such that the number of hyperplanes in
lemma 11 is at most (¢; + tg)c(“"'t?)” (so for the algorithm we have only to esti-
mate explicitely constant ¢ once and forever) and apply to this ¢ the construction
mentioned above. For each of the vectors ¥ produced in this way, use the al-
gorithm from Section 3 to find tgi) < ty, t(;) < t3 such that the rational function
fpw € Q(X) has a minimal (tgi), t(;))—sparse representation. By Lemma 11 and
the construction of the v(), there exist at least n vectors among the v (without
loss of generality we let them be (), ... v(") such that fy« is minimally (¢, %,)-
sparse for all 1 <2 < n. Using the algorithm from section 3 we find p-powers of the
exponents of all normalized (%1, 1;)-sparse representations of f,,i) for each 1 <: <n
(recall that there are at most (¢; + tg)o(tl‘m) of these). For each fym, 1 <1 < n,
pick out one set of such p-powers of the exponents po‘(li), e ,pa(fi), P gi), ce ,pﬁg). For
each 7, 1 <1 < n, we also pick out two permutations 7 € S, and ¢ € S,,,

where §,, is the permutation group on m elements. For every j;, 1 < j; < ¢y, the
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algorithm solves the p-power form of a linear system
E z)y(h) ot () )
k=1" =p =01 (5)

1< <n
and for every ja, 1 < j3 < 13 a system
pE:=1 ”Eci)ch]Q) = pﬁff( )(32) (6)

1< <n

Using [21] the algorithm produces the inverse matrix (ﬂgj)/ﬂ) where /ng), e Z
to n X n matrix (1/,(;)) which is invertible because of the construction of the vectors
(1) > ial
v, Then p“ij1 = pisisn "0 and the algorithm computes the right side of this
. . (52) .. .
equality. The algorithm also computes p“ZkJ2 . Similar computations can be made for

different primes p. The vectors Y1) = (Yl(l), Y@y Ly ®) (Yl(tl), e Y1)
and Zz®) — (Zl(l) e, ZWY

R Z) = (Zl(tQ), -+, 7)) are considered as candi-

?

?

dates for being exponents vectors in the numerator and denominator of a (¢,13)-

( (52)
sparse representation of f. The algorithm represents them by p*Y m’ p“an . The

algorithm tests, whether Y £ Y z0) £ 72O for 5 £,

The then algorithm tests whether these candidates fit. For this aim consider a

linear system

() (i) (i)
S gt o S g AT ) <1< 2t 44)?

lsigtl 1<Z<t2
(7)

in the unknown coefficients ¢;, ©; of the (¢1,t3)-sparse representation of f currently
being tested. (In (7) we skip the equations for which f(pid, .o, P! = o0). Lemma 1
implies that (7) is solvable if and only if exponent vectors Yy z0U) fit (we apply
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here lemma 1 probably not to rational functions, since the exponents Yk(i), Z;Ei) could
be rational, but it is still valid by making a replacement of the variables X; — EM,
1 <@ < n). If (7) is solvable then Yk(i), Z,gi) are integers because of lemma 3a),
moreover it has a unique solution by lemma 3b). This completes the description of

the algorithm for f being minimally (1, ;)-sparse. To treat the case when we are

only told that f is (¢1,%2)-sparse, we proceed as in Section 3.

Now we proceed to the complexity bounds. Let us assume we are given the black
box for a (t1,1;)-sparse rational function. The algorithm produces (¢; + tg)o((t1+t2)”)
integer vectors ¥ and, for each of these, applies the algorithm from Section 3 to
the univariate rational function fy,. This part of the algorithm requires (¢; +
tg)o((“"'t?)”) arithmetic operations with depth ((¢; + tg)n)o(l). The algorithm then
selects, for each ¢, 1 < ¢ < n, some (t1,12)-sparse representation of f,,i) and also
two permutations 7(9), ¢, This is again within the same bounds. The algorithm
then solves (t; + t5)°((1+%2)7) ppower forms of linear systems of type (5), (6). To

(1)

invert n x n matrix ("), n°™)

arithmetic operations are used with depth log *Mn.
Since ,ugj), p < (t; + tg)o((“"'t?)”Q) computation of p#, p“Yk(m, p“ZiﬂQ) can be done
within the same complexity bounds. The same applies to solving system (7). If we
are only told that f is (¢1,%2)-sparse, the additional search required by the algorithm
does not change the complexity. We note again that the algorithm for finding the
coefficients and p-powers of the exponents of a sparse representation is genuine but
that the complexity of the algorithm for finding the exponents does depend on the
degree of f and the size of the exponents (or at least on the size of the output of the
black box for f). Note that the bound on the complexity for finding the exponents

is the same as in the univariate case (see Section 3).

We are also able to give some bounds on the degree d of a sparse representation.

(

Assume that A is a bound for all the exponents ozji), ﬁj(z) found for the univariate
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rational functions f,,i) (such a bound can be found using the techniques of Section
3). We can then bound d by looking at p-power forms of the linear systems (5) and

(6); in fact d < A(ty + tg)o((t1+t2)”2). Thus, we can formulate the main result of the

paper:

Theorem. 1) One can construct an integer R, the coefficients a;, b; of some

. (1) (1) JAQ) (1)
(t1,t2)-sparse representation 3 a; X)X bX - X of (t1,12)-
1<i<ty 1<i<ts

sparse rational function f and the powers Rjgi), RR” of the exponents genuinely in

(t1 + tg)o((tl‘”?)”) arithmetic operations with the depth ((t; + tg)n)o(l).

2) the exponents jl(i), kl(i) do not exceed M (1, —I—tg)o(tl"'t?)“Q) where M is the bound
on bitsizes of all the outputs of applications of a black box during the computation
and the exponents can be computed in ((log M)(ty + t5){(1+22))O0) grithmetical
operations with the depth ((loglog M)((t; + t2)n))°W.

Appendix. For the convenience of the reader, we give a short proof of the result
about complex varieties that was needed in the proof of Lemma 11. This result
is true for varieties over any algebraically closed field of characteristic 0, but the
proof is more complex and depends on the Hilbert Irreducibility Theorem instead

of elementary topological notions.

Lemma 12. Let 90 be an irreducible constructible set in €™ (i.e. a constructible
set whose Zariski closure is irreducible). Assume that for each v = (v1,...,v,) €W
there exist vi,...,vn € Z, not all zero, such that 3.7, viv; = 0. Then there exist
MyvosAn € Z, not all zero, such that 3.7 Yivi =0 for all (v1,...,v,) € 20.
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Proof. If 20 has dimension 0, then it is a point and we are done. Therefore
assume dim 20 > 0. By definition, 20 is open in its Zariski closure 2. Therefore
there exists a point v € 20 that is non-singular in 20. We select a sufficiently small
e such that 20, = W N {x | ||x — v|| < €} will be closed in the usual topology
and contain an open subset of 20. For each (7y1,...,7,) € Z", not all v; zero, let
Hy oo = {1, ..o vn) € 00|35 vivi = 0}, Since 20, is closed, the Baire Category
Theorem ([22], p. 139) implies that for some (31,...,%,), Hs,, . 5, contains an open
subset of 20, (and so, of 20). Therefore dim(H5,

.....

irreducible, we must have (H

.....
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