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Abstract

Symbolic manipulation of sparse polynomials, given as lists of exponents
and nonzero coeflicients, appears to be much more complicated than dealing
with polynomials in dense encoding (see e.g. [GKS 90, KT 88, P 77a, P 77b]).
The first results in this direction are due to Plaisted [P 77a, P 77b], who
proved, in particular, the NP-completeness of divisibility of a polynomial z™—1
by a product of sparse polynomials. On the other hand, essentially nothing
nontrivial is known about the complexity of the divisibility problem of two
sparse integer polynomials. (One can easily prove that it is in PSPACE with
the help of [M 86].) Here we prove that nondivisibility of two sparse multivari-
able polynomials is in NP, provided that the Extended Riemann Hypothesis
(ERH) holds (see e.g. [LO 77]).

The divisibility problem is closely related to the rational interpola-
tion problem (whose decidability and complexity bound are determined in
[GKS 90]). In this setting we assume that a rational function is given by a
black box for evaluating it. We prove also that the problem of deciding whether
a rational function given by a black box equals a polynomial belongs to the
parallel class NC, provided the ERH holds and moreover, that we know the
degree of some sparse rational representation of it.
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1 Nondivisibility problem for sparse polynomi-
als

Let f = Yicict a; X% g = Yi<ict X% e Z[Xy,...,X,] be two at most t-sparse

polynomials. Assume that every degree degzj(f), deg$J (9) < d, 1 <j <nand the

bit-size [(a;), [(b;) of each integer coefficient a;, b; is less than M. The problem is to
test, whether g divides f. Observe that the bit-size of input data is O(¢(M+n log d)).

First, we consider the case n = 1 of one-variable polynomials f = 37« a;2%,

g = 2199 bix*.
Lemma 1.  Any nonzero root of g (also of f) has multiplicity less than t.

Proof. Assume the contrary and let g # 0 be a root of g with multiplicity at

least ¢. Then g(zo) = gV (z¢) = -+ = g*1(z¢) = 0. Hence the ¢ x ¢ matrix
1 -+ 1
ky - k
ky(ki—1) oo k(b —1)
ky(ky — D(ks —2) -+ k(b — 1) (ks — 2)
(ki — 1) (ky—t+2) o kke— 1) (b —t +2)

is singular. This leads to a contradiction since this matrix by elementary transfor-

mations of its rows can be reduced to a Vandermonde matrix. O

Assume that ¢ does not divide f. Then there exists a factor h € Zz] of ¢
that is irreducible over @, and such that its multiplicity m, in ¢ is larger than its

multiplicity my in f. The Lemma 1 above shows m, < 1.
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There exist polynomials u,v € @ [z] with deg(u), deg(v) < d such that 1 =
uh + v (h%f) Taking into account the bounds I(h), [ (h%f) < M + d that apply to
factors of ¢, f, respectively, we obtain [(u), [(v) < Md°(M) by virtue of the bounds
on the bit-size of minors of the Sylvester matrix (see e.g. [CG 82, L 82, M 82]). Let
us rewrite the equality in the following way: wg = ugh+vg (h%f)’ where wq € Z, ug,
vy € Z[z]. There exist at most M - d°®) primes which divide wy. Therefore, there
exists a prime p < N = (Md)°® (provided the ERH holds [LO 77, W 72]) which
does not divide any of wg, the leading coefficient l¢(g) of ¢ and the discriminant of
h, and moreover the polynomial h(modp) € GF(p)[z] has a root in GF(p). Then

the multiplicity of this root in f equals ms and in ¢ is at least my,.

The nondeterministic procedure under construction guesses a prime p < N and

an element o € GF(p) and tests whether for some 0 < ¢ < ¢t — 1 one has g(a) =
gM(a) =+ =g a) =0, fO(a) #0, lc(g) # 0 in GF(p).

One can easily see that if such p, a exist then g does not divide f. Indeed, in
the opposite case, (lc(g))*f = ge for some integer s and a polynomial e € Z[z].

Reducing this equation mod p, one gets a contradiction.

Now we return to the multivariate case. Suppose again that ¢ does not divide
f. Let h € ZZ[Xq,...,X,] have a similar property to the & in the univariate case.
Assume without loss of generality that a variable X; occurs in k. Then ¢ also does
not divide f in the ring Q (Xs, ..., X,)[X1] by the Gauss lemma. Consider division of
f by g with remainder in the latter ring: f = gu+ 6. Then degy (1), degy.(0) < d?,
2 < < n (cf. [L 82]) and the denominators of p, 6 are the powers of lex,(g) €
Z|[X3,...X,]. Hence for some integers 0 < x3,...,z, < d* + d we have (lcx,(g) -
lex,(0))(xq,...,2,) # 0. Therefore, the polynomial ¢( X1, za,...,2,) € Z[X1] does
not divide f(Xy,xa,...,2,) € Z[X1] in the ring Q [X1].



The nondeterministic procedure guesses an index 1 < ¢ < n, thus X; (in our
argument above its role was played by X;), the integers 0 < z,..., 2, < d*+d and
applies the nondeterministic procedure described before to one-variable polynomials

9(X1,22,.. . x), f(X1,29,...,2,). Thus, we have proved the following

PROPOSITION 1. Nondivisibility of sparse multivariate polynomials belongs
to NP provided the Extended Riemann Hypothesis holds.

2 Divisibility problem for sparse rational func-

tion given by a black-box

The proposition 1 can be improved if t-sparse f, g € Z[Xy,...,X,] are not ex-
plicitely given, but we only have a black box (see e.g. [GK 91, GKS 90]) for the
rational function f/g provided that lcx,(g) = 1 and a bound on d is given. This
is due to the fact that in the one-variable case we need only a bound on M which
one can get even by the parallel algorithm NC from a black-box relying on the con-
struction from [GK 91] of a big enough number. To do this we proceed as follows.
Assume that f = Y a2, g= S biz¥, 11,1, <t and ¢ has a minimal possible
1<zt 1<i%ts
degree for any t-sparse representation of the rational function ¢ = f/g.

Let M = miax{l(ai), I(b;)} + 1.

Take successive primes pq, - - -, p; and for each p among them calculate (by black-

box) q(p), q(p?), - ,q(p2t2+1). For at least one p all these values are defined, i.e. g

does not vanish in these points. Let us fix such p.

Lemma 2. At least one of ¢(p), q(p?), - - - ,q(p2t2+1) has absolute value greater than



2M/2t/t4dt2 ]

Proof. Denote N' = max{|q(p)|, -, |q(p2t2+1)|}. The homogenous linear system
in the indeterminates A;, B;
S APt =( > Bp™(p?), 1<s<2P41
1<i<t 1<i<ts
has a unique solution since the polynomials f, ¢ provide a minimal ¢-sparse repre-

sentation of ¢, hence ( 3. A;z%)/( 3. Biz*) = q(z). Therefore, each a;, b; equals
1<i<t 1<i<ty

to a quotient of a suitable pair of (t;—T— ty — 1) x (t; +t2 — 1) minors of this linear
system. Then max{|a;|, |b;|} < (Np*°92t)% < (Nt4%*)?. The lemma is proved. O

One can construct in NC' the integer t*%* ([BCH 86]), then by Lemma 2 an

integer larger than 2M/?* and again using [BCH 86] an integer larger than 2.

Then the algorithm constructs an integer Ny > 36-23M.4° . Finally, the algorithm
yields the number N = ¢(¢(Np)). We claim that N is big enough (see [GK 91]),

namely, divide with the remainder f = eg + rem(f, g), then for each integer Ny > N
we have 0 < |%M(N1)| < £, provided that rem(f,g) # 0.

Let us prove the claim. Denote di = deg(f), do = deg(g). Without loss of
generality, assume that le(f) > 0. Then f(Ny) > N& — dNG—19M > %Ngl,
0 < g(No) < N + dNJ-"12M < %NSIO, hence ¢(Ny) > %Ngl_do. On the other
hand f(Ng) < 2MdNG', g(No) > N§° — 2MdN™ > LN therefore q(Ny) <
2MHLINGI =% We get that g(No) < 1Ny if and only if d; = do. In this case g di-
vides f if and only if f/g = const; arguing as in the proof of Lemma 2 the latter
identity is equivalent to the equalities ¢(p) = --- = q(p2t2+1). So, we assume now
that dy — dy > 0. Notice that the absolute value of each coefficient of rem(f,g) is
at most ((d; — do + 2)2M )1 -%+2 (see e.g. [L 82]). In a similar way N = g(q(Ng)) >
L(g(No))r—to > gdo=di=1 N{B=4)" 1q g(N) > N — 2MyNdo=1 > LN Hence
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0 < |rem(f,9)(N)| < ((di — do + 2)2M)h=do+2g, Ndo=1 < iNdO. This proves the

claim.

So, divisibility ¢|f is equivalent to (f/¢g)(/N) being an integer. The number of
arithmetic operations of the exhibited algorithm is at most (#logd)°(") with the
depth O(log tloglog d). Thus, the divisibility problem for one-variable rational func-
tion given by a black-box, is in NC.

In the multivariate case divide with the remainder f = eg 4+ rem(f,g) with re-
spect to the variable X7, namely in the ring @ (X5, -+, X,,)[X1], thus e, rem(f, g) €
Q[X1, -+, X,] since lex,(g) = 1. After substituting X; = XX, =
XX, = X we get an equality f = €g + W for polynomi-
als f,e,g,rem(f,g) € Q[X] that do not vanish identifically and an inequality

degy(g) = d" ! degXl(g) > degy rem(f,g). Therefore 0 # rem(f,g) = rem(?,ﬁ)
and we conclude that ¢ divides f if and only if § divides f. So, we apply the divisi-

bility test for one-variable case exhibited above to the rational function § = f/7.

Hence the number of arithmetic operations can be bounded by (tn log d)°®) with

the depth O(log(tn)loglog d) invoking the bounds for one-variable case.

PROPOSITION 2. The problem of testing whether a sparse multivariate ratio-
nal function, given by a black-box, equals to a polynomial, belongs to NC, provided

that a bound on the degree of some t-sparse representation f/g is given such that

ZCX1(9) = L.
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