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Abstract

We present two algorithms on sparse rational interpolation. The first is the
interpolation algorithm in a sense of the sparse partial fraction representation
of rational functions. The second is the algorithm for computing the entier and
the remainder of a rational function. The first algorithm works without apriori
known bound on the degree of a rational function, the second one is in the
class NC provided the degree is known. The presented algorithms complement
the sparse interpolation results of [Grigoriev, Karpinski, and Singer 90b].
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1 Introduction

We address a question of computational complexity of sparse rational interpolation
and connected question of algebraic manipulation of sparse rational functions. We
study the most general method of representation of rational functions by black
boxes (cf. [KT 88, GKS 90b]) and restrict ourselves in this paper to the univariate
case only. For the technical developments which lead to this paper see [GKS 90a,
GKS 90b, DG 90]. We discuss also these questions in view of the hardness results
of Plaisted [P 77a, P 77b] on the sparse polynomial divisibility.

We present two algorithms. For the first one we consider the partial-fraction
representation of a rational function and the corresponding notion of sparsity as
the number of terms in this representation. An algorithm is designed for finding
partial-fraction representation without knowing the degree. An independent inter-
est, apparently, has a constructed new code (see Section 1), being a generalization of
Goppa and BCH codes. The second algorithm finds an entier of a rational function,
so a polynomial part of a partial-fraction representation. We show that finding an
entier is in NC provided that the degree of a rational function is known. Here we
measure the complexity in the size of an output. As a subroutine we apply the

approximative analogue of sparse polynomial interpolation ([GK 87, BT 89]).

2 Extending BCH and Goppa-codes by involv-

ing multiple roots

Assume that a polynomial f € Z[Y] is unknown, deg f = d is also un-

known. In addition let (ai,...,aq) be an unknown vector. Denote f =



[(Y — )% = ¥ fiY'. Suppose that we can compute the expressions

i 0<i<d

gk = oncf  +agkdi T+
task(k— D24+t agk(k—1)(k—=2)-- (k=3 +2)F 4
—|—aﬁl+1c§—|—agl+2kc§_l 4+ ... for k=0,1,...

where (; summands correspond to ¢;. The question is to recover f and

(a1,...,aq).

For an arbitrary [ > 0 consider (d + 1) x (d + 1) Toplitz matrix

gi gi+1 tt Gl4d
= gi+1  Giy2 T Gldd
G, =

gi+d  Gi+d+1 0 Givad

and by () denote its d x d submatrix obtained by deleting the last row and the last

column. Consider also d x d matrix (being block-diagonal)

aq Qo Q3 -+ Qg

(8] a3
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0
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Apy
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0
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and d x (d + 1) matrix

It I+ 1) - (14 d)dr!
Cr = oy 1= Bi+1
(1 =1) (1= B1 + 2)¢}

namely, the second row is the derivative of the first one, the next is the derivative of
the previous etc. ; times, thus [3; rows correspond to ¢;, then 33 rows correspond

to ¢, etc. Denote by C; d x d matrix obtained from C; by deleting the last column.

Jo Jo by
Then C, : = 0, since denote (|

Ja fa by
0,by = z-(ch f(er)) = le™ fler) + el f'(er) = 0,0, by, = “5=r(ch fler)) = 0, and
so on. On the other hand det(C;) # 0, provided that ¢ 7510,c2 # 0,.... Indeed,
ho
assume that : = 0, then denote h = 3" h;Y* and 0 = h(c;) = k'(c;) =
ha-1
- h(ﬁl—l)(cl), 0= hlcy) =+ = h(ﬁz—l)(@)’u_

, then b, = ¢\ f(e)) =

, contradiction. The latter

arguing is known in the numerical analysis by considering Hermite’s interpolation.

_ _ T _

Then Giyr, = (Cn) A Ciy, G, = (C)" A €y, Hence if ap, # 0 and all
other coefficients ag which correspond to the highest derivatives, are distinct from
zero, then det(A) # 0 and therefore det((7;) # 0. Because of that rg(;) = d and

fo

the linear system (G;Z = 0 has a unique solution Z = : |. Thus, one can recover

Ja



f by solving a linear system G¢Z = 0, hence ¢q,..., B1,..., by polynomial factoring

[CG 82], representing ¢y, .. ., as the roots of the irreducible over @ polynomials.

Finally, one can find a4, ..., a4 by solving a linear system

(O[l, Ce ,O[d)CO = (go, e 7gd—1)-

Remark that for pairwise distinct ¢q,..., ¢4 the described code converts into

Goppa code [MS 81].

Note: If we take a Toplitz matrix

gi gi+1 o Gl4dy
giy1 G2 o Yitdi+1
Ji+d, Gi+di+1 " Gi4+2d,

for dy > d then its rank = d.

3 Partial-fraction sparsity of rational functions

and finding highest terms

Let fi/fs € Q[X] be a rational function given by a black-box. We assume that
the black-box at every point (including oo) gives a value of fi/fy at this point
(including oo). And the same concerns any rational function which will appear at

the intermediate calculations.

We suppose also that together with the black-box for fi/f; we are supplied with
a black-box for the derivative (fi/f2)’. If fi/fs is given by a short straight-line
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program, then (fi/f2)" can be represented also by a short straight-line program e.g.
by virtue of [BS 83]. If (fi1/f2) is given by a certain physical process, then also one

can get (fi/f2)".

With the help of (f1/ f2)" one can recover the highest term of f1/f; at oo. Namely,
if fi/f: = ax™ 4 O(x™™"), where m € Z, a # 0, then z(fi/f2)'/(f1/f2) = m +
O(z™'), so we recover m and then calculate in NC z™ and since (fi/f2)/a™ =

a+ O(z™'), we recover a.

A rational function f;/f; is uniquely represented as a sum of its partial fractions
filfa=P+% ;_’i +3 (;ff)Q +..., where P € Q[X] is a polynomial, ¢;, a; ; € 0.
We call P = [f1/f2] an entier of f1/fs (see the last section). We call f/fs t-sparse if

the number of nonzero terms in this representation is at most . We’ll assume in the
sequel that fi/f; is t-sparse. The problem we deal with is to find partial-fraction

representation.

Firstly we find P term by term starting with the highest one. Thus, we can
suppose that fi/f; = > == + ..., Then reso(f1/f2) = > i1, and if it does not

vanish then <E am) 7! is the highest term. Thus, we can find res.(fi/f2). Later
on we'll calculate g, = res.,z*(f1/f2) for different k, we call them successive residues.
Remark that g, = 3, ozmcf + ozmkcf_l + - -+, thus it coincides with the formula for

gr in the extended Goppa code (see the previous section).

Observe that if (fi1/f2)~" is also sparse then one can recover both fi/f; and

f2/fi by applying extended Goppa code (or even the usual Goppa code) to

(f1/f2)/(fi/f2) = X 2 (being sparse by the same token) where m; is the multi-

r—c;

plicity of the pole ¢; (when m; < 0) or of the root ¢; (when m; > 0) of f1/f;. Thus,

one can find ¢;, m; and considering expansions in the neighbourhood of ¢;, to find

(involving the procedure for recovering highest terms) the terms of the form (I_Ci’g)] .



4 A bound on the least nonzero successive

residue

If fi/fs = ¥ —5 + -+« then we call k an order of f,/f,. Evidently g; = 0 for

(z—ci)®

J < k. Let us estimate the least jy s.t. ¢;, # 0. Denote g,_py1 = gm/(m%k;l), Then

Jm—k+1 plays the role of g, 41 for the function Y (;ii) +3° (C;é_,kCJ;)JQ o= (fi/f) =
> (j_‘;) + > (;f—j)z) + --- in other words all the exponents in the denominators of
partial fractions are diminished by (k — 1). Assume that go = --- = gy—1 = 0 for

some N. Consider any N; < N. For any ¢ denote by d;(N;) the maximal j < N;
s.t. @;; # 0, and by d(Ny) = 3" d;(Ny).

We claim that d(N;) > Ny . Indeed

1.1
Jo Q1,d ()
= C(NI) | aga
N, -1
Q9. d, (N3)
where the matrix
1 1
~ C1 1 Cy 1
C(Nl) -
d 2¢ .o 2¢

is similar to the matrix C; (see the previous section), it has di(/N7) columns which

correspond to ¢y, d2(N1) columns which correspond to ¢z, ete. If d(Ny) < Ny, then
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the columns of the matrix C’(Nl) cannot be linearly dependent (see the previous

section); that proves the claim.

Recall that the sequence &;; is t-sparse and let us find out how large can be

No = max{jy : d(N;) > % for any Ny < j}, being a stronger property than is
necessary in our case, but we will need it later in this stronger version. Let us prove
that Ny < 3' by induction on t.
Assume the contrary. Then by inductive hypothesis in the segment [0, 3*!] there are
t—1 indices j such that ¢&; ; # 0 for a suitable 7 and in the segment (3", 3] there are
no such indices. Again by inductive hypothesis for these indices j; < 75 <--- < 7,4
holds j; < 3'=1. Therefore d(3!) < %t that leads to the contradiction.

Thus, the order of fi/f, is at least N — 3" where N is the least index for which

gy # 0, and we denote later §s_ny3: = gs/( also &; ; = oy jyN_3t.

s!
s—N+43t)!?

5 Finding swarms of terms

We say that an integer N, creates a swarm of terms of the rational function fi/f;
if 0 < CZ(NQ) < %, where cZ(NQ) = ZCZZ(NQ) = > (di(N2) — N +3"). In this case the

rank of the matrix

9o N2
GNQ/Q = :
INej2 e GN
equals to CZ(NQ) (see the section about codes).
A swarm means that in the segment [1, N3] there is some gap, in which there are no

indices j such that &; ; # 0 for some .

The Algorithm calculates rk(éo), rk(él), o rk(Gar),y - ,rk(éStz logs¢)- Lhere
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exists a sequence ¢t < [,1+1,---,1+ 2tlogst < 2t?log,t such that in the segment
(3!, 3!+2tlogat) there are no j such that &; ; # 0 for some 7. Since CZ(?)I) < t3!, then
rk(Gsl +logyt) = - - - = rk(Gsl + 2tlog, t) = d(3).

Conversely if T'k(égl +logst) == T’k(égl + 2tlogs t) for a certain [, then in

the segment (3'+loe:? 3MH2tlogat) there are no j such that &;; # 0 for some i. Indeed

l+2tlo t
in the opposite case there would exist jg < 37 ¢ = in this segment such that in the

segment (jo,t*jo) there are no j such that &; ; # 0 for some 7. Then
rk(é3l+2tlog3 t) > Tk(étjo) > Tk(é3z+1g3 t) ,

because 2tjp creates a swarm. Thus, we have proved that in the segment
(3Hlosst 3i+2tlogst) there are no j such that &;; # 0 for some i. Hence 3/t41°8s?
creates a swarm and the algorithm recovers it by means of the extension of Goppa

code.

Actually, there could be different swarms and the algorithm will recover a swarm,
after which there is a large gap, much larger than it is required by the definition of

the swarm.

After finding a swarm of terms, we subtract it from the function f;/f; and so

reduce a number of terms (sparsity) and continue until exhausting.

6 Analysis of the algorithm

Let us assume that we are supplied also with a black-box for computing a factorial

(as a preconditioning). Then the number of arithmetic operation necessary to fulfill

t2logt)

is at most 39 , and the number of parallel steps is O(¢°log®t) by Mulmuley

[M 86].



So, it is independent from the total degree d of the rational function. If to count
bit complexity, then the time would be bounded by (dM)°(M), where d is the degree
and M is the bit-size of the coefficients, and the parallel time < log®V(dM) (again
by [M 86]).

Remark about using [CG 82] for finding roots of denominator (see Section 2).

f=11 ¥ =) ,degf<3".

1<4<t

The number of ¢; is at most ¢ because of ¢-sparsity of fi/f> .
(f/GCD(f, f') = TI(Y — ¢) — apply to it [CG 82], find ¢, — find ; in parallel
time O(t) — «; )

7 Finding an entier of a sparse rational function
is in NC

Let a rational function ¢ € Q (z) be given by a black-box and we assume that ¢
can be represented in a form ¢ = f/g, where polynomials f,g € Z[X] are both
t-sparse and form a minimal ¢-sparse representation of ¢ (in the sense of a degree of
denominator ¢) and the leading coefficient l¢(¢g) = 1. Unlike the previous sections
we suppose that we know a bound d on the degrees deg(f),deg(g) < d. Under this
supposition we’ll show that the problem of finding the entier [f/g] = h € Z[X]
is in the parallel class NC (cf. [C 85, KR 90]). Denote d; = deg(f), do = deg(g),
M is a maximal of bit-sizes of the coefficients of f, ¢ (they are not supposed to be
given). Represent ¢ = f/g = [f/g] + RemT(f’g). We call a rational number 0 < ¢ € @

MH;M(C)‘ < %. Our next purpose is to construct explicitely a big

big enough if

enough number.
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Take succesive primes py, ..., p; and for each p among them calculate (by black-
box) ¢(p), q¢(p?), - - ,q(thQ‘H). For at least one p all these values are defined (let us

fix it).

Lemma At least one of ¢(p), ¢(p?), - ,q(p2t2+1) has an absolute value greater

than 2M/2t /y4dt®,

PROOF  Denote N' = max{|q(p)]|,- -, |q(p2t2+1)|}. Denote f = 3. woz%, g =
1<i<t

S Biz*. The homogeneous linear system in the indeterminates o, 3;
1<i<t

Soapt = (Y B )e(p*), 1<s<2 41

has a unique solution, since the polynomials f, ¢ provide a minimal ¢-sparse repres-
ntation of ¢, hence these equalities imply that (3 a;z%') / (E /Bz-;ck") = ¢(z). There-
fore, each «;, f; equals to an appropriate (2t — 1) x (2¢t — 1) minor of this system.

Then 2M < max{|a;|, 8]} < (Np*°92t)% < (Nt*9)% Lemma is proved.

t4dt2

Then one can produce in NC ([BC 86]) an integer and multiply it on A, so

2M/2t

we get a rational number greater than . Then again involving [BC 86], one can

construct a rational number Ny > 36 - 23M . 5 .

Calculate ¢(Ny). W.lo.g. assume that le(f) > 0. Then f(Ny) > N§' —
ANGT2M > NG g(Ng) < N§° + dNg°'2M < 2N Thus, ¢(No) > N5 %,
On the other hand f(Ng) < 2MdNg", g(No) > N§° — dNg==12M | therefore ¢(Np) <
3 2MdNJ =% Thus if ¢(No) < & then dy —dy <0 and h = [f/g] =0, if d; —dy > 0
and ¢(Ng) < %Ng then d; —dy = 0. Assume now that d; —dy > 0. Notice that the ab-
solute value of each coefficient of rem( f, ¢g) is at most (2M<d1_d0+2)) (dy—dp+2)h—do+2
(see [L 82]). Calculate then Ny = ¢(¢(No)) > 3d°_d1_1Néd1_d°)2. We claim that
N is big enough. Indeed, g(Ny) > Nio — 2Md NP~ > %Nldo, [rem(f, g)(N1)| <
(2M<d1_d0+2)) (dy — do + 2)d1_d°+2d0N1d°_1 < iNldo. Take an integer N = [N{] + 1,
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which is also a big enough number.

Having a big enough integer NV, we’ll find the entier [f/g] = h by a method similar
to [BT 89] (see also [GK 87]), which one can call an approximative polynomial
interpolation. We compute ¢(N),¢(N?),...,q(N?*) and take the nearest integers
to them, respectively, Ay,..., Ay. Then A; = h(N'), 1 < i < 2¢, since N is big
enough, and one can apply BCH-codes (as in [BT 89]) to recover the powers of X

occurring in h, and also the coefficients.

Arithmetic complexity of the whole procedure for finding entier A is (¢log d)o(l)
and parallel complexity O(log tloglog d).

Acknowlegment:  We thank Mike Singer for the number of interesting discus-

sions.
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