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Abstract

The design and implementation of software for the Ring Array Processor (RAP), a high
performance parallel computer, involved development for three hardware platforms: Sun
SPARC workstations, Heurikon MC68020 boards running the VxWorks real-time operating
system, and Texas Instruments TMS320C30 DSPs. The RAP now runs in Sun worksta-
tions under UNIX and in a VME based system using VxWorks. A flexible set of tools has
been provided both to the RAP user and programmer. Primary emphasis has been placed
on improving the efficiency of layered artificial neural network algorithms. This was done
by providing a library of assembly language routines, some of which use node-custom com-
pilation. An object-oriented RAP interface in C++ is provided that allows programmers
to incorporate the RAP as a computational server into their own UNIX applications. For
those not wishing to program in C4++, a command interpreter has been built that provides
interactive and shell-script style RAP manipulation.



1 Introduction

This document describes the Ring Array Processor (RAP) software architecture design, implemen-
tation, and system evolution. A user’s manual for the RAP is available [KB90], along with reports
on the system architecture [Mor90] and hardware implementation [Bec90].

The Ring Array Processor [MBKT90] [Mor90] is a multi-DSP system targeted for speech recog-
nition using connectionist algorithms. A RAP system consists of 1 to 16 9U VME bus boards, each
of which contains 4 Texas Instruments TMS320C30 DSP chips running at 16MHz [Tex88a]. Each
RAP processing node consists of a TMS320C30 and 4MB or 16MB of dynamic RAM (with either
1 or 4 Mb chips respectively), 1MB of fast static RAM, and 8KB of very fast on-chip RAM. The
theoretical peak performance is 128 MFLOPS per board, and test runs of algorithms of interest
show a sustained throughput roughly one-third to one-half of this.

The RAP was designed for a particular subset of layered artificial neural network algorithms.
The initial use of the RAP is for the back-propagation algorithm [RHWS86] used as part of a
probability estimator for a Hidden Markov Model speech recognizer [MB90]. When this algorithm
is partitioned in a particular way, a SIMD style of programming parallel machines is quite suitable.
Additionally, for these algorithms shared memory between nodes is not necessary. The RAP has no
shared memory between nodes but still supports a MIMD style of programming. All communication
between the TMS320C30 processors (or nodes) of a RAP board and between boards in a RAP
system is done through a unidirectional ring that is independent of the VME bus where the RAP
resides. The RAP is similar to the WARP [PGTKS8] and other systolic array processing machines
but differs in the nature of the communication process.

The three primary instructions used to communicate between nodes are ring get, ring put,
and ring shift. ring get reads a data word from the previous node, or blocks until one is ready.
ring put writes a data word to the subsequent node, or blocks until that node reads. ring shift
reads a data word from the previous node and writes that word to the subsequent node, or blocks
until the previous node has written and the subsequent node has read. These routines provide all
the RAP’s synchronization primitives. The nodes may become unsynchronized during periods of
no ring usage, but will re-synchronize upon initiation of ring usage.

The RAP ring and the VME memory interfaces were implemented using Xilinx Programmable
Gate Arrays [Bec90]. While the hardware is fixed, these parts provide flexible ring semantics in that
the ring parts may be re-programmed to provide different operations. For a 4 board system, the
peak communication between nodes is 1024MB /sec, peak computation is 512 MFLOPS, the forward
propagation step of the back-propagation algorithm attains 408 MFLOPS (256 units/layer), and
the complete back-propagation algorithm attains 239 MFLOPS (256 units/layer, 1 hidden layer).

2 RAP Software Architecture Design Goals

Given the board described in the introduction, it was necessary to derive a set of goals to follow
during the implementation process.

1. Computational Efficiency: get as close to the theoretical MFLOPS rating as possible. The
primary purpose of the RAP is to be a computation server. Therefore, we didn’t want the
software to reduce performance in any way.

e Write many inner TMS routines in assembly.

e Minimize the interaction between the RAP and the controlling host during computation.



e Provide flexibility for where code and data may be placed. Let the user place code
in TMS320C30 on-chip RAM even though it is not addressable by the host machine
through the VME bus.

2. Easy to Use: given an existing RAP application, it should be possible for a naive user to
quickly learn how to run it.

e The RAP should have a straightforward user interface.

e Simulate a UNIX! operating system shell closely but without providing gratuitous fea-
tures.

3. Easy to Learn: given an existing computationally expensive UNIX application, it should be
easy for a programmer to port it to the RAP.

e Provide a familiar programming environment.

e Give a wealth of library routines for doing low-level ring communication so the program-
mer will not need to learn the innards of the ring.

4. Flexibility: provide flexibility to programmers writing new RAP applications. We did not
wish to write a full operating system for the RAP, but wanted to provide an easy way for a
programmer to use RAP applications inside general UNIX programs (e.g. interactive graphics
programs like a connectionist simulator, a UNIX filter using the RAP as a computational
server, or anything else computationally expensive).

e Provide an easy way for RAP programs to communicate with new and existing UNIX
programs.

e Provide features that will facilitate and encourage the writing of new RAP applications.
Try to do this without writing a complex operating system.

5. ASAP: get things working in a reasonable amount of time. Typical runs of the back-
propagation algorithm were taking two or three days to complete on a Sun Workstation.
Therefore, we wanted to apply the RAP to real problems soon. We did not want to spend
much more than six months of software development time.

e Use the C compiler for the TMS320C30 [Tex89] provided by Texas Instruments for as
much of the system related code as possible without sacrificing computational efficiency.
Use TMS320C30 assembly coding only where necessary.

e Delay the implementation of ideas for more complex node communication (such as gen-
eral message passing, RPC, RAP multi-programming, and mail boxes). Only build what
is necessary to get a running system satisfying the above goals.

3 The Three Hardware Platforms

Writing software for the RAP involved developing code for three hardware platforms: Sun Work-
stations, VxWorks/Heurikon MC68020 (described later), and the TMS320C30 (see figure 1).

Any UNIX application that manipulates the RAP is called a rapClient. A rapClient connects
to a rapServer (or RAP host) which resides on the machine hosting a RAP system (e.g. if a RAP
board is in a Sun VME bus backplane, a rapServer daemon process will wait for connections from

1UNIX is a trademark of AT&T Bell Laboratories



Figure 1: RAP software environment



rapClients and acknowledge interrupts from the RAP board). rapServer software runs both on
VxWorks (written in C) and on UNIX workstations (written in C+4 [ES90], and C for the device
driver). A user may write RAP code and run it on either type of rapServer without recompiling.
A rapServer may directly manipulate a RAP whereas a rapClient only indirectly effects a RAP
through its current rapServer. Any user-written UNIX application may become a rapClient by
inheriting from the right C4++ class.

4 Sun Platform

4.1 RAP Client-Host Protocol

A rapClient communicates to a rapServer using the RAP Client-Host Protocol which performs
both presentation and application level functions. Built on top of TCP/IP, the protocol provides:

e Data type safety: Type check the sequence of data messages sent to the rapServer. The
rapServer will discard a RAP message if it does not strictly follow the format.

e Floating-point number conversion: Floating-point numbers on the rapClient end of the
connection must be in IEEE[IEE85] format, but on the server end must be in in TMS320C30
format. A rapClient is assured that floating-point numbers sent to a rapServer in IEEE
format will be converted to TMS320C30, and numbers returned from the TMS320C30 will
be converted to IEEE.

e Virtual RAP node numbers seen by the rapClient: The rapClient will only see node num-
bers 0 through (numberO f Nodes — 1) regardless of the extant physical node numbers.

e A small amount of user security. The current user’s job may not be disturbed by any other
user.

Similar to an RPC, a rapClient uses function calls to send protocol messages to its rapServer
and receive return values. The rapServer interprets messages and executes the corresponding
action on the RAP machine. The rapServer maintains a current (board ID,node ID) tuple which
will apply to all future rapClient protocol messages. The rapClient may change the current tuple
by sending a message to change virtual node numbers; the rapServer will translate the virtual node
number into a hardware (board ID,node ID) tuple (if the virtual node number is -1, future protocol
requests will affect all nodes). A rapClient protocol message to a rapServer consists of a message
number followed by some number of parameters. Parameters may be of type int, float, or char*.
Each protocol message returns a value that may signal an error. Optionally, one additional word
value may be returned from the rapServer. Large arrays of data may be returned to a rapClient
using typed data messages.

One include file is used to define the protocol for all protocol implementors. This is done by
defining a C macro to extract the needed information out of macro calls defined in an include file.
The include file contains macro calls which completely define each protocol message; information is
given by the actual parameters. Each definition contains information that will supply all necessary
information about the protocol message. The C macro can be defined differently each time the file
is included by using formal parameters in different ways. Thus different information is extracted at
each include instance. The information about the protocol, however, is contained in one place, so if
any protocol changes are made, only a recompile is necessary to update all protocol implementors.

In the include file protocol definition, C macros are called as:



RAPPROTO (cmdNam, cmdNum, cmdSym,fprms,al,a2,a3,a4,pml,pm2,pm3,pm4,rv,r)

where cmdNam is the name of the protocol command in string form; cmdNum is a unique command
number uniquely determining the command at run time; cmdSym is a case sensitive unique command
symbol which can be used to create a routine name to call; fprms is the ANSI C style procedure
header. The types correspond to the parameters pml,pm2,pm3,pm4; al,a2,a3,a4 represent the
types of pm1 through pm4 and must be the symbols s, £, or d for string, float, or decimal integer
respectively; pm1,pm2,pm3,pm4 are the string types of the parameters (¢ “s’? for arbitrary string,
“¢£2 for a floating-point value, ‘d’’ for a 4 byte integer, or 0 for no parameter sent); rv is the
type of the return value of the function (€¢d’’ to return an integer value, or 0 for no return value);
and r is the symbol form of the return value (4 if for 4 byte integer return code, or nothing if no
return value).
A typical protocol definition in the include file looks like:

/* specify user name, user id, return socket number, */
/* and requesting host name */
RAPPROTO("user",2,user,

(char #pl,int p2,int p3,char *p4,int *rp),

s,d,d,s,
g ngn nge vs", /x user, uid, return socket, hostname */
"qr,d) /* return value is the number of active nodes */

In this case, the first parameter, pl, is the textual user name. The second is an integer user
ID. The third is the return socket number; the host containing a RAP will connect back using this
socket for asynchronous output. The fourth is the connecting host name (this is necessary since
VxWorks does not have the gethostbyaddr() system call).

Some typical protocol requests are:

user  — Tell the rapServer the identity of the rapClient.
load - Load a TMS320C30 executable file onto a RAP node.
run — Run a program.

peek  — Peek at the given address on a RAP node.

modify — Poke a value at the given address on RAP node.
A typical application would use the protocol definitions as follows:

#define RAPPROTO(cmdNam,cmdNum,cmdSym,fprms,al,a2,a3,a4,pml,pm2,pm3,pmé,rv,r)\
extern rapReturnType rapProto # cmdNam fprms ;

#include "rapClientHostProto.h"

#undef RAPPROTO

/* use the defined external definitions */

4.2 TUNIX RAP Client: C4++ RAP Interface

The rapClient interface provides flexibility to users writing RAP applications and makes it rela-
tively easy to incorporate the RAP as a computational server.

A rapClient lives on the UNIX side of the connection with a rapServer. It is written in
C++ but a C interface will be very easy to provide. User applications running on a Sun which



Figure 2: RAP Client class hierarchy

are written in C+4 may inherit from the C+4 rapClient class and may then send protocol
messages to the RAP by calling rapClient member functions. An application can thus use the
RAP as a computational server for an interactive graphics application (although no form of real-
time is guaranteed) or for a UNIX filter (some waveform display programs like the Entropic Signal
Processing System (ESPS) [Ent] use UNIX filters as a means of adding custom behavior).

A rapClient references nodes using virtual node numbers. A virtual node number ranges from
0 to 4 X numBoards — 1 and is translated by the rapServer to a hardware (board ID, node ID)
tuple. There will be many boards with different hardware board ID and node ID values[Bec90].
With virtual node numbers, any configuration of hardware board ID and node ID RAP boards may
be installed in any order, and the user will only see consecutive nodes numbers starting at zero.

4.2.1 C++ rapClient Classes

The rapClient class hierarchy is shown in figure 2. The classes and rapClient applications are
described below.

netipc Contains the low level internet domain (AF_INET) socket interface. Constructing a netipc
takes a host name as an argument and connects to the port given by RAPPORT which a
RAP server listens on. netipc supports typed data messages (int, float, string) which are
used to implement the RAP Client/Host Protocol. This ensures that all senders and receivers
only use known message types and lengths.

rapOut0fBand Supports outgoing RAP data (from the RAP to the rapClient) and sets up a UNIX
SIGIO signal handler to catch RAP standard and error output that occurs asynchronously
with respect to a rapClient. The signal handler is invoked whenever there is activity on
the socket coming from the rapServer. It will read the message and write the data via
file descriptors set up by the rapClient. The default RAP stdout and stderr will go to
file descriptor 1 and 2 respectively. A rapClient, however, can set these file descriptors to
reference a pipe or socket which will redirect RAP output to a file or pipe RAP output to
other UNIX processes. rapOut0fBand also supports asynchronous messages coming from the
RAP which are sent to all active rapClients. Asynchronous messages include status (the
RAP program has finished, the RAP is ready to run, and the RAP terminated with an error),



standard I/O messages, and “typed data received” messages (using integer or floating-point

data).

rapProto This object, a child of netipc, contains member functions that implement RAP proto-
col messages. It also contains a member function rapProto::sayHello() that will send
the required initial set of protocol messages (using hello(), user(), ready() and the
rapOut0fBand object) to the rapServer. The sayHello() routine provides the standard
way all rapClients must initiate a dialog with the RAP. It will prompt the user if the newly
activated rapClient is not in the front of the user queue (to be described in the rapServer
section) and will automatically continue when the rapClient reaches the front of the queue
(batch jobs are implemented by having a rapClient then continue to send RAP messages).
sayHello() also notifies the user if an error occurred while connecting to the RAP.

The sayHello() function performs:

// make sure connection is working by
// sending the Hello protocol request.
hello();

// tell rapServer information about myself using user()
user (myUserName ,myUserId,myConnectPort ,myHostName,
&numActiveNodes) ;

// tell rapOut0fBand object to accept the return connection
acceptConnection();

while ('ready()) {
if (weAreInRapUserQue)
// give the user the option to look at the queue. Leave
// or continue waiting.

else if (anErrorOccurred)
// do correct error processing and return

rapProto uses the RAP Client/Host Protocol include file to construct its own member func-
tions which use netipc to communicate with the RAP. Changes in the protocol definition
header file will require minimal or no changes in the rapClient source.

Some additional member functions are:

e load(char *fileName);

e run(char *arguments);

e peek(unsigned rapAddress, char *symbolName, int *result);
e modify(unsigned rapAddress, char *symbolName, value);

e input(char *string);



rapClient This object encapsulates the three preceding objects by inheriting from both rapProto
and rapOut0fBand. It redefines the virtual member functions for “typed data received”
messages. Descendents of rapClient may further redefine them causing different actions for
incoming data. There are also virtual member functions for RAP standard and error output.
The default virtual functions for the “typed data received” messages ignore the incoming data
and the default virtual functions for RAP standard error and output will send the data to
the UNIX process’s stderr or stdout respectively. rapClient also:

e Contains routines to query the state of each RAP node.
e Sets up default signal handlers for SIGINT, SIGSTOP, and SIGHUP.

e Contains member functions which can manipulate the file descriptors that the rapOut0fBand
object uses.

A single user may create multiple rapClients in different UNIX processes. Thus, a user may
have multiple rapClients being served by one RAP machine.

4.2.2 Simple RAP Client

The following figure is an example of a simple rapClient:

// A C++ program to reset all RAP nodes on
// the machine <raphost.berkeley.edu>
#include <rapClient.h>

class rapReseter : public RapClient {
public:
// when constructed, the rapReseter object will
// reset all nodes of the RAP Machine it is connected to.

rapReseter(char *host)
: RapClient(host) // pass host on to rapClient

{
// tell the rapServer that further commands
// should effect all nodes.
nodeset (GLOBALRAPNODE) ;
// reset the current set of nodes.
reset();
}

};

main(int argc,char *argv[]) {
// tell the rapReseter object rr to connect to the host ’raphost’
rapReseter rr("raphost.berkeley.edu");



4.2.3 RAPMC: Complex RAP Client

RAPMC is a rapClient that is used for interactive controlling and debugging of a RAP machine.
By sending sets of RAP Client/Host Protocol requests for each command entered at the terminal,
RAPMC adds interactive control of the RAP directly from the RAPMC command line. It also
gives users the ability to change the destination of RAP standard and error output. Users may
start up multiple RAPMCs and have different RAP nodes send output to each RAPMC.
RAPMC supports interactive commands to:

Load and Run RAP programs.

Reset RAP nodes.

Display the RAP user queue.

disassemble TMS320C30 instructions.

Examine or modify RAP Memory.

Redirect RAP node output to a file or UNIX process.
Execute Command Scripts.

Send ASCII text to a RAP node’s standard input (stdin).
Wait for RAP jobs to complete.

A typical command script for RAPMC follows:

0> node *

*> 2> yo.outl

x> 3 | egrep -i error
x> load yo

*> run foo

*> wait

*> 2examine i 0x2c
*> reset

See [KB90] for a complete user’s reference on RAPMC.

4.2.4 Mandelbrot: Graphical RAP Client

The RAP Mandelbrot program is an example of using the RAP as a computational server for an
interactive graphical UNIX application. A subclass of rapClient, rapMandel uses the RAP for
the computational portion of the Mandelbrot/Julia set fractal generation algorithm. It uses the
“typed data received” messages (that rapClient supplies as virtual member functions) to receive
data that is used as indices into the color map for a Sun workstation. rapMandel redefines the
virtual routine “rapClient::intsReceived()” to directly call an X11 library function. Therefore,
asynchronous events (caused by the RAP) perform the drawing while the synchronous portion of
the program coordinates the communication.

Benchmarks for a screensize of 550x590 pixels, 8 bits per pixel, and a maximum of 256 inner
loops per pixel follow:

SPARC 14 Single Prec. | 1 Board RAP | 2 Board RAP | 3 Board RAP
Average Run 46.7 sec 8.7 sec VxW | 8.7 sec VxW
4.4 sec Sun 3.75 sec Sun
All Points in Set | 4:02.9 min 19.2 sec VxW | 11 sec VxW
15.9 sec Sun 6.5 sec Sun




The rapServer running on a Sun or under VxWorks (to be described later) is marked with
“Sun” or “VxW?” respectively. Right now, I/O is the limiting factor in the average run case as can
be seen by noting that there is no performance improvement in going from 1 to 2 boards with the
VxWorks system and a small performance improvement in going from 1 to 3 boards with the Sun
system.

It was expected that the RAP I/0 in a Sun Workstation would be faster since VxWorks has
networking problems. This appears to be the case as can be seen from the table. But, as more
boards are added, I/O should be a limiting factor since we will have reached ethernet bandwidth.
We plan, however, to implement a rapClient interface identical to the current one but which
directly manipulates a RAP contained in the local machine. This will allow existing rapClients
to run without change by re-inheriting.

Apart from being a visually pleasing demonstration of the RAP’s performance, the Mandel-
brot/Julia Set example shows that RAP works well on a problem outside the domain of artificial
neural network algorithms.

4.3 RAP Server: Sun Workstation

rapd is a program which runs on a Sun UNIX workstation and that accepts connections from
rapClient processes. It receives RAP Client/Host protocol messages from rapClients, and then
directly manipulates the RAP machine in the workstation. Written in C+4, rapd is started as a
daemon that runs on a workstation. It communicates to the RAP through a UNIX device driver
(accessed by one of the /dev/rap? device files).

A user may wish to have more than one RAP system in a Sun. If so, more than one version of
rapd may run with each operating on different /dev/rap files. A rapClient will decide to which
rapd it should connect.

rapd maintains the RAP user queue which holds the set of users waiting for the RAP. The
first user in the queue is called the active user. If this user creates additional rapClients, they
will immediately be given RAP access. If a different user starts up a rapClient, he/she will be
queued until the active user’s rapClients are finished. At that point, the next user in the user
queue will become active. A mechanism for batch jobs is thus provided. A user on a Sun may
start a rapClient in the background. When rapd causes that rapClient to become active, it will
start running. If the user sets the rapClient to finish and exit when it is done, the next user in
the user queue will get RAP access. rapd also provides a way for one user to start up multiple
rapClients. Each rapClient may manipulate a different RAP node (which is useful for a MIMD
style of programming), or receive output from a different node. One rapClient might be graphical
output, whereas another may just be a textual interface. If a RAP job is started on a workstation,
one may later log in from a dial up line and check progress without disturbing the current job.

The following is a description of the rapd internal objects shown in figure 3:

que,queObject,slList,dlList,generator,intHasher A queue, objects for the queue, singly and
doubly linked list objects, and an abstract generator class.

bridge Each rapClient has its own instance of a bridge object that will keep state for it, maintain
its connection, and communicate to the RAP boards through the rapSystem object. When
all active bridges of the current user finish, the next set of bridges in the user queue become
active and their jobs start executing.

Bridges may be in one of five states.

10



Figure 3: rapd class hierarchy

inchoate Until the rapClient has sent his user name, user ID, host name, and return
socket number to rapd (using the hello() and user() protocol requests), a newly
created bridge will be in the inchoate state where it is unable to manipulate the RAP
or communicate to any user. Once it has received the necessary information, a bridge
will set itself to the waiting state.

waiting If the bridge’s user is not the active user in the user queue, the bridge will remain
in the waiting state until it reaches the front. In this state, a bridge may only query its
own state or send a listing of the user queue to its rapClient (so that the rapClient
may decided to exit if the queue is too long).

active In this state, a bridge is currently receiving commands from or sending output to its
rapClient. A rapClient’s bridge is at the front of the user queue and currently has
control of the RAP.

dead After the rapClient has sent a quit protocol message, the bridge will place itself in
this state. Any bridges found in this state will be deleted.

ghost After the rapClient has sent a shelve protocol message, if its bridge is the last
remaining bridge for the active user, it will set itself to ghost state. This will cause the
bridge to serve as a place holder for the user at the front of the queue. When a new
rapClient of the same user who sent the shelve message connects to rapd, that user
will get RAP access.

kill If a user sends a kill protocol request, the bridge will set itself to the kill state. This
will cause all bridges of the current user to be eliminated from the user queue and the
current RAP job (if any) to be destroyed.

listener The listener object monitors all sockets and file descriptors using the select() UNIX
system call and dispatches all work to the appropriate bridges. It listens for activity on all

11



Figure 4: Listener Data Structure

bridge’s incoming message sockets, on all file descriptors corresponding to the /dev/rap files,
and on the socket for incoming connections from new rapClients. When a file descriptor
becomes active, the 1istener discovers who it belongs to, and asks the appropriate module
to process it.

The listener object is also a queue of non inchoate bridges (the user queue) and maintains
a list of inchoate bridges (see figure 4). When a new rapClient connects to rapd, the
listener will create an inchoate bridge that corresponds to the new rapClient and will
insert the bridge in the inchoate bridge list. As new messages come in for the bridge, the
requests are hashed, keyed on the file descriptor, to obtain a bridge. An inchoate bridge
may, upon receiving the necessary information, change its state to waiting. The listener
will then place the bridge into the user queue based on its username and userid number. The
bridge will then become either active (if the username and userid is the same as the active
user) or will remain waiting in the correct queue location.

rapNode rapNode objects correspond directly to and provide class member functions that manip-
ulate physical RAP nodes.
The rapNode object:
e Maps all RAP node physical memory into user virtual memory using the mmap () UNIX
system call.
o Keeps track of the state (run or reset) of the physical RAP node.
e Manipulates all RAP node registers.

e Supplies a public int& operator[](int nodeAddr) function so a rapNode can be used
as an array of RAP memory indexed using node addresses.

o Keeps track of the state and style of all open files for the RAP node.

o Keeps a current working directory for the RAP node.

12



e Stores the arguments of the previous run so that they may be used for a run given
without arguments.

e Stores a copy of the on-chip memory section and .cinit section (initialized C data) of
the previously loaded file.

e Before a run, copies the stored arguments and on-chip memory to the beginning of the
RAP node stack. Since TMS320C30 on-chip memory is not addressable from the VME
bus [Bec90], the data must be copied from the stack to real TMS320C30 on-chip memory
by the DSP boot code. rapNode also copies a fresh version of the .cinit section to RAP
memory.

o Keeps track of and uses node communication addresses for sending and receiving data
transfer requests from the DSP.

o Keeps track of the running time of the RAP node.

e Supplies routines which check the state of an exit loop that might be running on the
RAP. If the loop is running, the RAP node has successfully completed its job and it is
safe to re-run the program without reloading. This avoids unnecessary hard resets that
will corrupt memory.

e Processes RAP node interrupts caused by RAP system calls and break points. The
lowest level RAP system calls are:

exit() - exit the program

open() — open a file

close() - close a file

creat() - create a file

read() — read data from a file

write() — write data to a file

1seek() - seek to position in the file

cd() — change current working directory

rapClientWriteInts() - direct integer write to a rapClient
rapClientWriteFloats() — direct floating-point write to a rapClient

o Keeps a queue of data buffers which the RAP node may read as standard input.
e Supplies public class member functions to:

e reset and set the node
e Jload the node with a TMS320C30 executable file
e run the program

e return the current working directory for the node

rapBoard The rapBoard class sets up the communication with a RAP using a RAP device file
that provides access to the RAP device driver. The device file is specified by /dev/rap?
where ? is the hardware RAP board ID and the minor device number (the minor device
number and hardware board ID must be the same). Each rapBoard instance corresponds
to a physical RAP board contained in the local machine. When constructed, the rapBoard
instance must be given a RAP device file. Successfully creating an instance of a rapBoard
signifies that a physical RAP board was found. Subsequent references to the physical RAP
board can be made through the rapBoard object and any one of the four rapNode objects
which compose rapBoard.

The rapBoard class provides:

13



VME Slot | VME Slot | VME Slot
2 3 4
RAP RAP RAP
BOARD BOARD BOARD
1 0 2
/dev/rapl | /dev/rapO | /dev/rap2

Figure 5: RAP Boards in a VME Bus

A rapNode& rapBoard::operator[](int nodeNum); member function to reference a
certain rapNode object. If, for example, rb is an instance of a rapBoard class, rb[0] [0x300]
will be RAP node word address 0x300 on rapNode zero on this board.

e Public memory and ring Xilinx programming routines.

e Physical to virtual memory mapping of all RAP board and node registers using the
mmap() UNIX system call.

e The following public routines:

reset() — Reset all nodes of this board.

set()  — Sets all nodes of this board (release the reset bit).

load() — Load a TMS5320C30 executable file into all nodes.

run() — Run a program on all nodes of this board.

pwd() — Print the current directory of all nodes to the active rapClients.

rapSystem The rapSystem class groups together rapBoards and does the translation of rapClient
virtual node numbers to physical (board ID,node ID) tuples. At startup, an attempt is made
to construct a rapBoard object using each RAP device file given in the rapSystem construc-
tor’s arguments. If a rapBoard object is successfully created, a software board ID number
is incremented (which is independent of the hardware board ID), and the next RAP device
file is tried. Physical board ID’s do not need to be equal to virtual board IDs. For example,
suppose we have three RAP boards in a system with physical board IDs one, zero, and two,
and corresponding RAP device files /dev/rapl, /dev/rap0, /dev/rap2 but the boards are
out of VME slot order (shown in figure 5).

If a rapSystem is constructed as:

char *raps[] = { "/dev/rapl","/dev/rap0","/dev/rap2" };
rapSystem myRapSystem(3,raps,myListener);

then virtual board ID 0, 1, and 2 will refer to hardware boards 1, 0, and 2 respectively.
Additionally, virtual node numbers 0-3, 4-7, and 8-11 will refer to physical RAP boards
1, 0, and 2 respectively. Of course, this will only work correctly if the ring connectors on
the RAP boards are such that physical board 1’s ring put writes to physical board 0, and
physical board 1’s ring get reads from physical board 2 (and physical boards 2 and 3 are
correspondingly connected correctly).
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The rapSystem class contains the load routine which both rapBoard and rapNode use to load
TMS320C30 executable files. The load routine is contained here so a global load (to all nodes
of all boards) will read the file only once from disk.

The rapSystem class provides the following routines:

numBoards () and numNodes() return the number of successfully created rapBoard and
rapNode objects respectively.

RAP interrupt handler routines to handle interrupts from RAP boards. When there is
activity on a RAP board’s file descriptor, the listener object will notify the rapSystem.

reset(), set(), run(), load(), chdir(), storeInputText(), and pwd() which effect or
pertain to all nodes of all boards. Therefore, a user may reset all nodes of all boards
using the rapSystem object.

reset(), set(), run(), load(), peek(), poke(), chdir(), storeInputText (), and pwd()
which are similar to the above but affect or pertain to only a given virtual node. For
example:

rapSystem: :load(char *fileName)
will load the TMS320C30 file to all nodes of all boards but
rapSystem: :load(int nodeNum, char *fileName)

will only load to the RAP node that corresponds to the given virtual node number.

rapOutput A abstract rapObject class provides printf () style routines that rapNode, rapBoard,
and rapSystem use for directing RAP output and system messages. listener inherits from
this class and determines the correct rapClient destination.

4.4 Device Driver Design

A UNIX device driver interfaces with rapd and provides direct hardware control. Two different
device drivers exist, rapmem and rap. A user wishing to install several RAP boards in a Sun will
install one of these device drivers by editing the necessary kernel configuration files and rebuilding
and installing a new UNIX kernel [BBK91]. A user should name the RAP devices files consecutively
from /dev/rapO to /dev/rapn where n+1 is the number of RAP boards in the Sun. These files
should correspond directly to RAP boards with physical board IDs ranging from 0 to n. The Minor
device number of the device file MUST correspond to the hardware RAP board ID for memory
addressing to work correctly.

rapmem This device driver supports RAP memory mapping using the mmap () UNIX system call.
It was done primarily to test out accessing RAP memory from a user process and to test out
the kernel physical memory to user virtual memory routines supplied by the kernel. Users
will normally create files called /dev/rapmemO through /dev/rapmemn for RAP boards with

RAP board id’s 0 through n.

rap This device driver supports open(), close(), and mmap(), like rapmem but adds select(),
ioctl() and a RAP interrupt handler. RAP interrupts may be detected by a user process
in one of three ways (selectable using the ioctl() system call):

1. Poll for an occurrence of an interrupt. A user process may then proceed to check
which node caused the interrupt by looking at node memory. Polling is done by calling
select() with the struct timeval timeout actual parameter pointing to a zero value.
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2. Sleep until a RAP interrupt occurs. Once a RAP interrupt occurs, the user process will
wake up and may then check which node caused the interrupt. Sleeping is induced by
calling select() with the struct timeval timeout actual parameter either pointing to
the time-out value or equal to NULL which will cause select() to block indefinitely.

3. Use asynchronous signals. If this mode is selected, a RAP interrupt causes a SIGIO
signal to be sent to the user process that has the device open. Asynchronous interrupts
are activated with the ioct1() system call using the RAPIOASYNC option.

Although the RAP is a two address space board (it uses both VME 16 bit and 32 bit address
spaces), it was not necessary to map any RAP memory into the kernel virtual address space. RAP
memory is mapped (by rapd) into user process virtual address space. Only the RAP board and
node registers are mapped into kernel virtual address space to initialize the RAP at boot time.
Thus, during the Sun boot sequence, RAP memory can not be tested by the kernel rapprobe()
routine. It might seem like this would be an easy task. However, since the Xilinx memory part has
not yet been downloaded at Sun boot time (so RAP memory does not yet exist), and since there
is no easy way to read disk files from the kernel nor did it seem reasonable to keep a copy of the
Xilinx program file in the kernel, all memory testing is deferred until user process time.

5 VxWorks/Heurikon Platform

The initial RAP host consisted of the VxWorks operating system[Win] running on a Heurkon[Heu]
MC68020 board.

5.1 RAP Server: VxWorks/Heurikon

VxWorks, supplied by Wind River Systems, is a real-time operating system. It is real-time in that
it uses priority based preemptive scheduling; the highest priority runnable process always runs.
If there is more than one runnable processes with the highest priority, round-robin time-slicing is
used.

In our configuration, VxWorks runs on a MC68020 based CPU board (a Heurikon HKV2FA)
that is contained (along with an ethernet board) in a 9U 21 slot Dawn VME card cage. The initial
RAP host software was developed under VxWorks for several reasons.

o VxWorks contains a debugger with which tasks may be controlled and monitored.

e There is no virtual memory support on the Heurikon board; thus one non-trivial complexity
is eliminated. Debugging a new board is easier since all addresses are physical rather than
virtual. We used the VxWorks debugger to directly examine RAP memory at VME bus
addresses without having to modify page or segment tables in an MMU (which would have
been necessary using a Sun).

e The card cage we use has physical advantages in that we can attach extender debugging
boards for use with a logic analyzer.

e It was originally thought that real-time OS support was necessary since the primary RAP
application is speech recognition. It turns out, however, that this can be more efficiently
implemented using the serial ports on the TMS320C30 (for which an interface exists on the
RAP boards) as a real-time interface to other boards such as A/D and D/A converters. Thus
none of the real-time features of VxWorks were used.
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Figure 6: The VxWorks RAP Host Server

o It was thought that the more popular RAP configuration would be the VxWorks/Heurikon
system. It now appears the RAP in a Sun Workstation will prevail.

The VxWorks RAP server, written in C, uses similar modules to the Sun server rapd. Each
VxWorks module, however, is a process rather than an instance of a class. This was done since
VxWorks processes are much more lightweight than UNIX processes and since debugging was
facilitated by separating the modules into more distinct entities. However, each process still shares
memory. VxWorks does not provide a separate address space per process.

The VxWorks server implements the RAP Client/Host protocol. Again, like the Sun server,
multiple rapClients may connect to the server. Also a user queue is maintained which allows mul-
tiple rapClients of the same user to simultaneously manipulate the RAP. rapClients of differing
users are queued. The VxWorks server is depicted in figure 6.

VxWorks modules include:

Listener The listener module monitors incoming requests for new rapClient connections. When
it gets a new request, it spawns a bridge task to handle further incoming requests from the
new rapClient.

User Queue Module This module maintains an ordered queue of users. The second user in the
queue will get RAP control after the first user is done processing and has exited. The user
queue module also keeps track of where output for each of the rapClients should go by
supplying a set of I/O routines such as:

rapClientStdOut(int nodeld,char *message) ;
rapClientErrOut(int nodeld,char *message) ;
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These will send a textual message to all current rapClients. A lower level of output is
provided with:

usrNodeOutput (int outputType,int nodeNum,char *buff,int bufflen);

which will send any general message of type outputType, to all users. outputType distin-
guishes between standard output, error, or system messages; nodeNum determines the source
node; and buff, along with its length bufflen, provides the data.

Bridge Every rapClient has an associated bridge. A bridge manages the communication between
each rapClient, the user queue, and RQP. It does this by passing requests (using the RAP
Client/Server Protocol) sent from a rapClient to the various modules.

Interrupt routines The interrupt routine is invoked by an interrupt from the RAP. When one
occurs, the interrupt routine obtains the necessary information from the node requesting an
interrupt and adds an entry to the queue read by RQP.

Request Queue Processor: RQP All serialization of commands from the various bridges and
the interrupt routine is done with a globally shared semaphore-protected queue of which RQP
is the only reader. RQP takes entries off this queue and manipulates the RAP. Commands
such as load(int nodeNum, char *fileName) or run(int nodeNum, char *args) from a
rapClient are placed into the queue by a bridge. RAP system calls such as read(int
fileDescriptor,char *buff,int len) are placed into the queue from the RAP interrupt
routine. RQP thus serializes the parallel components of the system and reduces the chance of
race conditions. The processing of events from the parallel execution of multiple DSP’s in a
RAP board and multiple rapClients on machines in a heterogeneous network is guaranteed
to be serialized using this queue scheme.

RAP node requests include:

read(): read from file

write(): write to file

1seek(): seek position

open(): open new file

close(): close file

routines to write data directly to a rapClient

bridge requests include:

Load a file to a node

Run a program

Read a RAP node memory location
Write a RAP node memory location

Reset a RAP node.

Several problems encountered while using the VxWorks/Heurikon system include:

e There is no memory protection so it is easy to corrupt VxWorks.

e Several non-trivial VxWorks bugs were discovered including problems with NFS and process
creation.

o The VxWorks process stack is fixed and network routines often caused a stack overflow.

Thus, we recommend using the Sun platform for any software development research involving the

RAP.
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6 TMS320C30 Platform

The platform where RAP code runs is composed primarily of TMS320C30 DSP chips [Tex88a]
[Tex88b] [Tex89]. In order to run a new application on the RAP, a user must first explicitly
parallelize an algorithm for the RAP architecture. We have minimized the difficulty in doing this,
however, by providing a large assortment of standard functions one would want for connectionist
and matrix algorithms and by providing a familiar environment in which to program.

There are two styles of programming: SIMD and MIMD style. In MIMD style, each node of
a RAP loads a different executable image and runs different code. The user must make sure that
communication between nodes is done properly to avoid deadlock, starvation, and race conditions.
Currently, there are several research groups who are interested in using a MIMD style RAP. By
having the first node’s ring input import data from an external device, each node, in turn, may
process data and send it down to the right node for further processing. This pipelined way of
processing seems suitable for different kinds of real-time DSP such as digital video compression or
audio filters.

In SIMD style, each node contains the same code. Small differences in control flow might occur
based on the NODE_ID, but each node performs essentially the same function. This style is ideal
for the back-propagation artificial neural net algorithm [RHWS86] which is currently being widely
used. Additionally, a parallel SIMD Fourier Transform looks potentially viable using the provided
distributed matrix routines. The Mandelbrot demonstration and dynamic programming application
also use this style.

A user wishing to write RAP code ultimately must be faced with one or more of the following
three languages:

e C with the UNIX style C environment.
e TMS320C30 assembly language [Tex88b].
o C++ using AT&T Cfront 2.0.

Most likely, the amount of assembly language programming will be minimal since many of the
common functions of the ring are written very efficiently in assembly language. A UNIX like C
environment with some extensions to support the ring architecture and to communicate to the host
is provided. This makes porting standard UNIX applications relatively easy.

6.1 RAP boot code

Execution on each RAP node begins in the bootstrap code which does the following.

e Initialize the machine configuration (cache, wait states, and page size).
e Copy the .RAMO and .RAM1 sections from the stack into the on-chip RAM banks.
e Set the uninitialized data areas (.bss section) to zero

e Initialize the stack to special magic words which makes it more obvious in case of a stack
overflow.

e Set the chip wait states and bank size.

e Set global variables N_NODE (the total number of nodes in this RAP system) and NODE_ID (the
node ID for this node) based on what the host has passed in.

e Initialize heap memory and memory allocator routines.

e If running in SIMD mode (all nodes are asked to run simultaneously), initialize and sanity
check the ring and perform run-time custom compilation.
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Copy argc and argv onto the stack so main() will get them.
Initialize all registers.

Call main().

Call exit().

6.2 UNIX style C programming environment

Many standard C routines are provided in the UNIX style C programming environment. This
minimizes the amount of time it takes to port an application to the RAP. A general description of
the libraries follow. A complete list and description is given in [KB90].

e Entry to a RAP program starts in the standard C main() function. argv is obtained from
the argument to the run protocol request.

e A 1/0 library exists supporting common UNIX routines like open(), close(), lseek(),
creat(), read(), write(), and cd(). Additionally, the standard I/O library (stdio) was
written for the RAP providing routines such as: fopen(), fclose(), fread(), furite(),
fseek(), feof (), printf (), fprintf (), fscanf(), scanf () and access to the global vari-
ables stdin, stdout, stderr

e Memory routines exist including a memory allocator malloc() for different memory areas
and other routines such as memcpy (), bcopy(), bzero().

e C string manipulation routines exist such as strcpy() and strcmp().

e Several random number generators and a math library including trigonometric and logarith-
mic functions are provided. Other miscellaneous routines include panic(), setjmp(), and
longjmp ().

e Global node constants are provided such as N.NODES (the number of nodes in the RAP
system) and NODE_ID (the node number of this node; 0 through 4 x N.NODES — 1).

e Ring routines exist that provide access to low level ring communication primitives including
a ring put(), ring get(), and ring shift () for both integers and floating-point numbers.
Some higher level ring routines include ring_distribute() and ring write().

e Many distributed matrix and vector routines have been provided (and more are being added
continuously) so that users may make use of the RAP in a variety of applications. They are
“distributed” in that the representation of matrix and vectors may or may not completely be
located on one processor at the same time. For example:

mul mv_v(int n_row, int n_col, float *matrix,float *in_vector, float *out_vector);

will multiply an n_row by n_col matrix matrix by an n_col column vector in_vector and
produce the resulting vector in out_vector.
e Several routines that directly write typed data to the current rapClient include:

e rapClientWrtInts(int *buffer, int len)
e rapClientWrtFlts(float *buffer, int len)
e rapClientWrtData(unsigned* buffer,int len)

The floating-point routine does all necessary conversion between TMS320C30 and IEEE
floating-point so that the rapClient will get the correct floating-point format. We did not
overload the read() and write() system call. It seemed cleaner to have a different way to
communicate typed data to the rapClient since the data is treated differently 2. Qverloading
read() and write() would also introduce a difference between the RAP and UNIX versions
of those routines.

?c.g. in the Mandelbrot program, integer data is used as indices into the color map of an X11 server.
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Figure 7 shows a typical SIMD style RAP programming example which will be described in
detail. We will see how a typical problem, the forward propagation phase in the back-propagation
algorithm [RHWS86], is parallelized and how data structures are distributed among the RAP nodes.

As shown in figure 8, each node of the RAP must each have a copy of the input layer. Assuming
a4 node RAP with 8 units per node, node ¢ (varying from 0 to 8) will compute the values for output
units 2¢ through 274 1 in the output layer. Each node, therefore, needs to maintain only a portion
of the weight matrix; node ¢ needing the weights from the input layer to the output units 2 through
274+ 1. Once each node has computed its own output units, the sigmoid() function will be applied.
The resulting output layer, distributed among all of the nodes, is then sent to each other node
and a complete representation of the output layer is built which may then be used as the input
layer for the next forward propagation step. This process is equivalent to the matrix multiplication
operation Wi = o where W is the distributed weight matrix, ¢ is the distributed input vector or
input unit layer, and o is the resulting distributed output vector or output unit layer (see figure 9).

6.3 Run-Time Node-Custom Compilation

Several of the lower level assembly language ring manipulation routines described in the previ-
ous section often need to make computationally expensive decisions in the inner-most loops. For
example, in the ring distribute() routine, each node has an array of values that need to be
distributed among all other nodes and each node must ultimately contain an identical large ar-
ray N_.NODEFE times the size of the original undistributed array. Therefore, if, on each itera-
tion, the ring _distribute() routine does one ring put() instruction followed by N_.NODE — 2
ring shift() instructions (see figure 10), each time ring distribute() gets called, it must do
[arraySize/N_NODUFE] iterations of an inner loop which consists of one ring put() followed by
N_NODE — 2 ring shift() instructions.

The hard part, however, is keeping track of what element of the array should be written at the
top of each inner loop and what element of the array is being shifted in at each ring shift().
Assuming the final array size farraySize = kx N_NODZE for some k, at the i** iteration of the outer
loop (0 < @ < k), the first ring write() must write element NODE_I D« farraySize/N_NODE+1i
of the array into the ring. At the j** iteration of the inner loop (0 < j < (N_.NODE — 2)), the
return value of ring shift() must be placed in element (NODE_ID — j+ 1)mod N.NODE)
farraySize/N_NODE + i of the array. It is clear then that the routine running on each node is
different depending on N_.NODF and NODE_ID.

Three brute force approaches to implement the above algorithm follow. All of them are unac-
ceptable for the reasons stated.

Compute Intensive: Compute the proper array location at each iteration of the inner loop. This
involves a large amount of extra integer computation and will slow down the ring distribute()
routine appreciably. This is not acceptable since ring distribute() is a frequently called inner
routine in most RAP applications.

Space Intensive: Since the above algorithm depends on the variables N NODFE and NODFE_ID,
we can write, compile, and store different ring_distribute() routines for all valid combinations
of these variables. This will be efficient since no extra run time integer arithmetic needs to be done.
Since N_NODFE = 4xnumBoards and since 1 < numBoards < 16, the number of routines needed
is Z}il 4 % ¢ = 544 which is far too many routines to keep around.

Indirect: The routine could be implemented by keeping a table of pointers to code stubs and calling
each stub in succession. At boot time, the elements of each node’s table could be modified to point
to the correct stubs for the node. This solution, however, will incur an unnecessary time cost by
increasing TMS320C30 pipeline conflicts since it will be necessary to use the address registers to
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Forward propagation step from one layer to the next based on
the the "Back Propagation'" algorithm

The input vector is multipled by a matrix and the resulting
vector’s elements are put through a sigmoid "squashing" function.

The output vector elements are divided among the processing nodes.
The matrix rows are also divided so that only the required rows for
this node are in memory to compute the node’s output vector elements.

O I I T R R I

(in this example, the number of input and output units are equal)

*
~

forwardProp(
/* number of output units on each node of RAP */
int units_per_node;
/* complete input_vector (size = units_per_node * N_NODE) */
float *input_vector;
/* rows for this node size (units_per_node rows) */
float *weight_matrix;
/* complete output vector (size = units_per_node * N_NODE) */
float *output_vector;

int total_units = units_per_node * N_NODE;
float *this_nodes_output;

this_nodes_output = output_vector + (units_per_node * NODE_ID);

/* multiple matrix x vector => vector */

/% arguments are: # rows, # columns, matrix, in vector, out vector */

mul_mv_v(units_per_node, total_units, weight_matrix, input_vector,
this_nodes_output);

/* sigmoid lookup on output */
/* arguments are: # elements, input vector, output vector */

sigmoid_v_v(units_per_node, this_nodes_output, this_nodes_output);

/* use ring to distribute parts of output vector */
ring_distribute(units_per_node, this_nodes_output, output_vector);

Figure 7: RAP forward propagation programming example.
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Figure 8: Weight Distribution
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Figure 9: Location of distributed data structures among the various RAP nodes.
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Figure 10: Ring data distribution
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RC = # elements in partial vector minus 2 (1 for "pump priming", 1 for RPTB)
ARO = pointer to input partial vector element to send out
AR1 = pointer to output (full vector) element to be stored next.
initially this is equal to:
(output pointer) + (NODE_ID-1)%N_NODE * (# elements in partial vector)
AR2 = address of ring hardware registers
RO = data coming in from ring
R2 = next vector element value to send out to ring
IRO = # elements in partial vector
IR1 = (# elements in partial vector) * (N_NODE - 1)

Figure 11: Custom compilation register initialization

access the table.

An alternative solution is to compile the correct version of the routine once at run-time. Part of
the bootstrap code calls a ring initialization routine, ring _init(). Inside ring init(), malloc()
is called to allocate a buffer for the customized ring code. Then, templates for the instructions
in the loop are copied into the buffer. The number and order of these instructions depends on
N_NODE and NODE_ID. The only instruction template that must be modified before being copied
is the loop size field of the repeat block instruction [Tex88a].

The ring distribute() routine provides a good example of this technique. First, various
TMS320C30 registers are setup as shown in figure 11. Then, the first element of the input partial
vector is sent out to the ring and the first ring shift is performed into R0. Note that these
are done outside the loop to “prime the pump” for parallel instructions in the loop that store
the previously shifted data and at the same time shift in new data. Because the first ring put
and ring_shift are outside the loop, there also has to be the remaining N_.NODE-2 shifts and a
ring_get outside the end of the loop to make a complete last cycle. The inner loop is entered by an
indirect jump into the code buffer pointer (called Ring distribute_code) that contains the inner
loop customized for that node.

Moving the output pointer AR1 is accomplished by using the post-displacement subtract and
modify addressing mode with the step size in IR0 for the (N.NODE-1) backward skips per cycle.
The one large forward skip per cycle is done with the post-displacement add and modify addressing
mode with IR1. These addressing modes allow the output pointer to be changed without incurring
any pipeline delays [KB90].

As an example, lets look at the inner loop for the case of 4 nodes. For node 0 this loop would

be:

LDI *ARO++ (1) ,R2 ; get first invector element
STI R2,*+AR2(Ring_put) ; send invector element to ring
|| LDI *ARO++ (1) ,R2 ; and get next value to send

; this loop puts a word from invector to the ring
; it then shifts the ring N_NODE times to get everyones data
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LDI *+AR2(Ring_shift) ,RO ; do ring shift

;¥¥¥xx beginning of inner loop *¥**x*

RPTB end

LDI *+AR2 (Ring_shift) ,R1 ; store previous shift data and do another
|| STI RO,*AR1--(IR1)

LDI *+AR2(Ring_shift) ,RO ; store previous shift data and do another
|| STI R1,*AR1--(IR1)

LDI *+AR2(Ring_get) ,R1 ; what we sent out coming back around ring
|| STI RO,*AR1--(IR1)

STI R2,*+AR2(Ring_put) ; put causes ext bus to be unusable 2 cycles

LDI *ARO++(1) ,R2 ; get next invector element to put
|| STI R1,*AR1++(IRO) ; take big hop forward in output vector
end:

LDI *AR1++(1),R3 ; dummy load to increment AR1 (R3 ignored)
|| LDI *+AR2(Ring_shift) ,RO ; shift in data for next cycle

;¥%%k% end of inner loop *¥kkk

LDI *+AR2(Ring_shift) ,R1
[l STI RO,*AR1--(IR1)

LDI *+AR2(Ring_shift) ,RO
[l STI R1,*AR1--(IR1)

LDI *+AR2(Ring_get) ,R1 ; what we sent out coming back around ring
[l STI RO,*AR1--(IR1)

STI R1,*AR1

For node 1, however, this loop looks like: (Comments that start with ** indicate instructions that
differ from above)

LDI *ARO++(1) ,R2 ; get first invector element
STI R2,*+AR2(Ring_put) ; send invector element to ring
|| LDI *ARO++ (1) ,R2 ; and get next value to send

; this loop puts a word from invector to the ring
; it then shifts the ring N_NODE times to get everyones data
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LDI

*+AR2(Ring_shift) ,RO

; do ring shift

;¥¥¥xx beginning of inner loop *¥**x*

RPTB

LDI
|| STI

LDI
|| STI

LDI
|| STI

STI

LDI
|| STI

end:
LDI
[l LDI

end

*+AR2(Ring_shift),R1
RO,*AR1++(IRO)

*+AR2(Ring_shift),RO
R1,*AR1--(IR1)

*+AR2(Ring_get) ,R1
RO,*AR1--(IR1)

R2,*+AR2(Ring_put)
*ARO++(1) ,R2

R1,*AR1--(IR1)

*AR1++(1),R3
*+AR2(Ring_shift),RO

;¥%%k% end of inner loop *¥kkk

LDI
|| STI

LDI
|| STI

LDI
|| STI

STI

In general these loops can be generated for any number of nodes and any node number by changing
the number and order of these instructions; no instruction “patching” is required except for the
RPTB instruction where the loop size must be adjusted for the number of nodes on the ring. A
small C subroutine generates any of these possible loops. Because the code is generated into an
allocated data buffer of the correct size, there are none of the dangers involved in patching code

*+AR2(Ring_shift),R1
RO,*AR1++(IRO)

*+AR2(Ring_shift),RO
R1,*AR1--(IR1)

*+AR2(Ring_get) ,R1
RO,*AR1--(IR1)

R1,*AR1

generated by the assembler.

This run-time “custom compilation” approach has the efficiency of the space intensive solution,

;¥ do big hop in output array

; store previous shift data and do another
; what we sent out coming back around ring
; put causes ext bus to be unusable 2 cycles
;¥ get next invector element to put

;**% take small hop backward in output array

; dummy load to increment AR1 (R3 ignored)
; shift in data for next cycle

3 Kk

b

;¥ big hop forward in output array

; what we sent out coming back around ring

but takes up the space of the compute intensive solution.
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7 Existing Applications on the RAP

mlp: mlp is a general program for running and training feed-forward back-propagation networks
[KB90]. Many parameters exist (specified in a parameter file) which can control the topology of
the desired network and adjust variables that affect the way the network operates. This program
can be embedded into other RAP or SPARC programs.

yo: yo is the first program to ever run on any RAP machine. Similar to the “Hello World”
program in C, yo simply prints out the message: “Yo, Whazzup”.

mandel: mandel is the computational end to the xrapmandel program. Since the algorithm is
so small, the data fits in the TMS320C30 register set. Therefore, all pipeline delays were avoided
since there are no accesses to external memory. Unfortunately, all of the TMS320C30 parallel
instructions need to have one operand be an indirect reference (none of which were needed) so
no parallel instructions were used. It seems possible to modify the internal algorithm such that
it operates on more than one Mandelbrot row at a time which will thus enable us to use parallel
instructions and may (if coded cleverly to avoid pipeline delays) increase performance. Mandel
does show, however, that we can get reasonable performance from the RAP machine on a problem
for which it was not intended.

dynamic programming: The dynamic programming algorithm is used in speech recognition
tasks to perform three functions simultaneously: non-linear time alignment of reference words to
input speech, word boundary detection, and the classification of the input speech.

The dynamic programming algorithm must be run once for each sentence to be recognized.
Given this, a straightforward way to parallelize this task is to give each RAP node a different subset
of the total sentences to be recognized. For example, if there are 100 sentences to be recognized
and four RAP nodes available, each node would run the dynamic programming algorithm on 25
sentences.

It is expected that this will work well for the batch-style recognition tasks we are currently deal-
ing with. Of course, for a real recognizer, in which there is only one input sentence, this method of
parallelizing the algorithm will not work.

C++4+ (AT&T Cfront 2.0) on the RAP: C++4 code is being developed which, when com-
piled by Cfront to produce C output which in turn is compiled by the TMS320C30 C compiler, will
run on the RAP.

8 RAP Programming Cycle

The programming cycle for the RAP is depicted in figure 12.

9 Comments

Memory Semantics Sufficed: An early design of RAP software called for many special 32 bit
registers that interface the RAP with its supporting host machine. These included a WORK,
RESPONSE, INTERRUPT, ACKNOWLEDGE, and a MESSAGE register. These were primarily
the result of the older assumptions that 1) there existed no shared memory between the RAP and
the supporting host, 2) that a master dispatcher (needing very fast registers for a dispatch integer)
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Figure 12: RAP Programming Cycle

would be used to selectively call routines on the RAP, and 3) the application would always use a
parent program running on the host.

These registers, however, were eventually reduced down to only 4 bits (DSP and HOST interrupt
and acknowledge bits). Most interactions (including all I/O operations) between the RAP and the
host were implemented using shared memory. Memory semantics sufficed; we only needed special
register semantics for interrupt and acknowledge operations. Also, since this reduced the amount
of hardware needed, the entire process was expedited since it is easier and faster to debug software
than hardware.

Special Purpose Hardware and General Purpose Applications: The RAP is intended
to be a computational server. I/O was not emphasized in the original design goals nor was meant
to be one of its talents. General purpose problems, however, didn’t do that badly. Both the
Mandelbrot demonstration and the dynamic programming have fared well on a machine intended
for the back-propagation algorithm.

Object-Oriented Paradigm: The object-oriented programming paradigm worked well and
facilitated the design by providing a good abstraction mechanism and a way to reuse software
through inheritance.

Portability of C: Although C is predicated to be a portable language, much C code contains
the simple assumption that a char is really a byte in length and that an int is greater than a char
in length. Any assumptions made like this can cause problems when using C code running on the
RAP since the TMS320C30 C compiler produces char variables of word length. Strictly following
the ANSI C standard, however, should reduce these difficulties. A similar problem arises when C
code assumes that the machine is byte rather than word addressable.

RAP and Host Issues: The RAP (TMS320C30) is a word (32 bit) addressable machine while
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both host architectures (MC68020 and SPARC processors) are byte (8 bit) addressable machines.
The host and the RAP share memory space, however, and this led to several problems. The first
one arose while we were using the same C structure declarations as templates over memory for
both the RAP and the host. For example, given the following declarations:

struct A {
int a;
int b;

+;

struct C {
struct Ax ap;
/* ... x/

+;

If we know a struct C has been set up by the RAP at a particular RAP memory address, and
assign struct C* cp to be that address, cp->ap will correctly address entry ap in the struct C
but cp->ap->a will not correctly address a struct A’s a integer. This is because cp->ap is a RAP
address and the host is using it as a host address. Two solutions were used. One defines two C
macros:

#define HOSTTORAP(haddr) ((unsigned)(haddr)>>2) /* divide by 4 */
#define RAPTOHOST(raddr) ((unsigned)(raddr)<<2) /* multiply by 4 */

The other has all memory references to the RAP go through a word array with the index be the
RAP address. The two correct references to the struct A’s a integer are:

((struct A#*)(RAPTOHOST(cp->ap)+rapBaseAddress))->a;
((struct Ax)rapMemArrayl[cp->ap])->a;

An additional problem arose when using gcc (the GNU C compiler) to compile the VxWorks
MC68020 host with optimization turned on. When copying a character string from the host to a
word array on the RAP (since character strings are word arrays for the TMS320C30 C compiler),
gce produced code which byte addressed RAP memory. An assignment of the form:

int *iptr; /* pointer to rap’s memory, word address only */
char *cptr; /# pointer into rap host memory, byte address */
while (...)

xiptr++ = *(int*)cptr++; /* copy character from host to word on RAP */

generates a byte store instruction into RAP memory even though iptris an int* and cptr is cast
to an int*. The problem was circumvented by calling a function taking a char as an argument and
returning it as int thus getting around gcc’s optimization. A better solution would use MC68020
assembly language.

TMS320C30 pipeline hazard avoidance: While coding for the TMS320C30, we needed
to take care not to introduce unnecessary pipeline delays introduced by hazards in the DSP’s
instruction pipeline. See the guidelines outlined in [KB90].
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10 Conclusion

Over the past several months, we have been running real problems on one, two, and three board
RAP machines. The RAP machine with its software has provided an easy to use but very fast
computational server. Without the RAP, our problems would have taken intolerable amounts of
time on the alternative machines we have available (like the Sun SPARCstation). Several programs
have been ported from UNIX to the RAP, and we have plans for several more, including a general
purpose object-oriented multi-layer perceptron simulation program [Koh] and a Sather language
[Omo90] environment. Additionally, the C4+4 object-oriented interface from UNIX workstations
has proven to be an easy way to integrate the RAP into interactive graphics applications and other
programs needing a computationally powerful server.

11 Acknowledgements

The RAP Machine project is a group effort by the Realization group at ICSI. The following is a
list of Realization group members who contributed to the RAP project.

e Dr. Nelson Morgan: Algorithms and architecture, project management

e James Beck: Hardware architecture, design, and implementation

Jeff Bilmes: Software architecture design and implementation.

Phil Kohn: Software architecture design and implementation.

Dr. Joachim Beer: Preliminary architecture
e Eric Allman: Preliminary software

Chuck Wooters ported the dynamic programming problem for the RAP. And finally, we gratefully
acknowledge the support of the International Computer Science Institute.

References

[BBK91] Jeff Bilmes, James Beck, and Phil Kohn. Installing @ RAP System. International
Computer Science Institute, 1991.

[Bec90] James Beck. The Ring Array Processor (RAP): Hardware. Technical Report 90-048,
International Computer Science Institute, September 1990.

[Ent] Entropic Research Laboratory, Inc., 600 Pennsylvania Avenue, SE, Suite 202, Wash-
ington, DC. Entropic Signal Processing System.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. 7The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[Heu] Heurikon Corperation, 3201 Latham Drive Madison, WI 53517. Heurikon HK86/V20
Manual.

[IEES85] IEEE standard for binary floating-point arithmetic. SIGPLAN Notices 22:2, 9-25, 1985.

31



[KB90]

[Koh]

[MB90]

[MBK*90]

[Mor90]

[Omo90]

[PGTKSS]

[RHWS6]

[Tex88a]

[Tex88b]

[Tex89]

[Win]

Phil Kohn and Jeff Bilmes. The Ring Aray Processor (RAP): Software Users Manual.
Technical Report 90-049, International Computer Science Institute, September 1990.

Phil Kohn. CLONES: A Connectionist Layerd Object-oriented NFElwork Simulalor.
International Computer Science Institute. In preparation.

Nelson Morgan and Herve Bourlard. Continuous speech recognition using multilayer
perceptrons with hidden markov models. In Proc. International Conference on Acous-
tics, Speech, and Signal Processing, pages 413-416, Albuquerque, NJ, 1990.

Nelson Morgan, James Beck, Phil Kohn, Jeff Bilmes, Eric Allman, and Joachim Beer.
The RAP: a Ring Array Processor for Layered Network Calculations. In Proc. Interna-

tional Conference on Applicalion Specific Array Processors, pages 296-308, Princeton,
NJ, 1990. IEEE Computer Society Press.

Nelson Morgan. The Ring Array Processor (RAP): Algorithms and Architecture. Tech-
nical Report 90-047, International Computer Science Institute, September 1990.

Stephen M. Omohundro. The Sather Language. International Computer Science Insti-
tute, 1990.

D. Pomerleau, G. Gusciora, D. Touretzky, and H. Kung. Neural Network Simulation at
Warp Speed: How we got 17 Million Connections per Second. In IEFE International
Conference on Neural Nelworks, San Diego, CA, July 1988.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by
error propagation. In Parallel Distributed Processing. Fzplorations in the Microstructure
of Cognition, chapter 8. The MIT Press, Cambridge, Massachusetts, 1986.

Texas Instruments. Third-Generation TMS320 User’s Guide, 1988. Document Title:
SPRUO031.

Texas Instruments. TMS320C30 Assembly Language Tools, 1988. Document Title:
SPRUO035.

Texas Instruments. TMS320C30 C' Compiler Reference Guide, 1989. Document Title:
SPRU034A.

Wind River Systems, Inc., 1351 Ocean Ave. Emeryville, CA 94608. VzWorks.

32



