Ring Array Processor (RAP):
Software User’s Manual
Version 1.0

P. Kohnt and J. Bilmest

Abstract

The RAP machine is a high performance parallel processor developed at ICSI as
described in previous technical reports. This report documents the RAP software envi-
ronment. It is intended for the moderately experienced C programmer who wishes to
program the RAP. The RAP software environment is very similar to the UNIX C pro-
gramming environment. However, there are some differences arising from the hardware
that the programmer must keep in mind. Also described is the RAP library which con-
tains hand-optimized matrix, vector and inter-processor communications routines. SIMD
programs can be developed under UNIX with a simulated RAP library and then recom-
piled to run on the RAP. Other parallel programming styles are also described.

tInternational Computer Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704-1105, USA

1. Introduction

This software user’s manual is designed for the relatively experienced C programmer who
wants to begin programming on the Ring Array Processor (RAP). Separate reports describe the RAP
hardware [1] [2], the RAP software internals [3], RAP algorithms [4] and speech research supported
by the RAP [5] [6]. Also relevant to the RAP user are the manuals from Texas Instruments for their
C compiler [8], assembler and linker [9], simulator [10] and the TMS320C3x User’s Guide [11].

The goals of the RAP software design were:

« Make it efficient for computational tasks of interest (backpropagation and speech recognition
algorithms).

« Make it easy to learn and use by speech scientists who are often not familar with object-oriented
languages.

e Make it as much like the standard UNIX environment as possible (allow program debugging
under UNIX).

¢ Get the RAP system software operational as soon as possible.

2. The RAP: overview and current status

The RAP is a high performance parallel processor designed to train layered backpropagation
networks [12]. Each processing element is a TMS320C30 digital signal processor that can sustain 32
million floating point operations per second. The prototype 8 processor (2 board) system runs at 256
MFLOPS and can pass data at up to 512 Mb/sec around its communication ring. A system with 64
processors (16 boards) is feasible in a single VMEDbus card cage. The RAP is currently being used to
train backpropagation networks for continuous speech recognition research.

Although the RAP hardware is capable of MIMD operation (Multiple Instruction streams con-
trolling Multiple Data streams), the software and communications ring were designed for the SIMD
(Single Instruction stream controlling Multiple Data streams) style of programming. In SIMD pro-
gramming the same program is loaded into all of the processors. Usually, the processors will all be
doing the same operations on different parts of the data. For example, to multiply a matrix by a vec-
tor, each processor would have its own subset of the matrix rows that must be multiplied. This is
equivalent to partitioning the output vector elements among the processors. If the complete output
vector is needed, the ring broadcast routine is called to redistribute the part of the output vector from
each processor to all the other processors. This is described in more detail in the section on paral-
lelism.

There is no shared memory between processing nodes. All inter-processor communication is
handled by the ring. The hardware does not automatically keep the processors in lock step; for exam-
ple, they may become out of sync by using the processor’s node number in an "if" statement. How-
ever, when the processors must communicate with each other through the ring, synchronization auto-
matically occurs. A node that attempts to read before data is ready or write when there is already
data waiting will stop executing until the data can be moved.

3. Differences between UNIX and RAP C environments

This section documents the most important differences between the standard C environment and the
RAP C environment. Many of these differences are related to the hardware. For instance, each pro-
cessor has four banks of memory with different sizes and speeds. The processor architecture is not
like most UNIX machines in that each memory address holds a 32 bit word instead of an 8 bit byte.
Other differences relate to the lack of a memory management unit and virtual memory.

The basic procedure for compiling and linking your program is the same as in standard UNIX: the
make utility does the work for you. There is a prototype makefile in the example subdirectory of the
RAP software tree. See the documentation that comes with the software distribution tape for more

details. Simply add the names of your object files (ending in ".0" instead of ".c" or ".asm") to the
OBJ_FILES list.

Running the program is a little different. The RAPMC debugger is used to download, execute and
monitor programs on the RAP processors. RAPMC is described in section 7.

3.1. Include rap.h
All C programs running on the RAP should start with the preprocessor directive:

#i nclude "rap. h"

This one include replaces most of the usual C includes such as: math.h, stdio.h, stdlib.h and
many others. There are actually two rap.h files: one for the RAP and one for the SUN. This
allows the same source code to be compiled for either machine depending on the include direc-
tory specified in the makefile.

3.2. Stack is fixed size: no large local arrays

The RAP has no memory mapping or virtual addressing. The stack is a fixed region of memory
that has a size defined in the link.cmd file (described in more detail in the Linker section 6.2.5).
There is no stack overflow detection, making it all too easy to write garbage on nearby memory.
The current default stack size is 4k words located in SRAM. To avoid overflow, do not declare
non-static arrays inside a function with a size much over the stack size divided by the maxi-
mum number of nested function calls.

There are three possible ways to avoid the problems caused by a small fixed size stack:

1. The stack size can be increased as described in the Linker command file section. This is
an option if there is sufficient free SRAM.

2. Declare a pointer to the array and use malloc to allocate the actual space for the data. Be
careful to free pointers returned by malloc when they are no longer needed.

3. An array inside a function that is declared as static will be permanently allocated in
SRAM. Again, this is an option if there is SRAM to spare.

Also, beware of functions with large recursion depths. In this case, the stack may have to be
increased in size to handle the maximum number of nested calls.

When RAP programs start, all the stack memory is initialized to 0x12345678 (hex) by the boot
function. This allows the exit system call to often detect stack overflows after the fact (assum-
ing things are not so messed up that exit is never called). Also, the RAPMC debugger can be
used to check for stack overflows.

3.3. Small memory model: no large global arrays

The direct addressing mode of the TMS320C30 can only access 64k words without changing
the Data Base Pointer (DP) register. By default, the C compiler assumes that the DP register is
set correctly for all accesses to global variables (or static variables inside a function). There is
a compiler option (-b) that will cause the compiler to reload the DP register before every mem-
ory access, but this is extremely inefficient; the RAP library would have to be recompiled with
this option as well.

Since the default linker command file puts all variables into SRAM and SRAM is only 64k
words, users do not have to worry about this limitation unless the linker command file is modi-
fied. If the user attempts to declare large global arrays the linker will complain that it can not
allocate enough SRAM. The easiest solution is to change the array to a pointer and use malloc.

Because of these limitations, care must be taken when modifying the linker command file that
all variables are assigned to one memory region no larger than 64k. For example, one should
never attempt to move selected variables into the on-chip memory since there is a huge address
gap between SRAM and the internal RAM. Instead, use rap_malloc to allocate pointers to
memory in internal RAM.

3.4. Memory spaces
Each processing node has four memory blocks:

Memory types and their characteristics
Name Description Speed Size Primary Usage
RAMO | Inside processor chip No wait states | 1k words library and user code
RAM1 | Inside processor chip No wait states | 1k words more user code
SRAM | Static memory on board No wait states | 64k words code, data, stack
DRAM | Dynamic memory on board | 3 wait states 1-4M words | large data arrays

Although internal and static RAM both have no wait states, the number of memory fetches or
stores that can happen per processor cycle is different. The CPU can do up to three memory
accesses to RAMO and/or RAML1 in every processor cycle as summarized in table 10-2 of the
TMS320C3x User’s Guide [11]. At most one external memory read can happen per processor
cycle. The CPU can only write one external word every two processor cycle.

The user can allocate data structures using the standard malloc function. In this case the alloca-
tion will occur in the memory block specified by the global variable DEFAULT_RAM. The
initial value of this variable is SRAM. It can be changed by the user at any time.

The free function can be passed a pointer to any type of memory. It is an error to call free with
anything other than a pointer returned by malloc that has not yet been passed to free. The free
function attempts to report these errors.

To allocate memory in a specified memory block, use the function rap_malloc:

void *
rap_mal | oc(nunber_of _words_to_al |l ocate, nmenory_bl ock_nane)
See the RAP libraries section for more details.

3.5. Word addressable instead of byte addressable

On the RAP each address or pointer can only be used to access a 32 bit word. Declaring a vari-
able as double on the RAP is exactly the same as declaring it as float; the same is true for long
and int. Characters are stored in the least significant 8 bits of the 32 bit word; the rest of the
bits are normally zero. The sizeof operator on all of the basic data types (int, char, float and
double) will return one. For portablility, always use the sizeof operator when passing system
routines (such as read, write or malloc) the size of a memory region.

3.6. Opening files for binary or character 1/0

Because of the 32 bit representation for characters, the standard input/output routines need to
know if a file’s data should be interpreted as 32 bit binary numbers or as 8 bit characters that
must be expanded to 32 bit words. The fopen function has been extended to include the mode
"b" for 32 bit direct binary reading. The "b" must be used in addition to "r" for reading or "w"
for writing, e.g., "rb" or "wb". Use fopen the standard way to read or write files as streams of
characters.

3.7. Floating point precision

There are floating point rounding bugs in the Tl math routines. For example, on the RAP
(int)pow(2.0, 9) is 511 instead of 512. When converting a floating point number to an integer,
be sure to add 0.5 to it first in order to catch near misses caused by truncating a string of nines
after the decimal point. Use the = = and != comparison operators very carefully on floating
point numbers. Most often one uses (fabs(x-y) < EPSILON) instead of (x = = y) with

EPSILON typically smaller than 1e-6. There is no double precision arithmetic; all floating
point numbers are 32 bits in memory or 40 bits when in a register.

3.8. Floating point

Floating point numbers on the TMS320C30 have a different internal representation than on
most other machines; it is not IEEE compatible. To write floating point numbers to a file for
use by programs on another machine, the simplest approach is to use alphanumeric (ASCII)
format (fprintf).

If the same file is being read repeatedly, it is often useful to use the RAP to read the data in
ASCII and write a "digested" file (using fwrite) that has the binary floating point numbers. This
digested file can then be read more quickly by the RAP using fread. Do not try to create or
read this digested file with any other machine without checking the floating point encoding.

There are routines for converting between IEEE and TMS320C30 floating point formats that
can be found in the Software Applications section of the TMS320C3x User’s Guide [11]. These
routines are written in TMS320C30 assembly language and would be difficult to port because
they rely on the floating point instructions.

3.9. Compiler bugs

Several TI C compiler bugs have been found during the RAP development. Since new com-
piler releases happen on a regular basis, these will not be documented here. Call the TI DSP
Hotline for more information at 1-713-274-2320.

3.10. DSP does not stop for bad instructionsor invalid pointers

Digital signal processors tend to lack some of the nice features of regular microprocessors.
Most microprocessors have a special error trap for bad instructions, memory pointers out of
range, division by zero or writing data over the program’s own instructions. These features
make it likely that programs that corrupt code or data will stop eventually. However, on the
RAP, a program can write to any invalid address and the data may end up somewhere else (the
hardware ignores the unused upper address bits and behaves as if they are zeros). Moreover,
invalid instructions do not cause a special interrupt. Especially when the stack overflows, a
jump to a random address can cause the bug to seem to come from somewhere unrelated in the
program. In general, once the processor is off the track it will settle into an infinite loop or hit
something that causes it to call exit. Since the RAP board can not become a VMEbus master,
the damage to the rest of the system and network files is somewhat limited.

On the TMS320C30 the result of division by zero is zero. It is a good habit to test the denomi-
nator for zero before dividing.

3.11. Global variables

Two special global variables are provided to support parallel programming. The N_NODE
variable is set to the number of processors in the RAP system. The NODE_ID variable is set to
a number from 0 to N_NODE-1, indicating which processor the program is on. The ring is uni-
directional, allowing data to flow only in NODE_ID order: from node zero to node one, ...,
from node N_NODE-1 to node zero.

4. How to usethe RAP for parallel processing

There is no general problem-independent technique for utilizing parallel computation on the RAP.
However, there are several basic schemes that work for many types of problems.

4.1. Processor farm

If a problem can be broken into totally independent subproblems, then each subproblem can
run on its own processor. This is a near trivial form of parallel processing since it involves lit-
tle or no modification to the uniprocessor program. Results from each processor may need to
be combined to produce the final output. For example, to run a series of experiments with dif-
ferent parameter values, one processor is assigned to each experiment. Another example is
dynamic programming for speech recognition experiments; in this case the database of sen-
tences is divided among the processors.

The RAPMC debugger supports this approach by allowing a RAPMC process to be started for
each processor on the RAP. Window system users can open a separate window for each pro-
Cessor.

RAPMC can also be used to setup a separate batch queue of programs to run on each processor.
A RAPMC process for each processor is run in the background with a different script file. The
script file can change the processor number with the "node" command and then repeat the

"load", "run" and "wait" commands for each program to be run.

4.2. SIMD

Data structures for the most time consuming parts of the problem are divided among the pro-
cessors. For example, each processor calculates a part of a vector. The communications ring
may be used to redistribute the results from each processor (see ring_broadcast).

The code below demonstrates this by multiplying a matrix and a vector. The rows of the matrix
are divided into N_NODE sections, each with n_row_per_node rows. If the number of rows in
the matrix does not divide the number of processing nodes evenly, up to N_NODE-1 rows of
zeros can be added to fill out the matrix with little efficiency loss.

/*

*x Distributed matrix multiply

*/

rap_mul _mv_v(
int n_row_per_node, /* nunber of matrix rows per processor */
int n_col, /* nunber of colums in the matrix */
float *matrix_per_node, /* rows of matrix for this processor */
float *in_vector /* input vector */
float *out_vector /* output vector */

)

{

float *out_vector_per_node;

/* make pointer to start of this processor’s part of output vector */
out _vector_per_node = out_vector + (NODE_ID * n_row_per_node);

/* multiply this processor’s rows by the in_vector */
mul _mv_v(n_row_per _node, n_col,
nmatri x_per_node, in_vector, out_vector_per_node);

/* redistribute the out_vector_per_node from each processor

** to produce the conpl ete output vector

>/

ring_distribute(n_row per_node, out_vector_per_node, out_vector);

4.3. Pipeline

In this scheme, each processor operates on the stream of data flowing through the ring. For
example, processor O reads from an analog to digital converter and does a FFT; processor 1
sends the spectrum to processor 2 using the ring_put and ring_get routines described in section
6.2.4.3.6. Processor 1 preprocesses the spectrum for processor 2. Processor 2 runs the forward
pass of a "neural” net that was trained to categorize phonemes. Processor 3 takes the phoneme
probabilities and runs a dynamic programming step to recognize words. In this signal process-
ing example the ring was used as a linear pipeline; processor 3 never sends to processor 0.

4.4. MIMD

This is the most general and also the most difficult form of parallelism as there are no restric-
tions on what each processor is doing. The global variables NODE_ID and N_NODE can be
used to determine on which processor the program is running and how many processors are
available. The RAP library provides routines for inter-processor communication on the ring
(ring_read, ring_write, ring_put, ring_get, ring_sync, ring_broadcast). The RAPMC debugger
can be used to load different programs on each processor and redirect each ones standard output
stream to a different file. As an alternative, multiple RAPMC processes can be started, one for
each processor.

Each processor also has two high speed serial ports that can interconnected to create more com-
plex communication topologies. Currently, there is no support in the RAP library for the serial
ports. They are described in detail in the TMS320C3x User’s Guide [11].

5. Quick start: Running a simple program on the RAP

This section contains step by step instructions to get a simple SIMD style example program to run on
the RAP. The setup used for this example should be easy to be extended to larger programs with
multiple C and assembler source files. Simply add your code to the main.c file, or make new source
files and add their names to the file list inside the makefile.

5.1. Setup PATH

Change your shell startup script file ("*/.cshrc™ if you are using csh) so that the path of the bin
subdirectory of the RAP software tree is included in the "setenv PATH" command. Then
source the startup script to set your current shell’s search path.

5.2. Set up .rapmcrc

The .rapmcrc file in your current working directory is automatically run when rapmc starts up.
To set up rapmc to use all of its nodes as one SIMD machine, the following 3 lines should be in
your .rapmcrec file:

node *

* mss

0 catch
The first command tells RAPMC to use all the processors of the RAP as one SIMD machine;
each RAPMC command will go to all nodes of the RAP (unless a node number prefix is used).
The second two commands cause standard output from all but processor 0 to be ignored. In
SIMD mode all processors usually output the same thing at the same time.

5.3. Copy files from example directory

Copy all the files from the example subdirectory of the RAP root directory into your own RAP
working directory. These files are:

main.c - a sinple programthat prints some stuff
makefile - makefile for yo
link.cmd - linker command file for building yo

A listing of these files is given in appendix A.

5.4. Make and Run

Do a "make" command. Type "rapmc" to enter the RAP master commander. RAPMC allows
programs to be loaded, run and debugged. Give the following commands to RAPMC:

| oad yo
run These are sone argunments
qui t
Always exit RAPMC (using the "quit" command) when you are not using the RAP since other

users may be queued up to use it. So long as any of your RAPMC processes exist, other users
will be held off.

6. RAP programming environment

This section describes the C level programming environment on the RAP in more detail.

6.1. Themain function

6.2.

As in standard C, the first user function called on startup is main(). The command line argu-
ments are the same as in standard C. The first argument to main (argc) is the number of com-
mand line arguments plus one. The second argument (argv) is a pointer to an array of character
pointers to each argument; the name of the program itself as the first (zeroth index) argument.

RAP libraries This section describes the functions available in the RAP library. Many of
these are the same as the standard C library. A few of these have been extended, such as malloc
and fopen. Some functions are RAP specific, such as inter-processor communication and
matrix/vector operations.

6.2.1. Standard C functions

Many standard C functions are supported by the RAP environment. Appendix B is a list-
ing of the standard C functions currently in the library.

6.2.2. Differencesin memory allocation

The RAP malloc function needs to know what type of memory to allocate. The memory
types recognized by rap_malloc include: RAMO, RAM1, SRAM, DRAM and FASTEST.
RAMO and RAML1 are each 1k word blocks of very fast on-chip memory. SRAM is a
64k word block of fast off-chip memory. DRAM is a 1M word or 4M word block of
slow off-chip memory (depending on the DRAM chips installed). FASTEST is a special
keyword that tells malloc to try allocating the memory in the following priority: RAM1,
RAMO, SRAM and DRAM. When FASTEST is used, early calls to rap_malloc will get
faster RAM than later calls when only slower RAM remains.

The user can also allocate data structures using the standard malloc function. In this case
the allocation will occur in the memory block specified by the global variable
DEFAULT_RAM. The initial value of this variable is SRAM. It can be changed by the
user at any time.

To allocate a specific type of memory, the rap_malloc function has a second argument
containing the memory type.

6.2.2.1. rap_malloc

void *rap_malloc(int size, int nenory_type)
Allocate size words from memory block memory type and return a pointer to it.
Returns NULL if this can not be accomplished. It is very important to ALWAY'S

check for a NULL return, since memory corruption can be hard to trace later. The
ckmalloc routine described below does this checking for you.

Note that datatype void* can be cast into a pointer to any other datatype.
6.2.2.2. malloc_usage

voi d mal | oc_usage()
Print a summary of memory used and available in each memory block.

6.2.2.3. ckmalloc

void *ckmalloc(int size, int nenory_type, char *where)

This does the same thing as malloc except that it prints a message and stops if no
memory can be allocated. The last argument is a string that is inserted in the error
message to identify where in the program it stopped.

6.2.2.4. MALLOC macro

To make allocating a little cleaner, the MALLOC macro is provided. This macro
eliminates the need to explicitly cast the result of malloc to the correct data type
and also the need to multiply the size of an array by the sizeof an element in the
array.

float _pointer = MALLOC(float, n_el enent, SRAM "weight matrix");
The above is translated into:

float _pointer =
(float *) ckmalloc(n_element * sizeof (float), SRAM
"weight matrix");

6.2.3. Differences in stdio

There are some important differences between the standard stdio functions and the ones
provided by the RAP library.

6.2.3.1. BINARY vs. ASCI| files

Because the TI1320C30 stores each char in a 32 bit word, the host software that ser-
vices file requests must know if each 32 bit word in the file corresponds to 1 or to 4
words on the RAP. When doing character input or output (e.g. fprintf or fscanf),
use fopen as in the standard (e.g. "r" to read, "w" to write, "a" to append). If the
data is a direct copy of memory that contains 32 bit quantities then the fopen must
have the added mode letter "b" (e.g. "rb", "wb", "ab™). Also keep in mind that the
T1320C30 floating point binary representation is not directly compatible with work-

stations.

6.2.3.2. SIMD mode file reading

When a RAP program reads a file from all its processors, a host request is gener-
ated for each processor. This inefficiency causes file reading overhead not to scale
very well to large numbers of nodes. A solution is to only read the file from one
node and use the communications ring to broadcast the file buffer to the other
nodes. Since reading files is fairly common, this solution was implemented inside
the standard library.

In order to read a file in SIMD mode, use "rs" as the second argument to the fopen
call. This causes node O to read the file; all other nodes get the data from the ring.
When using this mode, all nodes must be reading the same file with the same stdio
library calls (fread, fseek, fclose, fgetw, fscanf, etc.) executed in the same order.

6.2.3.3. Changing size and memory type of file buffers

The file buffers used by the stdio package are located in the memory block speci-
fied by the global variable STDIO_RAM. The initial value of this variable is
SRAM. It can be changed by the user at any time.

The default block size is currently 1024 words. This is specified by the global vari-
able called BUFSIZ. A larger value will increase 1/0O throughput at the cost of
using more memory. This variable can also be changed by the user at any time.

6.2.3.4. Multi-processor file writing

Writing files from the RAP can be tricky. The simplest approach is for each pro-
cessor to write to a different file name. Things get more complex when all the pro-
cessors need to write data into the same file. In general, bad things will happen if
multiple processors even open the same file for writing. One simple solution is to
use the ring to send all the data to processor 0. In this scheme, only processor 0
opens and writes the file.

6.2.4. RAP specific routines

This section describes the hand optimized RAP routines that were written to support the
backpropagation algorithm. Many of these routines should also be useful for other appli-
cations.

6.2.4.1. Matrix and vector functions

While this is far from a complete set of matrix and vector routines, it is sufficient to
run backpropagation algorithms efficiently. More routines are being added, so this
list is unlikely to be complete.

These routines have a naming and argument order convention. The general form
for names is "operation_xx_x". The first X’s in the name describe the inputs and the
last x describe the output type of the operation. These x’s can be one of: "s" for
scalar, "v" for vector or "m" for matrix. There is also "b" for a binary vector (ele-
ments are 0 or 1) that is encoded by a list of indexes to the elements that are 1.

Arguments are always in the following order: number of rows, number of columns,
inputs, output. Sometimes there will be only one vector size; in this case the first
two arguments are replaced by a single argument for the number of elements.

6.2.4.1.1. mul_mv_v

mul _mv_v(int n_row, int n_col, float *matrix,
float *in_vector, float *out vector)

-10-

Multiply matrix [n_row by n_col] by in_vector [n_col] to produce out_vector
[n_row].

6.2.4.1.2. muladd_mv_v

mul add_nmv_v(int n_row, int n_col, float *matrix,
float *in_vector, float *out_vector)

Multiply matrix [n_row by n_col] by in_vector [n_col]. Add this product to
out_vector and store the result in out_vector [n_row].

6.24.1.3. mul_vm_v

mul _vmyv(int n_row, int n_col, float *in_vector,
float *matrix, float *out _vector)

Multiply row in_vector [n_row] by matrix [n_row by n_col] to produce
out_vector [n_col].

6.2.4.1.4. muladd_vm_v

mul add_vmyv(int n_row, int n_col, float *in_vector,
float *matrix, float *out_vector)

Multiply row in_vector [n_row] by matrix [n_row by n_col] and accumulate
the result into out_vector [n_coal].

6.2.4.1.5. add wv_v,sub vv v, mul_wv v

add_vv_v(int n_ele, float *in_vector_1, float *in_vector_ 2,
float *out _vector)

sub_vv_v(int n_ele, float *in_vector_ 1, float *in_vector_ 2,
float *out _vector)

mul _vv_v(int n_ele, float *in_vector_1, float *in_vector_ 2,
float *out _vector)

Arithmetic on corresponding elements of two vectors.
6.2.4.1.6. mul_svww_m

mul _svv_n(int n_row, int n_col, float const,
float *in_vector_1, float *in_vector_2, float *out_matrix)

Out_matrix is set to the outer product of in_vector_1 and in_vector_2 scaled
by const.

6.2.4.1.7. muladd_svwv_m

mul add_svv_m(int n_row, int n_col, float const,
float *in_vector_1, float *in_vector 2, float *out_natrix)

Add the outer product of in_vector 1 and in_vector_2 scaled by const to
out_matrix.

6.2.4.1.8. mul_wv_s

double nul _vv_s(int n_ele, float *in_vector_1,

-11-

float *in_vector_2)
Inner product of two vectorsis returned.

6.2.4.1.9. muladd_sv v

nmul add_sv_v(int n_ele, float const, float *in_vector,
float *out vector)

The elements of in_vector are multipled by const and accumulated into
out_vector.

6.2.4.1.10. set_s v

set_s v(int n_ele, float const, float *out_vector)
Set all elements of out_vector to const.

6.24.1.11. max_v

int mx_v(int n_ele, float *in_vector, float *nmax_el enent)

The largest element of in_vector is placed in max_element. The index of the
largest element is returned.

6.2.4.1.12. copy_v_v

copy_v_v(int n_ele, float *in_vector, float *out_vector)
Thein_vector is copied to the out_vector.

6.2.4.1.13. muladd _mb_v

mul add_nb_v(int n_row, int n_col, int n_one, float *matrix,
int *binary_in_vector, float *out_vector)

Multiply a matrix by a binary vector with n_one elements that are 1 and
(n_col - n_one) that are zero. The binary vector is a list of the element
indexes that are 1. The rows of the matrix indicated by the binary_in_vector
are added together and accumulated (added) into out_vector.

6.2.4.1.14. muladd_svb_m

mul add_svb_m(int n_row, int n_col, int n_one, float const,
float *in_vector, int *binary_in_vector, float *out_matrix)

Sum the outer product of in_vector and a binary_in_vector into out_matrix.
The binary vector isalist of the element indexes that are 1 [n_one].

6.2.4.1.15. dsigmoid_wvv_v

dsignoid(int n_ele, float *in_vector_1, float *in_vector_ 2,
float *out vector)

This function is used in the backpropagation algorithm. The following equa-
tion describes its function:

out _vector[i] =

-12-

(1.0 - in_vector_1[i]) * in_vector_1[i] * in_vector_2[i]

6.2.4.2. Tablelookup

These routines support table lookup approximations. They use the following struc-
ture to represent the table:

struct Table_struct {

int size; /* nunmber of floats in table data */

float scale; /* multiply requested nunber by scale, and */
float offset;/* then add offset and truncate to an i ndex */
float *data; /* into the actual table data itself */

} y
6.2.4.2.1. make table

struct Table_ struct *
make table(float (*function)(float), float lower linmt,
float upper_linit, int table_size)

Create a lookup table with table_size entries approximating the function from
lower_limit to upper_limit.

6.2.4.2.2. make sigmoid

struct Table struct *
make_si gnmoi d(fl oat resolution, int table_size)

Create a sigmoid lookup table of size table_size. The smallest value in the
table is set by resolution.

6.2.4.2.3. table v v

table v_v(int n_ele, struct Table_struct *table,
float *in_vector, float *out vector)

Look up n_ele floating point numbers in table starting at in_vector and put
the results in out_vector.

6.24.2.4. table s s

float table_s_s(struct Table_struct *table, float in_nunber)
Lookup in_number in table and return the result.

6.2.4.2.5. sigmoid v v

sigmid v v(int n_ele, float *in_vector, float *out_vector)

Take the sigmoid of each of the n_ele elements in in_vector and store it in the
corresponding element of out_vector.

6.2.4.2.6. sigmoid

float signoid(float x)
Return the sigmoid function of x.

-13-

6.2.4.3. Ring functions

These functions allow arrays of data to be communicated between processors on
the RAP machine. All of these functions must be executing on all processors
simultaneously to function properly. The ring will automatically pause a processor
that starts one of these functions before all processors are ready to communicate.

6.2.4.3.1. ring_distribute

void ring distribute(int size of _my_array, void *ny_array,
voi d *whol e_array)

The array my_array of size size_of _my_array words will be sent to all other
processors. The array whole array must be at least of size
N_NODE*size_of my_array. After this function is run, the whole_array will
contain the concatenation of the my_array from processor 0, followed by the
my_array from processor 1, etc.

6.2.4.3.2. ring_writeand ring_read

void ring wite(int size_of _array, void *array)
int ring_read(int size_ of_array, void *array)

These routines work together to allow one processor to broadcast data to all
of the other processors. To work properly, one processor calls ring_write and
while all the others must call ring_read. The ring_read array is filled with the
data from the ring_write array. Ring_read returns the number of words read.
If the size_of array for ring_read is smaller then the size of array for
ring_write then the ring_read array will contain the first part of the ring_write
array.

6.2.4.3.3. ring_sync

int ring_sync(int code)

Ring_sync causes the processor to wait until all processors have called
ring_sync. If the code argument is the same for all processors, then 1 is
returned. Otherwise, 0 is returned.

6.2.4.3.4. ring_sum

void ring_sum(int n_ele_per_node, void *in_vector,
voi d *out _vector)

This routine is used in the backpropagation step to accumulate the partial
errors for each unit. The in_vector is of size N_NODE*n_ele_per_node.
The in_vectors from each processor are summed together and out_vector is
set to the section of the resulting vector from index NODE_ID *
n_ele_per_node to, but not including index (NODE_ID+1) * n_ele_per_node.

6.2.4.3.5. Lowest level ring macros

void ring put_int(int)
int ring _get _int()

int ring_shift_int()

int ring_get_int_nowait()

-14-

int ring_shift_int_nowait()

void ring_put_float(float)
float ring _get float()

float ring_shift_float()

float ring _get float_nowait()
float ring_shift_float_nowait()

These low level macros allow single words to be written, read and shifted
through the communications ring. Using these routines requires considerable
care to avoid deadlocks.

The ring_put_int macro sends a single integer word to the outgoing neighbor;
the neighbor must do a ring_get_int or ring_shift_int for each word put.

The ring_get_int macro receives a single word from the incoming neighbor.

The ring_shift_int macro receives a single word from the incoming neighbor
exactly like ring_get_int except that it also sends the word on to the outgoing
neighbor as if a ring_get_int were followed by a ring_put_int.

The ring_get_int_nowait and ring_shift_int_nowait do the same thing as
ring_get_int and ring_shift_int except that the processor is not stopped in the
case where there is no word ready to be read. In this case, the word from the
previous ring_get_int or ring_shift_int is returned.

6.2.4.3.6. ring_get, ring_put

void ring put(int size of array, void *array)

int ring get(int size of array, void *array)
These routines are designed for communication from a node to its neighbor-
ing node. Unlike ring_read and ring_write these routines only require that
node (N) runs ring_put and node ((N+1) modulo N_NODE) run ring_get; all
other nodes are unconstrained and may compute or communicate using
ring_put and ring_get. These routines are useful for pipelined parallelism
where each processor has data flowing in and out at independent rates and
times. As noted before, there is no buffering of data between nodes, proces-
sors will wait until data can be sent and received before continuing.

6.2.4.4. Random functions: Numerical Algorithms

Routines from the book Numerical Recipesin C [13] are easily ported to the RAP.
The only ones currently in the library are the random functions.

6.2.4.4.1. rand_func

voi d rand_func(int generator_nunber)

The rand_func routine sets which pseudo-random number generator is used
for the other functions below. Currently there are three generators numbered
0 through 2.

6.2.4.4.2. seed

seed(int seed_val ue)
Set seed for pseudo-random number sequence.

-15-

6.2.4.4.3. frandom

float frandom()
Return the next pseudo-random number from generator.

6.2.4.4.4. random_v

randomyv(int n_ele, float *out_vector)
Set the elements of out_vector to pseudo-random numbers.

6.2.4.5. Panic: error exit
The panic function is used to print fatal error messages.

pani c("nessage with printf style fornmats", argunents,

The message is printed to standard error to insure that the user gets it even if
RAPMC is not set to catch standard output from that processor. A stack backtrace
is also printed for use in debugging.

6.2.5. Linker command file

The linker command file tells the linker where to allocate each section of each object file
in memory. Each object file produced by the compiler has three sections: ".text" is the
instructions and constants, ".data" is for all global and static local variables that are
declared with an initial value, ".bss" is for all global and static local variables that are
declared without an initial value.

6.2.5.1. Description

The linker command file is described in detail in the Texas Instrument Assembly
Language Tools manual [9]. The linker command file described here is provided in
the example subdirectory mentioned in the quick start section. There are three
parts of the linker command file: arguments to the link command (map file name),
the memory block declarations (e.g. SRAM, DRAM, RAMO, and RAM1), and the
files and sections to load into each memory block.

The example linker file is listed in Appendix A at the end of this manual. Com-
ments in the file describe each of the above sections in more detail.

6.2.5.2. Moving code into internal RAM or DRAM

It is efficient to move the functions that consume most of the run time into the
fastest memory bank. Since it is often the case that over 90 percent of the time is
spent on less than 10 percent of the instructions, the small size of the internal on-
chip RAM (2048 instructions) is not as limiting as one might expect. The example
link.cmd file puts selected library routines into RAMO.

The linker always loads each object file into the same three memory banks. For
example, to move the most time critical functions into internal RAM, first make a
new source file containing just those functions. Then edit the link.cmd file and add
the following line to the RAMO section group, following the example in the com-
ment there.

fast.o(.text)

-)

-16-

Then add your new file name to the list of object files at the beginning of the make-
file.

Do not attempt to try this with (.data) or (.bss) instead of (.text) without understand-
ing all the warnings in the link.cmd file.

6.2.5.3. Changing the stack size
Follow the comments in link.cmd and change value of the STACK_SIZE variable.

6.2.5.4. Map file

The first section of the link.cmd file specifies a map output file name (-m option).
The map file contains the address of all global symbols. See the Tl linker manual
for more details.

7. RAP debugger: RAPMC

7.1. Introduction

RAPMC is a command interpreter that acts as a controller and debugger for a RAP machine. A
user may control a set of RAP boards in the aggregate, or may individually control RAP nodes.
A user may use multiple RAPMC?’s, each one controlling a different RAP node. In this section,
the computer’s outputwi I | be in a Courier font whereas what you type will bein
an Italics font.

7.2. Starting up RAPMC
To start up RAPMC, make sure the directory containing r apnt is in your path and type:

% rapmc
One of two things will happen. If you see:

The RAP is currently in use

RAP control will be granted when you reach the front of the RAP user queue
Hit <ret> to show RAP user queue or 'q" to quit
>

then someone else is using the rap. A queue is maintained which you may look at at by hitting
<return>. When you reach the front of the queue, you will automatically get RAP control (i.e.
any startup script will automatically execute and afterwards you will get the RAPMC prompt).
If you do not wish to wait to reach the front of the queue, hit g. If the user queue is empty, or if
you wait to reach the front of the queue, after the startup script has completed, you will see:

RAP Master Comrander. Version

Copyright (C 1990 International Conputer Science Institute
Connected to host (rap_host_nane).

RAP ready with 4 nodes.

Type "hel p" for a list of commands.

0>

If a file named . r apntr ¢ exists in the current directory, RAPMC will use it as a startup script
(the commands listed in that file will be executed). Once done, you may start entering RAPMC
commands on the RAPMC command line.

A user may start up multiple RAPMC’s. Once the user reaches the front of the user queue, all
RAPMC:s started by this user will get RAP control. Each RAPMC will become a different

-17-

RAPMC session that can be seen by looking at the user queue. RAPMCs need not all be
started from the same UNIX host. With this feature, a user may start up many different
RAPMC'’s and have each one affect a different RAP node. This can be useful for logging in
from home to check work in progress.

7.3. RAPMC command line arguments
The usage of RAPMC is given by:

rapmc [-F <startup script file>] [<Host Name>]

Where the optional -f <startup script Tile> specifies the name a file to be used in
place of .rapmcrc and <Host Name> is the host name that supports a RAP (the default
host is currently <really.berkeley.edu>). If you give the —-F option to RAPMC (or
have a . rapmcrc in the current directory), but another user is currently using the RAP, your
script will be executed when you reach the front of the user queue (even if you background
RAPMC with ~Z and bg). This is analogous to submitting a batch job.

7.4. RAPMC Scripts

RAPMC may accept commands from a file. The contents of a file must be valid RAPMC com-
mands or comments. Comments in the file begin with the # character and last until the end of
the line. RAPMC script files are . rapmcrc, a file given with the —F option, or a file given
with the source command. Currently, scripts may not be nested.

7.5. RAPMC Simulated Batch Job Queue

A user may simulate a batch job by entering commands into a script and backgrounding
RAPMC when run. Given the following script called my_script:

this 1s a RAPMC script

* # change to affect all nodes

load yo # load the yo program

0 > outO # send each node’s standard output to a different file
1 > outl

2 > out2

3 > out3

run yo with yo’s argv[1l] = "yo_paraml™ and argv[2] = "'yo_param2"

run yo_paraml yo_param2

wailt # wait for all nodes to finish running

quit # quit this rapmc so someone else can get their batch job done.

you may run RAPMC from the unix command line as:

% rapmc -f my_script &

To redirect standard error output to a file named error_output_Ffile, you may run
RAPMC as:

% rapmc -f my_script >& error_output_file &

At this point, your RAP job will run to completion (even if you log off). When the script is
done, the RAP will be free for the next user in the queue.

7.6. RAPMC commands

The RAPMC prompt 0> shows the default node (zero in this example) followed by >. The
default node specifies which node the command will affect. A default node of * implies all

-18-

nodes. Commands may be prefixed with a node number (or *) to select which node(s) to affect.
If a command is not prefixed with a node number, the default node is used. If a command is
prefixed with a node number, the prefixed node number becomes the command’s current node.

For example:

0>node 3 # change to node 3

3>4 # change to node 4

4>reset # this resets node 4, current node is 4, default node is 4

4>3reset # this resets node 3, current node is 3, default node is 4

4> *reset # this resets all nodes, current node is *, default node is 4
Only enough characters to make a command unique need be specified on a command line. For
example:

O>ru # run

0>ex # examine

Two special cases are | for | oad and r for r un.
7.7. RAPMC RAP Manipulation Commands

7.7.1. load
load [file]
I [file]

Load fi | e to current RAP node(s). fi | e must exist in the current directory, or a full
path must be specified. It must be a valid TMS320C30 executable file. If fi | e is not
given, the file specified at the previous load command will be used.

7.7.2. run
run [arguments]
go [argunents]
r [argunents]

Start running current node. If [arguments] are given, use them, otherwise, use previously
given arguments.

7.7.3. Load & Run command
TVS_execut abl e_fil e_nane [argunents]

Load TM5_execut abl e_fil e_namne to current RAP node(s) and start running with
given arguments. This is a shorthand for:

0> load TMS_executable_file_name
0> run [arguments]

Note that this only works if the executable does not have the same name as a RAPMC
command.

7.7.4. examine
examne [[format] [Node_address]]

exam ne allows you to peek and poke at a rap node’s memory. You may only examine
one node at a time, thus the current node number can’t be star. f or mat specifies the
available forms with which you may peek at memory. They are x for hex, d for decimal,
f for floating point, ¢ for character, and i for TMS320C30 instructions.
Node_ addr ess is the starting node address to be examined. If Node_addr ess isn’t
given, the previous node address will be used with the given format. If both f or nat and

-19-

Node_addr ess aren’t given, the previous format and node address will be used.
exam ne will place you into a loop where you may modify the given address location
by entering in a hex, decimal, or floating point value, go on to the next memory location
by hitting <return>, or leave by typing g. Hex values are specified by a preceding "0x".
Floating point values are specified by an embedded ". " or e (e.g. 34., 2.3, 2el). For
example:

2>exx 0x0

0x0 : Ox2FA <ret>

Ox1 : 0Ox3 0x30

0x2 : 0x403 q

2>ex # use previous format and address
0x0 : Ox2FA <ret>

0x1 : O0x30 <ret>

0x2 : 0x403 q

2>exi # use new format (instructions) but previous address
0x0 : ABSF RO, RO <ret>

0x1 : MPYF3 R1,R2,R3 ¢

2>

7.7.5. quit
qui t
Leave RAPMC. If this is the last RAPMC session owned by you, a r eset will occur
and the next person in the user queue will get the RAP. Otherwise, qui t will not affect

any other RAPMC sessions.
7.7.6. kill
kill
This will leave RAPMC like qui t but all other RAPMC sessions owned by you on any
host will be terminated. After a ki | | , the next person in the user queue will get the RAP.

ki | I will automatically reset the RAP with ar eset command.

7.7.7. reset
reset

r eset will reset the current node(s) to a known state. It will destroy the current running
job. Data in RAP memory may be wiped out.

7.7.8. shelve
shel ve

Quit RAPMC but keep the RAP job running. All output redirected by this RAPMC ses-
sion will stop. The next person in the user queue will not get the RAP. No other RAPMC
sessions owned by you will be affected. After a shel ve, you can get back by running
RAPMC again.

7.8. RAPMC |I/O Commands

7.8.1. redirect, >
> fil eNane
redirect fil eNane

This redirects the current node’s standard output to the file given by f i | eNarre.

-20-

7.8.2. append, >>
>> fil eNane
append fil eName

This appends the current node’s standard output to the file given by f i | eNane.

7.8.3. pipe, |
| command [command_ar gs]
pi pe command [conmmand_ar gs]

pi pe will pipe the current node’s standard output to the UNIX program given by com-
mand. If command_ar gs are given, they will be given as arguments to the program.

7.8.4. getback, <
get back
<

This will return the standard output of the current node to RAPMC. If the nodes standard
output was redirected to a file, the file will be closed; if it was piped to a program, the
program will receive an EOF.

7.8.5. miss
m ss
m ss will cause all standard output from the current node to be missed. If the node’s

standard output has been redirected to a file or piped to a program, the file or program
will stop receiving the data until a cat ch command for the current node is performed.

7.8.6. catch
catch

This will catch all output from the current node.

7.8.7. echo
echo string

echo sends its string to the terminal. It is most useful in scripts to document what is hap-
pening.
7.8.8. input
i nput text

This will send t ext to the standard input of the current node. If the current node has not
requested input (e.g. It hasn’t yet executed a scanf() or something similar) the text will be
queued.

7.9. RAPMC Miscellaneous Commands

79.1. hdp,?
Print a help summary of all RAPMC commands.

7.9.2. chdir, cd
chdir path
cd path

Change the current working directory for the current node(s) and RAPMC.

-21-

7.9.3. lcd
Icd path

Change only the local RAPMC current working directory.

7.9.4. lpwd
Ipwd

Print only the local RAPMC current working directory.

7.9.5. node
node n
n

Set the default node to n. The current node for future commands that do not have a node
number preceding them will be the default node.

7.9.6. pwd
pwd

Print the current working directory of the current rap node.

7.9.7. source, .
source fTileName
. FileName

Send the contents of the file given by fileName to RAPMC’s input. Return control to the
keyboard at the end of the file or when the user hits <control>-C.

7.9.8. users
users

Display the user queue. This will show all users waiting for the RAP and show how many
sessions you (and each of the waiting users) have open.

7.9.9. background
background
bg
The background command is similar to hitting <control>-Z and bg which nor-
mally will suspend and background the process. background, however, will addition-
ally prohibit RAPMC from trying to read input from the terminal. Therefore, RAPMC
will not get stopped, the message

[1] + Stopped (tty input) rapmc

will not appear, and RAPMC will be able to continue processing all incoming RAP data
(i.e. RAP output that has been redirected to files or piped to programs will continue
being redirected or piped). This is not possible using ~Z and bg because RAPMC will be
stopped. To foreground a background’ed RAPMC, use fg or %<job number> as
you normally would aftera ~Z bg.

A script may contain a background. The effect will be to leave RAPMC running in the
background once the entire script has been processed.

When you type background, the shell will not show the RAPMC process as a back-
ground job. Itis still running, however. Don’t let the shell fool you. For example:

0> bg

-22-

St opped

% Cont i nui ng RAPMC i n background # RAPMC message when it continues
% jobs

[1] + Stopped rapmc # rapmc is actually still running here

% fg

rapmc

0>

backgr ound will not work when running RAPMC under the Bourne shell since the
Bourne shell has no job control.

7.9.10. wait
wai t
This will pause until the current rap node has exited from the previous run (called exit or

returned from main) or hits <ctr|>-C. It is most useful in scripts where you don’t want to
continue until the previous run has completed.

8. Assembly language

To maximize performance, inner loops are often rewritten in assembly language. Instead of writing
assembler code from scratch, the compiler’s output can be used as a starting point with the following
procedure:

1. Make the inner loop into a separate function in its own file.
2. Compile with the "-k" option to create a ".asm" file.

3. Edit the makefile to add the file name with a ".0" ending (instead of ".asm") to the
"OBJ_FILES" list.

4. Optimize the assembly language file. Test after each change.
The following are some hints about where in the T1 documentation to look for optimization tricks.

8.1. Register allocation
The C compiler uses registers as indicated in the following table:

-23-

Register usage by Tl C compiler
Register | Integer Float Temporary Special functions
RO yes yes yes Used to return int or float from function
R1 yes yes yes
R2 yes yes yes
R3 yes yes yes
R4 yes no no
R5 yes no no
R6 no yes no
R7 no yes no
ARO pointer | pointer yes
AR1 pointer | pointer yes
AR2 pointer | pointer yes
AR3 pointer | pointer no Stack Frame pointer (see text below)
AR4 pointer | pointer no
AR5 pointer | pointer no
ARG pointer | pointer no
AR7 pointer | pointer no
IR0 yes no yes Used for pointer offsets over 255
IR1 yes no yes Used for pointer offsets over 255
SP pointer | pointer no Stack pointer - special register
RC yes no yes Used for structure copy/assignment
RS yes no yes Used for structure copy/assignment
RE yes no yes Used for structure copy/assignment

Stack structure and compiler register usage are discussed in detail in the TMS320C30 C Com-
piler Reference Manual [8] chapter 4 on the run-time environment. The most important aspects
are summarized below.

By definition, temporary registers can be changed by any function call; they need not be saved
or restored by a function. Note that the compiler does sometimes hold values in "temporary"
registers across C statements if there is no chance of a function call. Registers that are not tem-
porary also can be used by the assembly language programmer so long as they are restored to
the value they had at the start of the function.

When saving and restoring non-temporary registers, it is important to use the correct push and
pop (PUSH/POP or PUSHF/POPF) depending on the data type (int or float) in the register.
This is because registers R0O-R7 are 40 bits long for floating point numbers and 32 bits long for
integers. When a 40 bit float is moved to or from 32 bit memory, 8 low order bits of precision
are lost; only the most significant 32 bits are saved. Thus, it is a good idea to keep floating
point intermediate results that are of critical precision in registers. For integers, only the low
order 32 bits of the register are used. To save and restore a register that could be either floating
point or integer (as for example in an interrupt handler), you must first PUSH then PUSHF to
save, and POPF and POP to restore all 40 bits.

-24-

The frame pointer AR3 is also called "FP" in the assembler. It is used to access arguments to
the current function and local variables declared inside the current function. The first argument
to the function is at address FP-2 (or in assembler syntax "*-FP(2)"). The second argument is
at FP-3, etc. Local variables start at FP+1. This is illustrated by the diagram below:

Stack
LOWER
ADDRESSES
OLD FP => OLDER FP
OLD local variables
*-FP(N) argument N
*_FP(4) argument 3
*_FP(3) argument 2
*-FP(2) argument 1
*_FP(1) return address
*FP OLDFP
*+FP(1) current local variables
SP=> top of stack
HIGHER
ADDRESSES

8.2. Pipelinedelays

The TMS320C30 processor is often in different phases of executing up to four instructions at
once. This is not directly visible to the assembly language programmer. The phases that an
instruction goes through are:

1. Fetch: get the instruction from memory

2. Decode: figure out what actions are specified by the instruction
3. Read: read any data that may be needed for the operation

4. Execute: actually does it and stores any results

There are cases where the processor inserts delay cycles because of this pipeline. If the execu-
tion phase of an instruction changes an address that is needed by the read phase of the next
instruction, the next instruction is forced to wait for the previous one to complete before start-
ing its read cycle. The C30 is not very smart about when this sort of thing might occur and is
overly protective. Changing an address register will cause this sort of delay if the following
instruction uses ANY other (possible unchanged) address or index register. To avoid these
delays, one of the following tricks might be useful:

1. Addressing modes that change address registers as a side effect will not cause these
delays. For example, use the addressing mode that adds an index register to the address
register. Note that changing index registers causes the same delays as changing address
registers.

-25-

2. Put instructions that are internal or use only the stack after address register loads. For
example, pre-load a register with -2 so that later on it can be added to the contents
pointed to by an address register rather than loading indirect from the address register
and then subtracting two.

3. Once you start loading address registers, try to do all such loads in one block.

The TMS320C30 has three register groups that are independent so far as pipeline delays are
concerned. If an instruction writes to a register in one group and the next instruction uses any
register in the same group (for example, an indirect load or store) a pipeline delay will occur.
However, registers in other groups can still be used without delay. The three register groups
are:

1. Address registers (ARO to AR7), Index registers (IR0 and IR1), Block size register (BK)
2. Data Pointer register (DP)
3. Stack Pointer

This is just one example of pipeline delays. There are many more described in Chapters 10 and
8 of the TMS320C3x User’'s Guide [11]. The following table summarizes the cases where
delays occur. The last two columns indicate the user’s guide page and figure numbers where
more details may be found.

-26-

Instructions sequences that cause pipeline delays on the TM S320C30
Sequence Instruction Pipeline | Description Example
delays page figure
PC-1 SRC in register group N
PC Any use of register group N 1 10-7 10-3
PC-1 DST in register group N
PC Any use of register group N 2 10-7 10-4
PC-2 DST in register group N
PC-1 Any instruction 1 10-7 none
PC Any use of register group N
PC-2 SRC1 and SRC2 in on-chip RAM block N
PC-1 Any instruction 1 10-9 10-5
PC PC is in on-chip RAM block N
PC-1 DST is not register
PC SRC1 and SRC2 are not registers 1 10-11 10-8
PC-1 DST1 and DST2 are not registers
PC SRC is not register 1 10-11 10-9
PC SRC1 is external
SRC2 is external or internal 1 10-17 none
PC DST1 is internal or external
DST2 is external 1 10-18 parallel store
PC SRC3 is external
SRC4 is internal or external 1 10-19 parallel MAC
PC-1 SRC is external
PC DST is external 2 8-5 none
PC-1 DST is external
PC SRC is external 1 8-5 none

8.3. Delayed branch

Regular branch instructions always add three delay cycles. The delayed branch instructions
B<cond>D and DB<cond>D only add one cycle for the instruction itself. The three instruc-
tions following the delayed branch are executed before the branch actually happens. Some of
these bonus instructions can be NOPs.

-27-

8.4. Conditional load

Conditional load instructions LDF<cond> and LDI<cond> are particularly useful for cases
where the minimum or maximum needs to be determined. They do not add any extra delays.

8.5. Repeat block

The most time critical loops should use the RPTB or RPTS instructions. These allow count
down loops to run without any loop overhead. Note that these always run the loop at least
once. Also, the count should be the desired number of loops minus one.

Unrolling does not speed up RPTB loops since there is no loop overhead. However, when
using the parallel instructions in a loop it often makes sense to unroll one loop and split it
before and after the RPTB or RPTS block. See the examples at the end of the TMS320C3x
User's Manual [11].

Since RPTB loops can not be nested, time critical loops that already contain one or more RPTB
loops must use other tricks such as unrolling and/or the decrement and delayed branch on con-
dition instruction (DB<cond>D).

8.6. Addressing modes

Check the addressing modes, some have useful side effects. There are delay cycles added due
to changes to address registers caused by these side effects.

8.7. Parallel instructions

The parallel instructions only allow a very limited number of addressing mode combinations.
In general check the "Operands" section of the instruction description in the TMS320C3x
User’'s Manual [11] to be sure that the addressing mode you want is possible. The four basic
addressing modes are register, direct, indirect and immediate. Direct is always indicated by an
"@" before a name. This mode addresses up to 64k of memory directly; the upper address bits
are set by the low order 8 bits of the DP register. Indirect always starts with a "*"; there are
many of these. Immediate allows small constant values to be encoded in the instruction.

9. UNIX simulated RAP libraries

The simulated RAP library that runs under UNIX is useful for development and debugging of RAP
programs. All functions in the RAP library are supported in the simulated library.

To use the simulated RAP libraries, the rap.h file should be taken from the "sim" subdirectory of the
RAP root. The file sim/rapsim.c should be compiled and linked with your program.

Since this simulation runs in one UNIX process, it can only be used to test SIMD programs that work
with one processor. In this simulation, the number of nodes (N_NODE) is set to one and the current
node number (NODE_ID) is set to zero. The simulation library has dummy ring functions that just
returns.

10. An application: multi-layer perception training program (mlp)

The mlp program is a simulator for feed-forward backpropagation networks. It has been used to train
phoneme classifiers for continuous speech recognition.

The mlp program realizes the following goals:

1.
2.
3.

Runs efficiently on the RAP
Efficiently scales up to multiple RAP boards
The same source code runs on UNIX workstations

-28-

4. The user does not have to do any programming to setup new network structures and training
parameters.

5. All parameters needed to recreate an experiment are recorded in the log file
6. Flexibility to run a wide variety of network structures and training procedures
7. Trained network can be easily embedded into other programs (e.g. dynamic programming)

The program takes one command line argument: the parameter file name. The parameter file contains
a list of parameter names and values that specify the input pattern database format, input pattern pre-
processing, network structure, and training procedure.

The mlp program consists of three independent parts: a library of network simulation routines, a net-
work builder and a training program.

The library implements two types of objects: layers and connections. A layer is an array of units. In
the current mlp program, layers come in two flavors: analog (continuous valued units) and binary
(unit output is 1 or 0). Connections also come in two flavors: cross-connection between all units of
two layers (weight matrix) and "bus" 1-to-1 connection of a range of units in a layer to a range of
units in another layer. Any set of connections can also share weights. Once a feed-forward network
(directed acyclic graph) has been built by creating and connecting layers, the "forward" and "back-
ward" library routines can be called to run the two parts of the backpropagation algorithm. The net-
work library calls the RAP library of hand optimized assembler routines for doing matrix and vector
operations. Most of the CPU cycles are spent in these routines for layers larger than twice the num-
ber of processors.

The net builder is responsible for reading the parameter file and calling the network library. It is a
separate module so that other programs that utilize the final trained mlp can re-create the network
from the same parameter file that trained it.

For example, to use a trained network from inside another program:

net _buil d("paraneter_file_nane");
net _read(net, "weight file_name");

for(...) {

net i nput (net, input_array);
net _forward(net);
net _out put (net, output_array);

}

In the parameter file, each layer is assigned a number. Layer 0 is always the input layer and layer 1 is
always the output layer. The net structure is specified by a list of layer number pairs to connect.
There is also support for arrays of layers. An array of layers can be connected to another array of lay-
ers by a sliding "receptive field" window of shared connections.

The training program preprocesses the data (sorting, normalizing, selecting, table lookup, linear func-
tions, etc.) and then starts the training/test cycles. Part of the input data is never used for training,
but instead is used to gauge the degree of generalization. Performance on this cross-validation set is
used along with specifications in the parameter file to determine when to stop training and when to
change the learning rate. The training program also collects statistics during training and after train-
ing is complete (confusion matrix, etc.). There is also support for training a net and then changing
the network structure (new layers, make or break connections, etc.) and/or parameters and re-training
(possibly with different output targets). This allows a net to be built out of several pre-trained nets.

-29-

When the training data becomes too large to store in DRAM on the RAP, a pre-digested version of
the data file is created and repeatly read on each training cycle. As more RAP boards are added, the
capacity for input data in DRAM goes up proportionally (the ring is used to distribute input patterns).

11. Direct communication between C++ programsrunning under UNIX and the RAP

RAPMC is one example of a UNIX program that uses the rapClient interface. The C++ object class
called rapClient can be subclassed to allow users to embed direct control and communications with
the RAP in their own C++ UNIX programs. To do this, one must include the following files:

#include "rapdient.h"
#i ncl ude "rapProto. h"
#i ncl ude "rapFacts. h"

For a simple example of how to use this interface to load a program on the RAP and communicate
with it, look in the example subdirectory of the RAP software distribution.

12. Work in progress

A C++ environment is being developed for the RAP using the C++ preprocessor from AT&T. In this
environment vectors or matrices are object classes that inherit from a more general class of dis-
tributed data object. The distribution of data is encapsulated so that SIMD programmers can use the
machine as if it where one large array processor with one large shared memory. On top of this we
plan to build a new backpropagation training program tentatively called CLONES (Connectionist
Layered Object-oriented NEtwork Simulator) that runs on the RAP and SUN workstation [7].

-30-

13. Appendix A: example program

13.1. main.c

#i ncl ude <rap. h>

mai n(ac, av)
int ac;
char **av;

{

}

int i;
printf("\nYO! WHASSUP?\n\n");

printf("This is processor %d on a RAP with %l processors\n”,
NODE_I D, N_NODE) ;

printf("got % conmand |ine arguments\n", ac);

for(i=0; i<ac; i++)
printf("argument % is %\n", i, av[i]);

if (ac > 2) {
[* 2 or nore argunents,
* change to directory named in second argunent
*/
printf("changing to directory: 9%\n", av[2]);
cd(av[2]);

if (ac > 1) {
/* 1 or nore argunents:
* print out file naned in first argument
*/
file = fopen(av[1],"r");

if (file == NULL)
pani c("can not open file %\n", av[1]);

whil e(fgets(buf, sizeof(buf), file) !'= NULL)
printf("read: %", buf);

fclose(file);

}

printf("\nGOTTA GO NON\n");
exit(123);

-31-

13.2. makefile
The following is a listing of the makefile from the example subdirectory of the RAP software
distribution.
This makefile conpiles and |inks an exanpl e program
for the RAP machi ne.
#
Your shell PATH variabl e nust
contain the path for the RAP bin subdirectory.
#
Put the nanes of your object files here (C or assenbler):

OBJ_FILES = yo.0

put the nane of your output executable here
OUT_FI LE = yo

root directory for rap software distribution
SET ROOT_DIR TO THE PATH TO THE TOP OF THE RAP DI STRI BUTI ON DI RECTORY
ROOT_DIR = <replace this with the distribution directory>

C conpil er options

(see table 2-1 in the TM8320C30 C Conpil er Reference [8])
-q option is for "quiet" node (no banners, etc.)

-02 option turns on the optim zer

-nf option allows pointers outside of the 64k base page
C FLAGS = -q -02

Assenbl er options
ASM FLAGS =

Linker options

(see table 9-1 in the TMB320C30 Assenbly Language Tools [9])
the "-q" option is for "quiet" nbde (no banners, etc.)
LNK_FLAGS = -q

subdirectories of rap software root directory
BIN DIR = $(ROOT_DI R)/ bi n

LIBDIR = $(ROOT_ DIR)/lib

I NCLUDE_DI R = $(ROOT_DI R)/i ncl ude

TI_INCLUDE DIR = $(ROOT_DIR)/incl ude/ti

executables for conpiler and Iinker
CC = $(BIN.DIR)/cl 30
LNK = $(BI N_DI R)/I nk30

generic link step
$(OUT_FILE): $(OBJ_FILES) $(LIB DR /rap.lib
${LNK} |ink.cmd $(OBJI_FILES) \
$(LNK_FLAGS) -1 $(LIB DIR/rap.lib -0 $(OUT_FI LE)

generic ¢ conpile step

.C.0:
$(CO $(C_FLAGS) -1$(INCLUDE DIR) -1$(TI _INCLUDE DIR) -c $<
m/ $*.o0bj $*.o0

generic assenbly steps

-32-

$(CC) $(ASM FLAGS) -c $<
nv $*.obj $*.o0

.asmo:
$(CC) $(ASM FLAGS) -c $<
nv $*.obj $*.o0

-33-

13.3. link.cmd: linker command file

The following is a listing of the link.cmd file from the example subdirectory of the RAP soft-
ware distribution.

/* This linker command file is used by the TMS320C30 | i nker

** to control placenent of programsections in nmenory on the RAP.
* %

** This file consists of 3 parts:

** (1) argunents to the linker (see TM5 |inker manual for details)
** (2) menory bl ock map

** (3) one nenory group declaration for each nmenory bl ock

*/

/* Linker argunents:

*x "-mrap.map" instructs the linker to wite a
*x nenmory map into file rap. nmap

*/

-C

-m rap. map

/* MEMORY BLOCK MAP: gives nanes to ranges of menory addresses.
** Each line inside the MEMORY clause will create a named region
** of menory for use in this link.cnd file.

*/

MEMORY

{
RAMD: org = 0x809800, |en = 0x400 /* on-chip ram 1K word */
RAML: org = 0x809C00, |en = 0x400 /* on-chip ram 1K word */
SRAM org = 0x000000, |Ien = 0x10000 [* static ram 64K word */
DRAM org = 0x400000, |en = 0x100000 /* dynamic ram 1M word */

}

/* The follow ng SECTI ONS determ ne what parts of the RAP

** programwi || be | oaded into each of DRAM SRAM RAMD, and RAML.

* %

*** | MPORTANT WARNI NG

*** Because of the limtations on the TI320C3x direct addressi ng node,
*** AlLL .data and .bss sections MJST be contained in one

*** 64k range of addresses.

*** DO NOT attenpt to nove selected variables to internal RAM or DRAM
*** (use rap_malloc to allocate variables in any nenory bl ock)

*** This warni ng does not apply to code sections (.text) or the stack.

* %

*/

SECTI ONS

{
GROUP:
{

/* Dynamic RAM |arge and sl ow.
* %
** DRAM can be used for slow instructions (.text)
** and frommalloc (large arrays)
** Putting .data, .bss, or stack in DRAM greatly increases
** run tine.
>/
slow text: {
/* put object files here for slow execution.
* for exanple:

* your _file_nane.o(.text)
*/
}
/* MJUST BE LAST | N DRAM GROUP (marks start of malloc area) */
DRAMENd: {
_DRAMree = .;
_DRAMend = Ox4fffff;
}
} > DRAM

[* Static RAM nedium size and speed.

** SRAM can be used for data and faster text.

** The stack is in SRAMsince it would not fit in
** the internal menory.

*/

CGROUP:

{
.sysdata: {} /* system gl obal s, such as N_NODE */

.text: {} /* all instructions not placed el sewhere */

stack: {
/* NOTE: stack size nust be at |east 3k

The stack is used to downl oad i nternal ram and

conmand |ine argunents.

WARNI NG stack overflows are not detected!!

E I I

To change the stack size, change the
* _STACK_SI ZE assi gnhment bel ow:
*/

_STACK_SI ZE = 01000h;

_STACK_START = .;
+= _STACK Sl ZE;
_STACK_MAG C = 0x12345678; /* detect stack overflow */
}

/* NOTE: Because TI320C30 direct addressing can only access
64k, ALL data and bss sections nust be contai ned

in one region that is |less than or equal to 64k.

The following two |ines can be noved together into
the DRAM or internal RAM sections, but should

not be separated. No extra .data or .bss lines

* shoul d be added.

*/

.data: {} [/* all initialized variables */

.bss: {} /* all uninitialized variables */

L I S

/* MJUST BE LAST I N SRAM GROUP (marks start of malloc area) */
SRAMeNnd: {

_SRAMree = .;

_SRAMend = Oxffff;

}
} > SRAM

/* Internal on-chip RAM bank 0

-35-

** Fastest nenory, limted size
*/

CGROUP:

{

library: {} /* matrix and ring library routines */

/
To put the instructions of an object file
into fast on-chip RAM add a line to the
followi ng block as shown in the follow ng conment.
/
fastest _text: {
/* object_file_nane.o(.text) */

L I

}
/* MJUST BE LAST I N RAMD GROUP (marks start of malloc area) */
RAMDend: {
_RAM)free = .;
_RAMDend = 0x809bf f;
}
} > RAMD
/* Internal on-chip RAM bank 1
** Fastest nenory, limted size
*/
GROUP:
{
/*
* To put the instructions of an object file
* into fast on-chip RAM add a line to the
* follow ng block of the formshown in the coment.
*

/
nore_fastest _text: {
/* object_file_nane.o(.text) */

}

.onchip: {} /* routines in library that nmust be internal */

/* MJUST BE LAST IN RAML GROUP (marks start of malloc area) */

RAMLend: {
_RAMLfree = .;
_RAMLend = 0Ox809fff;
}
} > RAML

/* hardware vector table and software HOST_ROOT pointers */
vectors 0x0: {}

/* hardware register |ocations */
har dwar e:

{
}

LDR REG ADDR = 0x800000;

-36-

14. Appendix B: standard C functions supported by the RAP

The following isalist of the standard C routines supported in the RAP environment. For more infor-
mation, use the "man" command or check any standard C library manual.

14.1. alphanumeric

i nt isal nun{char)
i nt isal pha(char)
int isascii(char)
int iscntrl(char)
int isdigit(char)
i nt isgraph(char)
int islower(char)
int isprint(char)
i nt ispunct(char)
i nt isspace(char)
i nt isupper(char)
i nt isxdigit(char)

char toascii(char)
char tol ower (char)
char toupper (char)

14.2. math

doubl e acos(doubl e)

doubl e asi n(doubl e)

doubl e at an(doubl e)

doubl e atan2(doubl e y, double x)
doubl e ceil (doubl e)

doubl e cos(doubl e)

doubl e cosh(doubl e)

doubl e exp(doubl e)

doubl e fabs(doubl e)

doubl e fl oor (doubl e)

doubl e fnod(doubl e x, double y)
doubl e frexp(doubl e value, int *exp)
doubl e | dexp(doubl e x, int exp)
doubl e | og(doubl e)

doubl e | 0g10(doubl e)

doubl e nodf (doubl e value, int *iptr)
doubl e pow(doubl e x, double y)
doubl e si n(doubl e)

doubl e si nh(doubl e)

doubl e sqgrt(doubl e)

doubl e tan(doubl e)

doubl e t anh(doubl e)

i nt abs(int)

div_t div(int nunmer, int denom

| ong | abs(I ong)

Idiv_t Idiv(int nuner, int denon)
int rand()

void srand(int seed)

-37-

14.3. memory allocation

void *calloc(int nmenb, int size)
void free(void *ptr)

void *mal |l oc(int size)

void *realloc(void *ptr, int size)

14.4. files

FI LE *f open(char *name, char *nodes)

FI LE *freopen(char *name, char *nodes, FILE *stream
int fflush(FILE *stream

int fclose(FlILE *stream

FILE *tnpfil e()

char *tnpnam(char *s)

voi d setbuf (FILE *stream char *buf)

fprintf(FILE *stream char *format, ...)
printf(char *format, ...)
fscanf (FILE *stream char *format, ...)
scanf (char *format, ...)

int fgetc(FILE *strean)

char *fgets(char *s, int n, FILE *stream
int fputc(int ¢, FILE *stream

int fputs(char *s, FILE *stream

int getc(FILE *stream

i nt getchar ()

char *gets(char *s)

int putc(int c, FILE *stream

i nt putchar(int c)

int puts(char *s)

int ungetc(int c, FILE *stream

int fread(void *ptr, int size, int nobj, FILE *strean)
int fwite(void *ptr, int size, int nobj, FILE *stream

int fseek(FILE *stream |ong offset, int origin)
long ftell (FILE *stream
void rew nd(FI LE *stream

void clearerr(FILE *stream
int feof (FILE *stream
int ferror(FILE *stream

nt open(char *nanme, int node)

nt read(int file_num void *buffer, int size)
nt wite(int file_num void *buffer, int size)
nt close(int file_num

nt |seek(int file_num int offset, int flag)
nt cd(char *path)

-38-

14.5. string conversions

sprintf(char *s, char *format, ...)
sscanf (char *s, char *format, ...)

int atoi (char *string)

doubl e at of (char *string)

int atol (char *string)

int Itoa(long n, char *buffer)

doubl e strtod(char *nptr, char **endptr)

int strtol (char *nptr, char **endptr, int base)
int strtoul (char *nptr, char **endptr, int base)

14.6. memory

char *movnem(char *src, char *dest, int count)
void *menchr(void *s, int c, int n)

int mencnp(void *sl1, void *s2, int n)

void *mencpy(void *s1, void *s2, int n)

voi d *memmove(void *sl1, void *s2, int n)

void *menset (void *s, int c, int n)

14.7. strings

char *strcat(char *sl1, char *s2)

char *strchr(char *s, int c)

int strcnp(char *sl1, char *s2)

int *strcoll (char *sl1, char *s2)

char *strcpy(char *sl1, char *s2)

int strcspn(char *s1, char *s2)

int strlen(char *s)

char *strncat (char *sl1, char *s2, int n)
int *strncnp(char *sl1, char *s2, int n)
char *strncpy(char *sl1, char *s2, int n)
char *strpbrk(char *s1, char *s2)

char *strrchr(char *s, char c)

int strspn(char *sl1, char *s2)

char *strstr(char *sl1, char *s2)

char *strtok(char *sl1, char *s2)

14.8. variable number of function arguments

type va_arg(va_list ap, type)
void va_end(va_list ap)
void va_start(ap, parnN)

14.9. time

char *asctime(struct tm*tineptr)
char *ctinme(struct tm*tineptr)
double difftime(int timel, int tine0)
struct tm*gntime(int tine)

struct tm*localtime(int tine)

-39-

int nktime(struct tm*timeptr)
int strftine(char *s, int nmaxsize, char *fornmat,
struct tm*timeptr)

14.10. misc

voi d abort ()
void atexit(void (*func)())
voi d *bsearch(void *key, void *base, int nnenb,
int size, int (*conpar)())
void exit(int status)
int getopt(int argc, char **argv, char *opts)
voi d | ongj np(j nmp_buf env, val)
void gsort(void *base, int nmenb, int size, int (*conpar)())
int setjnp(jnp_buf env)

15. Acknowledgments

Hardware was contributed to this project by Cypress Semiconductor, Xilinx Inc., and Toshiba Amer-
ica. Texas Instruments lent in-circuit emulators for the initial debugging. The International Com-
puter Science Institute and its sponsors are gratefully acknowledged for supporting this work. UNIX
isatrademark of AT&T.

16. References

[1] J. Beck, “ The Ring Array Processor (RAP): Hardware,” International Computer Science Institute
TR-90-048, 1990.

[2] N. Morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman, & J. Beer, ** The RAP: aRing Array Processor
for Layered Network Calculations,” Proc. of Intl. Conf. on Application Specific Array Proces-
sors, pp. 296-308. |EEE Computer Society Press, Princeton, N.J., 1990.

[3] J. Bilmes & P. Kohn, “The Ring Array Processor (RAP): Software Architecture,” International
Computer Science Institute TR-90-050, 1990.

[4] N. Morgan, *“ The Ring Array Processor (RAP): Algorithms and Architecture” International Com-
puter Science Institute TR-90-047, 1990.

[5] N. Morgan, C. Wooters, H. Bourlard, & M. Cohen, ““Continuous Speech Recognition on the
Resource Management Database using Connectionist Probability Estimation,” 1CSI Technical
report TR-090-044, also to be published in proceedings of ICSLP-90, Kobe, Japan.

[6] N. Morgan, H. Hermansky, C. Wooters, P. Kohn, & H. Bourlard, ** Phonetically-based Speaker-
Independent Continuous Speech Recognition Using PLP Analysis with Multilayer Perceptrons,”
submitted to IEEE Intl. Conf. on Acoustics, Speech, & Signal Processing, Toronto, Canada,
1991.

[7] P. Kohn, “CLONES: A Connectionist Layered Object-oriented NEtwork Simulator,” In prepara-
tion.

[8] Texas Instruments, TMS320C30 C Compiler Reference Guide, SPRU034A, 1989.
[9] Texas Instruments, TMS320C30 Assembly Language Tools, SPRU035, 1988.

[10] Texas Instruments, TMS320C30 Simulator, SPRUQ17, 1989.

[11] Texas Instruments, Third-Generation TMS320 User’s Guide, SPRU031, 1988.

-40-

[12] D.E. Rumelhart, G.E. Hinton & R.J. Williams, ‘“‘Learning Internal Representations by Error
Propagation,” in Parallel Distributed Processing. Exploration of the Microstructure of Cogni-
tion. vol. 1: Foundations, ed. D. E. Rumelhart & J. L. McClelland, MIT Press, 1986.

[13] W. Press, B. Flannery, S. Teukolsky & W. Vetterling, Numerical Recipesin C, Cambridge Uni-
versity Press, 1986.

1. Introductioncccceeeieivcvieeinen.

Table of Contents

2. The RAP: OVErview and CUITENE SLATUSc.eeeiivvieiiiiieiiiie s steiesesteessreeessaeeessstesssavessssraessssrasesnes
3. Differences between UNIX and RAP C eNVIFONMENTSc.eeeieviiiiiiiesieie e siee s ireeessivee s

3.1. Include rap.hcccccoiennnnen
3.2. Stack is fixed size: no large

[OCAL AITAYS ...vevieeieeseeie e

3.3. Small memory model: no large global arrays ...

3.4. Memory sSpacesccc.....

3.5. Word addressable instead of byte addressable ...
3.6. Opening files for binary or charaCter 1/O ...

3.7. Floating point precision
3.8. Floating pointccc......
3.9. Compiler bugscccceveeen
3.10. DSP does not stop for bad
3.11. Global variables

instructions or invalid PoiNtersccccoovvvieinnienenenn.

4. How to use the RAP for parallel ProCeSSINGccoeeiiiiriinieiine e

4.1. Processor farm
4.2, SIMD ..o
4.3. Pipelineccccoooiiiiiiene
4.4, MIMDccoovvviiiiicen,

5. Quick start: Running a simple program on the RAP ...

5.1. Setup PATHcccoeiiiies
5.2. Setup .rapmerecccceeeee

5.3. Copy files from example dir€CIONYcooiiiiiiiiei e

5.4. Make and Run

6. RAP programming environment
6.1. The main function
6.2. RAP librariesccccceeunen.
6.2.1. Standard C functions

6.2.2. Differences in memory alloCation ...

6.2.2.1. rap_malloc
6.2.2.2. malloc_usage ...
6.2.2.3. ckmalloc

6.2.2.4. MALLOC MACIO ...coovviiieiiiiitiii ettt ettt ba e s s sbbaa e e s s s sabbae s

6.2.3. Differences in stdio ..

6.2.3.1. BINARY VS. ASCII IleS ..o

6.2.3.2. SIMD mode file

FRAAING .ttt sbe e sa

6.2.3.3. Changing size and memory type of file buffers ...,

6.2.3.4. Multi-processor
6.2.4. RAP specific routines

File WIILING oo

6.2.4.1. Matrix and VECIOr FUNCLIONSceiiiiiieiciie et

6.2.4.1.1. mul_mv_v

© O© © © © O 00 0 0 W W O N N ~N~NNNOOOOOO O O ULl b DDA PPWWWWDNDNDNDNERERPPREPP

6.2.4.1.2.
6.2.4.1.3.
6.2.4.14.
6.2.4.1.5.
6.2.4.1.6.
6.2.4.1.7.
6.2.4.1.8.
6.2.4.1.9.

6.2.4.1.10.
6.2.4.1.11.
6.2.4.1.12.
6.2.4.1.13.
6.2.4.1.14.
6.2.4.1.15.

(070] o)V YOS
MUIAAA_MD_V e
MUIAdd_SVD M oo
ASIGMOIT_VV_V e

6.2.4.2. TaDIE TOOKUPD ..o e

6.2.4.2.1.
6.2.4.2.2.
6.2.4.2.3.
6.2.4.2.4.
6.2.4.2.5.
6.2.4.2.6.

MAKE_tADIE ..oieieecee s
MAKE_SIGMOIT ...t
TADIE V Voo
TADIE S S i e e
SIPMOIA_V Vit
SIPMOI ...t

6.2.4.3. RING FUNCHIONSooviiiiiiiie e

6.2.4.3.1.
6.2.4.3.2.
6.2.4.3.3.
6.2.4.3.4.
6.2.4.3.5.
6.2.4.3.6.

FING_QISEIDULE ..o
ring_write and ring_readc.ccooooiieiiniieie e
FINQ_SYNC ettt bbbttt b st st sbe b b nae s
FING_SUM ettt ettt b st sb b b sae s
Lowest level ring MACIOSccoiveriiiiireree e
FING_QEt, FING_PUL ..ot

6.2.4.4. Random functions: Numerical Algorithmscccoiiiiiiiniiien,

6.2.4.4.1.
6.2.4.4.2.
6.2.4.4.3.
6.2.4.4.4.

FANA_TUNC .o s
=TT SRS
FrANAOM oo e
(721 1o [o] .4 1Y SRS

6.2.4.5. PANIC: BITON EXIT ..veviiiiiiteicieiete ettt

6.2.5. Linker command file ..o
6.2.5.1. DESCHIPLION ..ueiieiiiiiiiiieeee ettt et ettt sttt

6.2.5.2. Moving code into internal RAM or DRAM ..o

6.2.5.3. Changing the StaCk SIZEccociriiiiiiiiie e e

6.2.5.4. MAP File oo s

7. RAP debugger: RAPMUC ...ttt ettt be e

7.1. Introduction

7.2, Starting UP RAPMUC ...ttt ettt be e nae s
7.3. RAPMC command 1IN argUMENTScc.eueieieieiireie sttt

7.4. RAPMC Scripts

10
10
10
10
10
10
10
11
11
11
11
11
11
11
12
12
12
12
12
12
12
13
13
13
13
13
13
14
14
14
14
15
15
15
15
15
15
16
16
16
16
16
17
17

7.5. RAPMC Simulated Batch JOb QUEUEccueiueeiieiiieiieciecte ettt

7.6. RAPMC commands...........

7.7. RAPMC RAP Manipulation COMMANGScccorereiieierieninere e e es e eenens

7.7.1. loadccooeveveeeceeee
T.7.2. TUN e,

7.7.3. Load & RUN COMMANGoeeiiiiiieieie ettt s aee st e s s saae e s st e e s saaessenes

7.7.4. eXamingcccceeueene.
775, QUIt oo
7.7.6. Kill oo
777, 1686t e,
7.7.8. shelveccveerennne.

7.8.1. redirect, >
7.8.2. append, >>
7.8.3. PIPE, | eoeereereeerereniens
7.8.4. getback, <cceueee.
7.85. MiSS.cccoviiiiirirenns
7.8.6. CcalCh ..o
7.8.7. €ChO ..ooveeiiiice
7.8.8. INPUL ..o

79.1. help, ? e

7.9.2. chdir,cdcceeeeees

7.9.3. 1cd oo

7.9.4. 1pWd ..o

7.95. nodecoooeiiiiiis

7.9.6. pWA oo

7.9.7. SOUICE, . .ccoeveeeeennne

7.9.8. USEIS ..o

7.9.9. background
7.9.10. Walt ...cocovveeieee

8. Assembly languagecccc......
8.1. Register alocation
8.2. Pipeinedeays........ccc.....
8.3. Delayed branch
8.4. Conditional load
8.5. Repeat blockccceeueenenee.
8.6. Addressing modes
8.7. Parald instructions

9. UNIX simulated RAP libraries ..

10. An application: multi-layer perception training program (MIP)ccccoevererenenereeneeieeeeen
11. Direct communication between C++ programs running under UNIX and the RAP

12. Work in progresscccccceeeeeene

13. Appendix A: example program

17
17
18
18
18
18
18
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
20
21
21
21
21
21
21
21
22
22
22
24
26
27
27
27
27
27
27
29
29
30

14. Appendix B
14.1. alphan
14.2. math .

14.3. MeMOIY @llOCALIONcc.oiiiiiiiciee et

14.4. files ..

14.5. SEFING CONVEISIONSvitiuieuieeeiietieteee ettt sttt e b et e e e et et ese e b e e se e st ebesbesbesbesbesbesaens
LA.6. IMNBIMOIY ..ottt bbbt bt he et e b e e be e b e ke e b b ekt eb b e nb e e nb e eb e e et sbe e b e saeenbesnean

14.7. strings

14.8. variable number of fUNCLION ArQUMENTSccoiiiiiiie e

14.9. time ..

15. ACKNOWIBAGMENTS ...ttt sttt et be b sbe b e

16. References

30
31
33
36
36
36
37
37
38
38
38
38
38
39
39
39

