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BACKGROUND

In our speech recognition research, we have been experimenting with layered "neu-
ral" algorithms as probabilistic estimators for a Hidden Markov Model (HMM) procedure
[1]-[3]. Features representing the spectral content of the speech are estimated 100 times
per second. A layered network is trained to predict the phonetic label of each 10 msec
"frame". This network takes as its input the spectral features from one or more frames,
and has an output layer consisting of one unit per phonetic category. For some of our
experiments, the input is continuous, and hidden layers are used. For others, the speech
features are vector-quantized to map the frame into one of a set of prototype vectors, and
the network input consists of a binary input neuron for each possible feature value, only
one of which can be active at a time. In either case, the neural network is trained by
back-propagation [4][5], augmented by a generalization-based stopping criterion [6]. It
can be shown [7] that when the output targets are coded as 1 for the correct class and 0
for the others, and when a sum-of-squares error criterion is used, the trained output values
are estimates of Maximum A Posteriori (MAP) probabilities, i.e. the probability of each
class given the input features. This proof also is valid for some other common error crite-
ria, such as relative entropy. When divided by the prior probabilities for each class, these
values are proportional to the likelihoods which can be used as emission probabilities in
the Viterbi decoding step of an HMM speech recognizer. A network can be useful for
this procedure because it can estimate joint probabilities (joint over multiple features or
time frames) without strong assumptions about the independence or parametric relation
of the separate dimensions. We hav e conducted a number of experiments which seem to
confirm the utility of this approach.

In the recognition process, computer resources are generally dominated by the prim-
itives of dynamic programming (as used in the Viterbi decoding) - address calculations,
reads, adds, compares, and branches (or conditional loads). This is particularly true for
large vocabulary recognition. For example, for a 1000-word vocabulary we are using for
recognition, a Sparcstation 1+ takes roughly 10 times real time to do the dynamic pro-
gramming. The neural network calculations take about a second per second of speech (for
the worst case of a large continuous input network). However, training via back-
propagation is perhaps 5 times as long as the forward network calculation, and must be
repeated over 10-20 iterations through a larger data set. Thus, the training runs we are
currently doing can take from 12 hours to several days for a single speaker on the Sun.
Planned experiments in feature selection will require a great deal more computing. Since
our research is largely in the area of training algorithms as opposed to recognition per se,
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a fast processor is required.

Extremely high performance speech processing systems can be built using special-
purpose VLSI designs [8][9]. However, programmable systems with somewhat lower
throughput can be designed using commercial general purpose microprocessors [10], and
have the advantage of robust efficiency over a wider class of algorithms. For both
approaches, custom system architectures can be used to streamline performance for a tar-
get class of algorithms[8]-[10]. Ring architectures have been shown to be a good match
to a variety of signal processing problems [11] and neural network algorithms, including
back-propagation [12][13][18]. The RAP design uses programmable floating-point digi-
tal signal processing (DSP) chips as the computational elements. We hav e connected the
processors with a data distribution ring, implemented with programmable gate arrays.
This programmability permits several variants of the basic ring operations, using a dedi-
cated high-speed local communications channel. For a description of the hardware
design and implementation, see [19].

ARCHITECTURAL CONSIDERATIONS

Artificial neural networks (ANNs) frequently do not have complete connectivity
[14], even between layers of a feedforward network [15]. Nonetheless, an extremely use-
ful subclass of these networks uses nonsparse connectivity between layers of "units",
which are (for the most common case) nonlinear functions of the weighted sums of their
inputs. The most common unit function uses a sigmoid nonlinearity, namely,

f (y) =
1

1 + e−y
(1)

with

y =
N

i=1
Σ wi xi + θ (2)

where the w’s are connection strengths (weights), the x’s are unit inputs, θ is a unit bias,
y is the unit potential, and f (y) is the unit output.

The computational requirements of such algorithms are well matched to the capabil-
ities of commercial DSPs. In particular, these circuits are designed with a high memory
bandwidth and efficient implementation of the ‘‘multiply-accumulate’’ (MAC) operation
(including addressing). However, if the unit implementations and corresponding weight
storage are to be divided between multiple processors, there must be an efficient means
for distributing unit outputs to all of the processors. If this is not provided in the system
hardware, overall operation may be extremely inefficient despite efficient arithmetic. Full
connectivity between processors is impractical even for a moderate number of nodes. A
reasonable design for networks in which all processors need all unit outputs is a single
broadcast bus. However, this design is not appropriate for other related algorithms such as
the backward phase of the back-propagation learning algorithm, for which the weights
are stored in the opposite order from the "forward" case described above.

More specifically, for a forward step the weight matrix should be stored in row-
major form, i.e., each processor has access to a particular row vector of the weight
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matrix. This corresponds to a list of connection strengths for inputs to a particular output
unit. However, for a backward step the matrix should be distributed in column-major
form, so that each processor has access to all connection strengths from a particular input
unit. As Kung [9] has pointed out, the backward phase corresponds to a vector-matrix
multiplication (as opposed to the matrix-vector multiplication of the forward case). One
can use a circular pipeline or ring architecture to distribute partial sums to neighboring
processors where local contributions to these sums can be added. Using this systolic
mode of operation, partial sums for N units on N processors can be distributed in O(N )
cycles, where in contrast, a broadcast architecture would require O(N 2) broadcasts to get
all the partial sums to the processors where the complete sums can be computed.

Figure 1 shows the process of calculating the error terms for back propagation. The
top table shows the initial location of the partial sums: sij refers to the ith partial sum
(corresponding to the local contribution to the error term for hidden unit i) as computed
in processor j. In other words, sij is all of the error term for hidden unit i which could be
computed locally in processor j given the distribution of weights. In each step, each pro-
cessor passes one partial sum to the processor on its right, and receives a partial sum from
the processor on its left (with a ring connection between the end processors). The
received sum is added into one of the partial sums. By choosing the passed values cor-
rectly, all processors can be usefully employed adding in values. Thus, in the example
shown, each of the four processors have a completed error sum for a hidden unit after 3
steps. In general, N − 1 steps are required to compute N such sums using N processors.
Because of the ring hardware, the data movement operations are not a significant amount
of the total computation, and multiple copies of the weights (each ordering of the weight

matrix) or broadcasting individual weights are not necessary.

The forward calculations (as defined by equations 1 and 2) are speeded up by
employing "read-shift" hardware to distribute layer outputs with minimal processor inter-
vention. In this scheme, the processor signals the ring hardware to pass the data on to the
next ring element by the act of reading the data from the ring. Thus, to "broadcast" data
from all processors to all processors, each DSP writes to the ring once, and reads from it
N − 1 times. Including overhead, the cost would be

#cycles = k × ( ( (N − 1) × R) + W + S) + C (3)

where N is the number of processors, R is the number of cycles per read, W is cycles per
write, S is cycles for switching between read and write modes, and C is constant over-
head for a loop which iterates k times. For the broadcast of 64 unit outputs, (a typical
number for our application), and for the processor we have chosen (the Texas Instruments
TMS320C30), this expression yields (for 16 nodes, the size of a typical system)

#cycles = 4 × ( ( (15) × 1) + 2 + 2) + 8 = 84 (4)

or 1.3 cycles per unit broadcast. The constant loop overhead can be minimized with in-
line coding, where necessary. The major irreducible overhead in this total is due to the
effects of the internal pipeline on the DSP chip, which causes delays for external writes
and for mode switching between external reads and writes.
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Initial Partial Sum Location
P1 P2 P3 P4

s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

Partial Sum Location After One Ring Shift
P1 P2 P3 P4

s11 s12 s12 + s13 s14

s21 s22 s23 s23 + s24

s34 + s31 s32 s33 s34

s41 s41 + s42 s43 s44

Partial Sum Location After Two Ring Shifts
P1 P2 P3 P4

s11 s12 s12 + s13 s12 + s13 + s14

s23 + s24 + s21 s22 s23 s23 + s24

s34 + s31 s34 + s31 + s32 s33 s34

s43 s41 + s42 s41 + s42 + s43 s44

Partial Sum Location After Three Ring Shifts
P1 P2 P3 P4

s12 + s13 + s14 + s11 s12 s12 + s13 s12 + s13 + s14

s23 + s24 + s21 s23 + s24 + s21 + s22 s23 s23 + s24

s34 + s31 s34 + s31 + s32 s34 + s31 + s32 + s33 s34

s41 s41 + s42 s41 + s42 + s43 s41 + s42 + s43 + s44

Figure 1: Accumulation of partial error sums via the ring
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For each board, the peak transfer rate between 4 nodes is 64 million words/sec (256
Mbytes/second). This is a reasonable balance to the 128 MFLOPS (64 million multiply-
accumulates per second) peak performance of the computational elements. In general,
units of a layer (actually, the activation calculations for the units) are split between the
processors, and output activations are then distributed from all processors to all proces-
sors in the ring pseudo-broadcast described above. As long as the network is well-
expressed as a series of matrix operations (as in the feedforward layered case), partition-
ing is done "automatically" when the user calls matrix routines which have been written
for the multi-processor hardware.

STATUS

A six-layer printed circuit board was completed earlier this year, and was pro-
grammed to implement common matrix-vector library routines, and to do the forward and
backward phases of back-propagation. Results of these tests are shown in Table I.

Table I: Single RAP Board Performance

MMACs = Millions of Multiply/Accumulates Per Second
MCPS = Millions of Connections Per Second

MCUPS = Millions of Connection Updates Per Second

operation 32x32 256x256
internal RAM external static RAM

optimized matrix × vector 40.6 MMACS 61.4 MMACS
parameterized matrix × vector 29.1 MMACS 59.3 MMACS
parameterized forward propagation 23.5 MCPS 56.9 MCPS
parameterized forward plus learning 8.3 MCUPS 13.2 MCUPS

The first row of Table I shows the performance for a routine which has been hand-tuned
for the specific matrix size. For a large enough dimension, this routine approaches 100%
efficiency (with respect to 64 MMACS/board for a 16 MHz clock), and the single RAP
board is roughly 50 times the speed of a Sun SparcStation 1 running the same benchmark.
For smaller problems, such as the 32x32 case, the more generally useful "parameterized"
routine (for which the dimension is a passed parameter) gives at most a 25% efficiency
loss. Similarly, for the larger networks, the forward propagation performance becomes
almost identical to the matrix-vector multiply (which is O(N 2) ), since the sigmoid calcu-
lation (which is O(N ) )  becomes inconsequential in comparison to the multiply-
accumulates. Finally, when learning is performed on each cycle (for a network with one
hidden layer), the weight update steps dominate the computation. This is commonly the
case with the back propagation algorithm, and similar ratios have been reported for other
multi-processor implementations [13][16][17]. The update and the delta calculation each
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require, on average, about as many arithmetic operations as the forward step, so that a
factor of 3 decrease in throughput should be expected for the network calculation when
learning is included. Another limitation is the DSP, which is optimized for dot-product
calculations rather than the read-add-write of the weight update step. However, back-
propagation performance on the Sun is similarly impacted by the costs of learning; learn-
ing on the Sun SparcStation takes about 3 times as long as forward propagation alone,
and about 5 times as long as a simple matrix-vector multiply. In fact, the RAP appears to
give roughly the same proportional speedup to user throughput both with and without
learning. For an average of five floating-point operations per connection during learning,
the last line of Table I corresponds to 41-66 MFLOPS, or roughly one-third to one-half of
the peak arithmetic capability of the machine. For forward propagation, with an average
of two floating point operations per connection, 89% of the peak arithmetic capability is
obtained for the larger problem.

The board was then used for summer 1990 studies in feature extraction for continu-
ous speech recognition [25][26]. With this single-board RAP we have already tackled
computations that would have been impractical on a Sun workstation. We hav e now fab-
ricated 3 boards, and are preparing to generate a second run with some minor modifica-
tions to permit RAP operation on Sun backplanes.

SYSTEM PERFORMANCE FACTORS

Extrapolation of performance measurements to a multi-board system is problem-
dependent, but should be close to linear for layers of size ≥ 4N . For the 32-bit host
address space, the largest possible system would consist of 16 RAP boards (64 nodes),
would have over 1 GB of memory, and would have a peak performance of 2 GFLOPS.
Our simulations project a forward propagation performance in excess of 800 MCPS for
such a hypothetical machine. Larger RAP systems could be built for a host with a larger
address space. The size of the largest useful RAP is ultimately limited by the effect of
parts of the application which cannot be partitioned between processors. For back-
propagation learning in a layered feedforward network with one hidden layer, and an
equal number of units in each layer, let

αQ = number of cycles per connection (partitioned)

α L1 = number of cycles per unit (partitioned)

α L2 = number of cycles per unit (not partitioned)

C = constant overhead

N = number of units

P = number of processors
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W = number of words of memory available for connection weights

then the total time in cycles for the algorithm would be

αQ
N 2

P
+ α L1

N

P
+ α L2 N + C (5)

For large values of N (where
N

P
is held constant), we can ignore the second and fourth

terms, so the machine would be 50% efficient or better when

αQ
N 2

P
≥ α L2 N (6)

or

P ≤ N
αQ

α L2
(7)

squaring and dividing by P,

P ≤
N 2

P

αQ
2

α L2
2

(8)

For the case of the maximum size weight matrix to fit in the static memory, this becomes

P ≤ W
αQ

2

α L2
2

(9)

From our test runs, we have estimated αQ to be 9 for the back propagation calculation (7
when the weights are in internal memory) and α L2 to be 19, where the latter come from
the delta calculation for the hidden layer, and from communication overhead. Therefore,
an upper bound on processors for this problem appears to be roughly

P ≤ W /4 (10)

Since our design includes 64K words of fast static RAM per node, the RAP would scale
up to about 16000 processors (for sufficiently large back-propagation problems). At this
point the code which was linear in the number of processors (such as communication
costs, and the outer loop of the delta calculation for hidden units) would dominate the
computation. Obviously, many practical problems such as synchronization would be
much more difficult for a massively parallel version. Furthermore, the training time
scales badly with large back-propagation nets, so that such a machine might be of no
practical use.

Substituting the observed values for αQ and α L2 into (8), we get roughly

N

P
≥ 2 (11)

This latter limit is of more immediate and practical concern. The RAP, used as a back-
propagation machine, is reasonably efficient for networks with at least 2 units represented
per processor. For small values of P (e.g., 4), a more detailed analysis (considering all

four terms) suggests a preferred ratio of
N

P
≥ 4 .
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Estimating the constants from our measurements with the RAP, the machine cycles
required to process one pattern (including learning on a P-processor RAP is

9
N 2

P
+ 90

N

P
+ 19N + 825 (12)

This is a good match to our measurements for larger values of N , and is conservative for
smaller values, where we can make better use of memory. For most real examples, the
contributions to the linear terms from communication are negligible. As mentioned ear-
lier, the largest inefficiency in the system is the time required for weight updates, which
typically dominates the αQ term.

Using equation (12), we can infer the efficiency of parallelism for our target algo-
rithm on a RAP of various sizes, as shown in Table II. This efficiency is the fraction of
linear speed-up achieved withe P processors, for backpropagation on a layered network
with N units in an input, single hidden, and output layer. Note that since the formula was
empirically derived from RAP runs with one and four processors, only the last column is
an extrapolation. For the problem sizes of interest to us in our speech work, for which
layer sizes are 64 to 256, systems in the range of 4-16 processors (1-4 boards) give a
respectable efficiency.

Table II: Efficiency of Parallelism
(Performance per processor relative to uniprocessor)

#processors
#units 1 4 16

16 1.00 .63 .25
32 1.00 .78 .42
64 1.00 .89 .62
128 1.00 .95 .78
256 1.00 .97 .88

The performance statistics given here must be compared with care to those reported
for other machines, as there is no good suite of benchmarks or even common programs in
use for this purpose. Some researchers have suggested using the Nettalk example, but we
have not chosen to do this because of the ambiguity of the sparse input connectivity for
that case - when a connection is not selected by an input, does that mean it has been
updated by a value of 0.0? Some who have reported performance figures using this
benchmark have treated these non-connections as updates. Others have used an auto-
association example, which seems somewhat more reasonable. We chose to simply time
the routines which are basic elements of any of our continuous input programs, and to
implement back-propagation calculations for nets with layer sizes similar to those used in
our actual application. The use of equal-sized layers simplified the empirical formulae
derived above.
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RAP APPLICATIONS

As described above, the primary target application for the RAP was back-
propagation training of layered neural networks. However, we did not build special-
purpose integrated circuits, which could have had a considerable speed advantage,
because we wanted a programmable machine. While our current uses for the RAP con-
tinue to be dominated by back-propagation, we are able to modify the network algorithm
daily for our experiments. Furthermore, we have experimented with using the RAP for
computations such as the generation of Mandelbrot and Julia sets, and for dynamic pro-
gramming. We also have used the RAP for calculation of dynamic features (first, second,
and third temporal derivatives) to feed the layered network. While the topology has been
optimized for the block matrix operations required in backpropagation, many algorithms
can benefit from the fast computation and communication provided by the RAP.

In the case of dynamic programming, for instance, we currently treat a board as four
independent processors that perform recognition on different sentences, thus speeding up
a batch run. For real-time operation, the reference lexicon can be split up between proces-
sors, so that processors only need to communicate once for each speech frame. Thus, the
RAP can be used as a SIMD machine (for our matrix operations, as in back-propagation),
as a farm of separate SISD machines, requiring essentially no intercommunication (as in
our current use for offline dynamic programming), or as a MIMD machine with simple
and infrequent communication (as in the dynamic programming case for a distributed lex-
icon). Software is being developed to support all of these modes [20][21][22].

RELATED WORK

The simple communication ring topology used in the RAP is common to several
other proposed and realized machines. Similar examples are the NeuroTurbo from
Nagoya University [13] and the WARP [11][18]. The RAP differs from these most signif-
icantly in its use of Programmable Gate Arrays for communications hardware. These
arrays permit easy modification of the low lev el register transfer logic to provide flexibil-
ity without sacrificing speed. In the iWARP (a commercial machine inspired by the
WARP) a versatile communications processor performs data transfers between computing
nodes with a latency of 100-150 nsec per word. The programmability of this communica-
tions processor favors the iWARP for systems using high-level complex protocols. The
custom VLSI circuits used in the iWARP provide 60% of the computational capability of
the TMS320C30 used in the RAP, with a significantly more sophisticated communica-
tions capability. The RAP, on the other hand, transfers words between DSP nodes within
a single 62.5 nsec cycle using a very simple Programmable Gate Array design. In addi-
tion, the ability to customize this array for different low-level communication protocols
without sacrificing performance is an advantage for the RAP. Back-propagation has been
mapped to the WARP in a somewhat different way than what has been reported here [18].
Users of that machine chose to pass partial sums for the forward pass rather than the
backward pass of our case; that is, they apparently stored the weights corresponding to
the outputs of each unit, rather than the input. Another approach that they tried was to use
each processor for a different copy of the complete network. Each copy operated on
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different segments of the data, They ran multiple forward passes without updating the
weights, and thus could read the weights in from a larger central memory. The resulting
delay between forward passes and updates is probably acceptable for most applications,
but it was not necessary on the RAP because of the large amount of fast local memory.

In contrast to both the RAP and the WARP, the NeuroTurbo uses dual-port memo-
ries between pairs of processors to implement the communication ring. The dual-port
memory approach provides no hardware communication interlock but presents a simple
model for user-designed software management of the ring. The designers apparently
used a similar approach to the first one mentioned above, in which the communication of
partial sums over the ring is done for the forward rather than the backward pass of the
algorithm.

Tw o prominent examples of application-specific digital neural network systems that
have been announced are the systolic Neuroemulator of Siemens [23], and the "X1" chip
from Adaptive Solutions [24]. Although these will be comparatively fixed-function
machines, they are expected to have significantly higher performance than the currently
available alternatives, at least for the more common layered network algorithms.

SUMMARY

Ring architectures have been shown to be a good match to a variety of signal pro-
cessing and connectionist algorithms. We hav e built a Ring Array Processor using com-
mercial DSP chips for computational and Programmable Gate Arrays for communication.
Measured performance for the first prototype board on target calculations is a factor of
20-50 higher than we have achieved on a general-purpose workstation. This tool is
greatly aiding our connectionist research, allowing exploration of problems previously
considered computationally impractical.
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