Bibliography

[BBKTW] Ben-David, S., Borodin, A., Karp, R., Tardos, G. ,Wigderson, A. ,‘On The Power
of On-line Algorithms’, Proc. 22nd Annual ACM Symposium on the Theory of Comput-
ing, 1990, pp.379-388. To appear in Algorithmica.

[BM] Bentley, J. L., McGeoch, C. C., ‘Amortized Analyses of self-organizing sequential search
heuristics’, Communications of the ACM, 28(4):404-411, April 1985.

[CL] Chrobak, M., Larmore, L., Personal Communication, 1990.
[IRWY] Irani, S., Reingold, N.,Westbrook, J., Young, N., Personal Communication, 1990.
[KR] Karp, R. Raghavan, P., Personal Communication, 1990.

[RW] Reingold,N., Westbrook, J., ‘Optimum Off-line Algorithms foe The List Update Prob-
lem’, Technical Report, YALEU/DCS/TR-805, August 1990.

[RW2] Reingold, N., Westbrook, J., ‘Randomized Algorithms for the List Update Problem’,
Technical Report, YALEU/DCS/TR-804, June 1990.

[ST] Sleator, D. D., Tarjan, R. E., ‘Amortized Efficiency of List Update and Paging
Rules’,Communications of the ACM, 28:202-208, February 1985.

because X;;(1)/4 4 Y;;(tr) decreases as k increases for k > 3. The proof for case 1 then follows
from the inductive hypothesis and the transition probabilities.

Case 2: (r4,,...7,) = i(j)""%. m > 2.
If Xji(t1)/4+ Yji(t1) < 7/16, then

m—1

Pii(t1) + > Pij(ty)
k=2
Xji(tm)/4+ Yii(tm) < 7/16

IN

31/16 and

It is sufficient to prove that
P;i(t1) + Pij(ta) + Py(t3) < 31/16
because P;;(tx) = 0 for £ > 4. It is also sufficient to prove that
Xij(t3)/4+ Yij(ts) < 7/16

because X;;(1)/4 4 Y;;(tr) decreases as k increases for £ > 3. The proof for case 2 then follows
from the inductive hypothesis and the transition probabilities.
The stronger bound of (31 L + 1)/16(L 4 1) on the competitive ratio of SPLIT can be

obtained by using the cost function used in the proof of Theorem 2.

Note that SPLIT’s competitive ratio is at least 1.75 for the — 1 cost function. On a list
consisting of two elements ¢ and j, the sequence that repeats the subsequence (¢, 7,7,7,...) will
force SPLIT to have an expected cost arbitrarily close to 1.75 per repetition. The cost of SPLIT
will depend on the number of requests to item j in between each request to item 2. SPLIT’s
cost converges to 1.75 as the number of requests to item j increases. An optimal algorithm will
only incur a cost of 1 per request to z.

0.4. Conclusion

The main open question here is to determine the best possible competitive ratio for a ran-
domized on-line algorithm for the list update problem. Theorem 1 settles this question for the
deterministic case. It is still unknown whether the best bound can be achieved by dividing the
analysis into pairs; do we give away too much in allowing the adversary to service every pair of
items optimally? Presumably if this is the case, then it will be important to better understand
the optimal off-line algorithm.

Another question is to examine variations of this model that allow items other than the
requested item to be moved for free. In a linked list, any item that precedes the requested
item in the list could be moved in constant time. How would the results change under this new
model?

The question of lookahead is also interesting for the list update problem. How does the
performance of an on-line algorithm improve if it is allowed to see some number of requests in
advance?

We prove something slightly stronger. Let o;; be an input sequence for a list containing only
¢ and j. o;; is obtained as follows: If the tth request in o is to an item other than 7 or 7, then
no request is made at time ¢. If the #** request in o is to i or j, then that item is requested at
time t. We prove that

lo|
(31/16)0 PT(0:j) > Z_:[(Uz‘(t)Pz‘j(t)) +(o(1) P;(1))]

In other words, we allow the optimal algorithm to service requests to every pair of items in
a separate list of two items, even if the optimal algorithm on each pair does not merge to form
a consistent algorithm on L elements. For example, the adversary can choose to have ¢ ahead
of 7 and j ahead of k, but k£ ahead of 2. Since we compare the cost of SPLIT cost to the cost of
the stronger adversary, we do not have to account for paid exchanges. The optimal algorithm
when operating on a list of length 2 will never use paid exchanges.

We divide the sequence into intervals, such that a new interval starts every time O PT incurs
a cost of one on 0;;. Recall that since we are using the i — 1 cost function in this analysis, the
cost of accessing the first item is 0 and the cost of accessing the second item is 1. Let ¢; and
t,, be the first request in two consecutive intervals; that is, O PT incurs a cost at time ¢; and

tm, but does not incur a cost for any t where t; < t < t,,. Let t1,%s,...%,, be the sequence
of request times in the interval ¢; through t,, where item ¢ or j are requested. Without loss
of generality, assume item i is requested at time ¢;. Then (r4,,...7;,) = (1)™15 or i(j)™ 2.

Note that we can assume that every interval is longer than one request because the optimal
algorithm on a list of length two will incur a cost of at most one on two consecutive requests.

To bound the cost of SPLIT in an interval, we maintain an inductive hypothesis on the
distribution of states at the beginning of each interval. Using the inductive hypothesis, we bound
the cost of SPLIT and then prove that the inductive hypothesis still holds at the beginning of
the next interval. The inductive hypothesis for an interval depends on which item is requested
first in the interval. If item 7 is the first request in the interval, then the inductive hypothesis
is X;i(t1)/4 4 Y;i(t1) < 7/16. If item j is the first request in the interval, then the inductive
hypothesis is X;;(t1)/4 + Y;;(t1) < 7/16.

Case 1: (14,,...,714,) = ()™ 1j. m > 2.
If in(tl)/ﬁl + in(tl) < 7/16, then

m—1
> Pi(ty) < 31/16 and
k=1

Xij(tm)/4 + Yij(tn) < 7/16

It is sufficient to prove that

Pji(tl) + Pji(tg) < 31/16
because Pj;(tx) = 0 for k > 2. It is also sufficient to prove that

Xij(t)/4 + Vi (ts) < 7/16

that ¢ precedes r in the list. We use the symbol < to indicate precedence in the list, i.e. 2 < j
if ¢« precedes j in the list. The probabilities for the four states are denoted as follows:

X;;(t) = Pri < j.split]
Yi;(t) Pr[j.split < i < j]

X;i(t) = Pr[j < i.split]
Yii(t) = Prli.split <j <]

Let P;;(t) be the probability that at time ¢, item 7 precedes item j in the list. Then P;;(t) =
Xi;(t) 4+ Yi;(t). Fix a sequence o = (r1,72,...). Let

oi(t) = 1 if item 7 is requested at time ¢
‘ 0 otherwise

Then the expected cost of servicing the sequence o is

lo|
E[SPLIT(o)]=3_ > [(oj()P;(1) + (o:(t)P;i(t))]

t=11<i,j<L,i#j

If r, & {7,7} then the state of the pair {7, j} does not change. If 7, = ¢, then

in(t—l—l) = 0
Yij(t+1) < (Y3(1) + V(1)) /2
Yi(t+1) = X;(t)/2

are the transition probabilities for the pair {i,7}. Let

1 if r, = 7 and item ¢ appears
before item j in O PT’s list
at time t.

0 otherwise

OPTZ'j(t, 0') =

OPT;;(t,0) = 1if OPT has to step over item ¢ to access j at time ¢. The cost of OPT is then

o]
OPT(o)=>_ > [0PTy(t,0)+ OPTj(t,0)]
t=11<i,j< Ly

Claim: For any pair {7,5},

lo| lo|

31/16 Y [OPTij(t,0) + OPT;i(t,0)] > > [(0i(t) Pij(t)) + (o;(t) Pi(1))]

Proof of Lemma 3: Suppose at time 1, ¢ precedes j in MT F’s list. This means that
J was the requested item, since MTF;;(t1,0) = 14+ 1/(L —1). It also means that j precedes
i in O PT’s list because O PT;;(t1,0) = 1/(L —1). After time ¢y, MTF moves j before i, so j
precedes ¢ in both MTF and O PT’s lists. Any request to j will cost both algorithms 1/(L — 1)
and will not change the relative position of ¢ and j in either list. Any request to ¢ will cost both

algorithms 1 +1/(L —-1). MW

0.3. The SPLIT Algorithm

The following is a description of the randomized strategy, called SPLIT. Each item maintains
a pointer that points to some other item in the list. We maintain the invariant that the pointer
for an item either points to the item itself or to some item that precedes it in the list. Let
1.split denote the item then item ¢ points to.

The algorithm works as follows:

Initialization:
Fori—1to L
1.split — 1

If item ¢ is requested:

With probability 1/2:
Move item ¢ to the front

With probability 1/2:
Insert item ¢ before item 2.split

Set i.split to the first item in the list.

Theorem 4: Let o be any request sequence and OPT be the optimal deterministic off-line algo-
rithm that services o. Then if OPT and SPLIT start with their lists in the same configuration,

E[SPLIT(0)] < (31/16)0PT(0)

In the analysis of SPLIT we use a slightly non-standard cost function; The cost of accessing
the " item in the list is i — 1 instead of 7. Any upper bound that we obtain on the competitive
ratio of an algorithm counting the cost as ¢ — 1 is also an upper bound on the competitive ratio
counting the cost as ¢. For the remainder of this section, we use the ¢ — 1 cost function.

We examine a pair of items, {7, j}. The pair can be in one of four states depending on the
relative position of ¢, 7, i.split, and j.split in the list. Given a starting configuration and an
input sequence, the probability distribution of the states for that pair is well defined. If item
r is requested, the cost of servicing that request is the sum over all items ¢ of the probability

sequence but ignoring requests to items other than ¢ and j, then their relative position in the
list of two items is exactly their relative position in the list of L items. This idea of “factoring”
the list into lists of length two was used independently in [BM] We define the following cost
function for each pair of items.

1+ (Llfl) 1 appears before j in

MTF’s list and item j
is requested at time ¢
7 appears before 7 in

MTF;(t,o) =< (=1]) ‘
MTF’s list and item j
is requested at time ¢

0 otherwise

OPT;;(t,0) is defined similarly with respect to OPT’s list. MTF;;(t,0) = 14+ 1/(L—1) if
MTF has to step over item ¢ to reach a request to 7 at time ¢.

lo]|
MTF(o) =) > [MTF;(t,0)+ MTFj(t,0)].
t=1 1< j<Lyi#j

We prove that for all ¢ and j,

lo]
> IMTF;(t,0) + MTFji(t,0)]

t=1

lo|
<2L/(L+1)Y [OPTij(t,0)+ OPTj(t,0)]

t=1
Thus we have reduced the problem to lists of length two. If the optimal algorithm ever uses a
paid exchange between items ¢ and j, the algorithm can be altered so that the cost on ¢ and j
remains the same and no paid exchange is. We alter the strategy as follows: used as follows:
Suppose item j appears after ¢ in the list before the exchange. The the optimal algorithm just
waits for the next request to item j and then moves j ahead of ¢, paying only the cost to access
j. So now, we can assume that the optimal algorithm does not use paid exchanges. We say
that MTF;;(t,0) + MTFj;(t,0) and OPT;;(t,0) + OPTj;(t,0) are the cost at time ¢ on the
pair {i,7} for MTF and O PT, respectively.

The theorem follows from the following lemma:

Lemma 3: If at time 1 and ty, where t; < tq, the cost of MTF on {i,j} is14+1/(L —1) and
the cost of OPT on {i,j} is 1/(L 4+ 1), then there is a time t such that t; < t < ty and both
MTF and OPT have a cost of 1 +1/(L —1) on {i,j} at time t.

Lemma 3 implies that

— L 2t2/(L-1) 2L
MTF(c)/OPT(c) < =D - TE T

3

Theorem 1: For all o,

MTF(o) < 2L/(L +1)- OPT(o).

The proof of Theorem 1 is in section 2.

The question then remains whether randomization can help. It is important to distinguish
between the type of adversary the randomized algorithm is working against. An oblivious
adversary must choose the request sequence without knowledge of the algorithm’s random
choices [BBKTW]. An adaptive on-line adversary can see the algorithm’s random choices in
chosing the request sequence, but must also service the requests on-line [BBKTW]. We show a
randomized strategy S PLIT and prove the following theorem:

Theorem 2: Against an oblivious adversary, for all o,
E[SPLIT(c)]<31/16-OPT(0)

The proof for Theorem 2 is in section 3.

Both theorems are obtained by examining a pair of items and analyzing how much the on-line
algorithm spends on that pair compared to how much O PT spends on the pair. For the proof
of Theorem 1, the costs are distributed among the pairs such that when we sum the cost for
each pair, we obtain exactly the cost of MTF in servicing o.

There is no hope of beating a competitive ratio of 2L /(L 4 1) against an adaptive adversary
because because it has been shown that there is a lower bound of 2L/(L+ 1) on the competitive
ratio of any algorithm against an adaptive on-line adversary [RW2].

There is a lower bound of 9/8 for any algorithm against an oblivious adversary [KR]. This is
achieved on a list of length two, where the adversary feeds the algorithm a random sequence of
requests of 1’s and 2’s. The cost of any on-line algorithm is then 3/2 per request. The analysis
for the off-line algorithm involves a Markov chain whose states consist of the configuration of
the list and some number of requests into the future. The transitions are then dictated by the
next request in the sequence. This technique has also been used by Reingold and Westbrook
and independently by Chrobak and Larmore on lists of length three to obtain a lower bound of
about 1.27 [CL], [RW2]. The difficulty in extending this technique to longer lists is that there
is no known simple rule for the optimal off-line algorithm.

Subsequent to the work presented here, Reingold and Westbrook have devised a randomized
on-line algorithm that achieves 1.75 [RW2]. The technique of analyzing pairs of items was also
applied to the memoryless algorithm that moves the requested item to the front of the list
with probability 1/2 to yield a competitive ratio of 2 — (log L/ L) for lists of length L [IRWY].
Although this bound approaches 2 as the size of the list grows, it is significant because it is a
memoryless algorithm that beats the lower bound against adaptive on-line adversaries for a list

of fixed length.

0.2. Move To Front

Proof of Theorem 1: Fix a sequence 0 = (r{,72,...,7,). We examine the relative position
of two items, 7, and j, in the list. Their relative position changes only on a request to i or j.
Notice that if we were to run MTF on a list with just the two items ¢ and j using o as a request

0.1. Introduction

In this paper, we examine the problem of updating a list of items so that requests to access
items can be performed efficiently. The problem is formulated as follows:

We are given a list of L items. We receive as input a sequence of requests. Fach request
is the name of an item. The cost of servicing a request is one plus the number of items that
precede it in the list. After an item is accessed, it can be moved anywhere closer to the front
of the list at no extra cost. The idea is to model a linked list storing unordered data, where in
order to access an item, one has to begin at the front and search linearly through the list until
the item is found. In searching for the item, one can maintain a pointer to the place where the
item is to be placed once found. Then the item can be moved to the new spot in constant time.
We also allow paid exchanges, where any item may also be moved anywhere in the list, but the
cost of moving the item is the distance it is moved.

An algorithm is on-line if it decides where to place each requested item without knowledge
of future requests. An algorithm is off-line if it can see the entire request sequence before
servicing the requests. The best known optimal off-line algorithm uses O(m2”L!) steps where
L is the number of items and m is the number of requests [RW]. We call the optimal off-line
algorithm O PT.

We are interested in evaluating the worst case over all request sequences, o, of the ratio of
the algorithm’s cost on o to OPT’s cost on o. Formally, let A(c) be the cost of algorithm A
on o and OPT(o) the cost of OPT on o. We say that A is a-competitive if there exists a /3
such that for all o,

A(o) <a-OPT(0)+ .

Notice that the constant 5 can depend on the number of items but not on the request sequence.
« is an upper bound on the competitive ratio for algorithm A. The competitive ratio was first
introduced by Sleator and Tarjan in analyzing on-line algorithms for the list update problem
[ST].

Sleator and Tarjan give a deterministic algorithm, MTF (Move-to-Front) which simply
moves each requested item to the front of the list after it is requested. Let MTF(co) be the
cost of MTF on request sequence o. They show that for all o,

MTF(c) <2-0PT(0).

More precisely, the analysis in [ST] shows that MT'F(o) < (2L —1)/L - OPT(0) on a list of
length L. Since then, it has been shown by [KR] that for any deterministic algorithm A for the
list update problem on a list of length L, there exists a ¢ such that

A(o)>2L/(L+1)-OPT(o).

To see this fact, suppose the adversary at each step requests the last item in A’s list. Thus
A is charged L per request. To service the sequence the adversary orders the list according
to decreasing frequency accessed. Ordering the list costs some fixed amount depending only
on L. Once the list is ordered, the list remains static. The adversary then incurs a cost of
at most (L 4 1)/2 per request on average. The lower bound indicates that M T F achieves the
asymptotically best competitive ratio. We show that M T F, in fact, achieves the best possible
ratio for every list length L.

Two Results on the List Update
Problem

Sandy Irani *
Computer Science Division
U.C. Berkeley
Berkeley, California 94720

TR-90-037
June 1992

Abstract

In this paper we give a randomized on-line algorithm for the list update problem. Sleator
and Tarjan show a deterministic algorithm, Move-to-Front, that achieves competitive
ratio of (2L — 1)/L for lists of length L. Karp an Raghavan show that no deterministic
algorithm can beat 2L /(L 4 1). We show that Move-to-Front in fact achieves an optimal
competitive ratio of 2L/(L 4+ 1). We show a randomized algorithm that achieves a
competitive ratio of (31L + 1)/16(L + 1) against an oblivious adversary. This is the
first randomized strategy whose competitive factor beats a constant less than 2.

*This research was supported by an IBM Graduate Fellowship. Part of this work was done at IBM T.J.
Watson Research Center, Yorktown Heights, NY.

