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Abstract

A generalizatiorof Allen’s interval-basedapproachto temporalreasoningis presented.
The notion of ‘conceptual neighborhood’ of qualitative relations between eveststialto the
presented approach. Relations between semi-intervals rather than intervals arehedeasas
units of knowledge. Semi-intervalscorrespondo temporalbeginningsor endingsof events.
We demonstrate the advantagéseasoningon the basisof semi-intervals: 1) semi-intervals
are rather natural entities both from a cognitive and from a computationalpoint of view;
2) coarse knowledge can be procesdieectly; computationakffort is saved; 3) incomplete
knowledge about events can be fully exploited; 4) incomplete infereraxson the basisof
complete knowledge can be used directly for further inference stepber®is no trade-offin
computationalstrengthfor the addedflexibility and efficiency; 6) for a natural subsetof
Allen’s algebra, global consistency can be guaranteed in polynomial Tim&nowledgeabout

relations between events can be represented much more compactly.

* research supported by Deutsche Forschungsgemeinschaft under grant Fr 806/1-1 and by Siemens AG



Freksa Temporal Reasoning Based on Semi-Intervals 2

TIME IS A MASK WORN BY SPACE
Robert Fulton [6]

1 Introduction

1.1 Background

In his paper on maintaining knowledge abtmmporalintervalsJamesAllen introducesa
temporal logic basedon intervals and their qualitative relationshipsin time [1]. Allen’s
approach isimple,transparentand easyto implement. The basicelementsof Allen’s theory
areintervalscorrespondindo events(ratherthan points correspondindo instants),qualitative
relations betweenthese intervals, and an algebrafor reasoning about relations between

intervals.

The appeal of Allen’sipproachhastriggereda variety of researchenterprisesvithin and
beyondtemporalreasoning. For example Allen and Hayes[2, 10] and Ladkin [14] develop
axiomatic frameworks fothe theory; Vilain, Kautz, van Beek[20, 21] and Nokel [19] study
the computational complexityf Allen’s reasoningschemeand of somevariants; Gisgen[9],
Mukerjeeand Joe [18], Freksa[7], and HernandeZ12] transferthe approachto the spatial
domain; Ligozat [16] generalizeghe interval-conceptfor reasoningwith chainsof events;
Deanand Boddy [4] and Dubois and Prade[5] focus on incompleteand fuzzy knowledge;

Ladkin [15] presentsa survey of interval-basedconstraintreasoningand a selectedbiblio-

graphy.
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1.2 A cognitive perspective

The present paper approaches the issueprésentindgime and temporalreasoningrom
a cognitive perspective: in additiom the logical constraintsconsideredoy Allen, we takeinto
account neighborhookklationshipsbetweentemporalrelations; this is motivatedprimarily by
physicalconstraintson perception. Theserelationshipgpermitto restrict Allen’s algebrain an
interestingway. Theresultis increasednferencingefficiency while full reasoningpower is
maintained. The inferencing behavior of the modified approach becooggstively plausible’
in severalrespects. A high degreeof regularity in Allen’'s knowledgebasebecomesvisible
through the additional relationships; this allows for a drastic compactionof the inferencing

knowledge base.

Allen [1] discusses the formal problem that arises wiggnesentingnstantaneousvents
by points on the real line. This problem is due to the fact that ldgmahsistenciesrisewhen
events are allowed to have zero duration. Besides the arguMlientprovidesagainstthe use
of pointson the real line, namelyphysicalandlogical argumentsthey are not appropriatefor
modelling eventsfrom a cognitive perspectiveeither. We know that eventshaveto havea

certain extent, both in time and in space, in order to be perceivable [11].

Hayes and Allen [10] distinguish between events, which allsayssomeduration,and
durationless abstract time pointsemporallocationsassociatedvith eventsor with transitions
between events. In the present paper we only consider ‘real’ events as in\\ig agaewith
Allen that they must not be represented by points on the reaMieealso agreethat qualitative
knowledgeabouttemporalaffairs canbe basedon events. However, we do not agreewith
Allen’s conclusion that intervals should be usexdhe representationgbrimitives for reasoning

about events.

We must carefully distinguish between an ontological representationof temporal

relations, i.e., the representation of a specific set of mutually comptatibperalrelations,and
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the representatiorof knowledgeabouttemporalrelations. If we know everythingaboutall

relations, the distinction is insignificant; but if wWlealwith incompleteknowledge this makes
a big difference. Typically, we do not have complete knowledge about temporal relations
between events to start with; but even if weafter only oneinferencestepwe may not have

complete knowledge about the inferred relations.

Allen’s interval-basedpproachfavorsthe representatiomf ontologicalstatesof affairs:
a completelyknown temporalrelation betweentwo eventsis expressedy a simple relation
between two intervals. The representation of incomplete knowleddiee other hand, creates
a cognitively awkwardsituation: the lesswe know, the more complexthe representatiorof
what we know becomes. What is knowmapresentedh termsof disjunctionsof what could

bethe case.

From a cognitive poindf view, we preferto representvhatis known moredirectly and
in such a way that less knowledge correspondsto a simpler representationthan more
knowledge doesFor this reasonandfor reasonsstatedin the following sectionswe will use
‘beginnings’ and ‘endings’ ointervalsasrepresentationgbrimitives. We may only know the
temporal beginning or ending ah event. For example we may only haveinformationabout
the birth or the death of a person, but not bathyve may know that a certaineventY did not
startbeforea given eventX, butwe do notknow if X andY startedsimultaneouslyor if Y
started after X. In many casesuseful inferencescan be drawn from such incomplete

knowledge, in some cases even without any loss of information.

2 Temporal knowledge about the physical world

An event is something that happens. Beginnofgsventsalwaystake placebeforetheir
endings. If we let the beginningsand endingsof two eventshave three possiblequalitative

relations: <, =, >, then tweventswhich startin a beginningandterminatein an endinghave
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thirteenpossiblequalitativerelations[3]. Thesecorrespondo the relationsthat two ordered
pairs of real numbers(the boundariesof real-valuedntervals)canhaveunderthe relations<,

= >,

Note that we do not assume th&ginningsand endingsof eventscorrespondo the end
points of real-valued intervals [2]. Rather, beginnings and endiegnsideredrecursively)
as events themselves. Thus, at one level of consideration beginnings and endings wilevents
appearas atoms(conceptualpoints) while at a higher resolutionthey will appearas grains

which themselves start in beginnings and terminate in endings.

Allen denotes the thirteen relations between éwentswith before( <) ,after (>) ,during
(d) ,contains( di ) pverlaps( 0) ,overlapped-by( oi ) meets( m , met-by( m ) ,starts( s) ,
started-by( si ) , finishes(f) , finished-by(f i), andequals( =) . Figure 1 asstiwdidseen
relationsby meansof a four-coordinatetable with the correspondingrelations betweenthe
beginningsa, A and the endings, Q of thetwo events. The figure showshow the relations
may be distinguishedby consideringonly a subsetof relations between beginningsand
endings. For example, to distinguish the relatiefore( <) from the twelve otheelationsit is

sufficient to note thad < A and todistinguishthe relationstarts ( s) from the otherrelationsit
is sufficientto note that a = A and w< Q. In no case,more than two relations between
beginnings and endings of events masknown for uniquely identifying the relation between

the corresponding events.
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Figure 1: The thirteen qualitative relations between two events characterized by relations
between their beginnings A and their endings, Q.

The reason that such incomplete information aleeentssufficesfor fully characterizing
their qualitative relations is due to two domain-inherent conditions: 1peti@ningsof events
take place before their endings (a < w, A < Q) and 2) the relations<, =, > are transitive.
Without theseconditions,34 = 81 relationsbetweenthe four beginningsand endingsof two

events would be possible.
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Allen usesthe thirteenpossiblerelationsbetweentwo eventsasa basisfor a theoretical
framework for temporalreasoning. In additionto Allen’s theory we will take into account
considerationgbouthow cognitive systemsestablishrelationsfrom observingthe real world.
In observing the reakorld, therewill be situationsin which only partial knowledgeaboutthe
domainis availableand in which uncertainty exists as to which of the mutually exclusive

abstract relations holds.

2.1 Incomplete knowledge about events

In many temporalreasoningsituationswe do not haveto know everything about the
involved eventsin orderto infer whatwe wantto know. For example,in orderto determine
that Newton livedeforeEinstein it is sufficient to know thadewton’s deathtook placebefore
Einstein’shirth; it doesnot help if in addition we know when Newton was born or when
Einsteindied. Actually, we can derive complete qualitative knowledge about the relations
between the birth and death dates involved, dileetdomain-inherentonditionsmentionedn

the previous section.

Of coursewe may encountesituationsin which the availableknowledgeis insufficient
for determining the complete answera query; however,a partial answermay be betterthan
no answer at all. For examplee may wantto know if two artistsmay havebeeninfluenced
by each other. All we know is thatWas born beforeY’s deathandthat X diedafterY. We
do not knowwho was bornfirst. From this informationwe canconcludethat Y lived during
X' lifetime or he startedX’ lifetime or his life overlappedwith X’ life. Although we can not
infer who was the older artist or whievas the period whenthey both lived, at leastwe know

that there was a common period.

With Allen’s representationt is possibleto expressthe situation of the examplegiven
above as follows: “X was born before Y’s death” can be expressed lged beforeY or X’

life meetsY’s life or X' life overlapsY’s life or X’ life is finished byy’s life or X’ life contains
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Y’s life or X' life is startedby Y’s life or X’ life equalsY’s life or X’ life startsY’s life or X
lived during Y’s life or X finishesY’s life or X’ life is overlappedby Y’s life”, and “X died
after Y” can be expressed as “X’ lif@ntainsY’s life or X’ life is startedby Y’s life or X’ life
is overlapped byr’s life or X’ life is started byY’s life or X lived after Y”. The inferencestep
then consists of forming theonjunctionof the two setsof disjunctions: “X’ life containsY’s
life or X’ life is startedby Y’s life or X’ life is overlappedby Y’s life” which is equivalentto

the conclusion derived above.

2.2 Neighborhoods vs. disjunctions

As suggestedn the introduction, it doesnot appearcognitively adequateo represent
coarseknowledgein termsof disjunctionsof finely grainedalternativepropositions,although
this representation may be logically corre€narseknowledgeis a specialform of incomplete
knowledge. The missing knowledge corresponds to fine distinctions ateciot made. The
alternatives allie in the sameballpark of a conceptualizationthey are ‘conceptualneighbors’.

For use in future parts of this paper, we make the following definitions:

Definition 1: Two relationsbetweenpairsof eventsare (conceptual)neighbors,if they
can be directly transformedinto one anotherby continuously deforming

(i.e. shortening, lengthening, moving) the events (in a topological senge).

Examples: The relationsbefore (<) and meets( n) are conceptualneighbors,since
they can be transformed into oarotherdirectly by lengtheningone of the

events.

The relationsbefore (<) and overlaps( 0) are not conceptualneighbors,
sincea transformatiorby meansof continuousdeformationonly can take

place indirectly (via the relatiomeetq ) ) .
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Definition 2: A setof relationsbetweenpairs of eventsforms a (conceptual)neighbor-
hood if its elementsare path-connectedhrough ‘conceptual neighbor’

relations.

Examples: Therelationsbefore( <), meets( m , andoverlaps( o) form a conceptual
neighborhood since they can transformednto one anotherby a chainof
direct continuous deformationsof the associatedevents and all three

relations are contained in the neighborhood.

The relations before (<) and overlaps (0) do not form a conceptual

neighborhood.

Note: For reasons of consistency, the two degenerate cases of a single relation and

of all thirteen relations are included in this definition.

Definition 3:  Incompleteknowledgeabout relationsis called coarse knowledgeif the
correspondingdisjunction of at least two relations forms a conceptual

neighborhood.

Examples: Thedisjunctionbefore or meetsor overlaps (< m 0) representsoarse
knowledge about the relation between two evettig;disjunctionbeforeor

overlaps (< 0) does not represent coarse knowledge.

Note: The case of a single relation is excluded here, sincedsecorrespondso

complete knowledge.

If temporal relations are perceivedincompletely, the resulting knowledgeis typically
coarseknowledge. A perceptionchannelwill not generatethe set of alternativesX m Y or
X oY orX oiY([9, Figure3]), for example. The reasonthat thesealternativesare not

generatedvithout the intermediaterelationsis thatthe last two alternativesof this disjunction
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have drastically differerierceptuabppearances they vary in severalaspects.If the system
cannot distinguish alternatives differing in several aspects, then it adistioguishalternatives
differing only in a subsetof theseaspects;thus, it will considerthe neighboringintermediate
alternativesaswell. As we will show in chapter4, temporalreasoningon the basisof the
thirteen interval relationwill eitheryield completeknowledgeor coarseknowledge,but never

scattered disjunctions.

Incomplete knowledge consisting of non-neighboringalternativesmay be available,
however, from more abstrakhowledgesources. For example a story understandingystem
may haveknowledgeaboutthe qualitativerelation of two eventsX andY but lack knowledge
abouttheir identity. Thus, two non-neighboringalternativesX < Y and X > Y cannotbe
distinguishedwhile neighboringalternativescan. In this case,two distinct (mental)images
would correspond to the two alternatives, rather than a single éosrge. In suchsituations,
it appearscognitively justified’ to usethe abstractconceptof a disjunctionfor the representa-

tion of alternatives.

Thus, we make a distinction between knowledge incompletevigsh doesnot permita
fine resolution of closely relatedvariantswithin a neighborhood(lack of knowledge about
details)andincompletenesgvhich doesnot permit the selectionof the appropriatealternative
(lack of knowledgeaboutessentials).In the former situation,we wantto expressknowledge
directly on the granularity level on which it is available, i.e., we represent neighborha®ds.
side-effect, we will have to represent oklyowledgewhich is positively available; we do not
have to carry along the burden of the possibilitiestrminopendueto lack of more detailed
knowledge. In the latter situation,knowledgerepresentatioin terms of disjunctionsmay be
appropriate.However, by restructuringthe knowledge,it may be possibleto find representa-

tions in terms of neighborhoods, for such situations as well.



Freksa Temporal Reasoning Based on Semi-Intervals 11

3 Semi-intervals and conceptual neighborhoods

According to the considerationgpresentedn the previous sections,we will represent
knowledge about time in terms of relationships between beginnings and eoidegsnts. We
call beginningsand endingsof events'semi-intervals’. (Semi-intervalsare equivalentto what
Allen and Hayes call ‘nests’ [2]). In relating events, an ending of an event will be ‘eajled
to the beginningof anothereventif the former eventmeetsthe latter. In orderto supportthe
following discussionmnemonically,we will introduce special labels for the relationships

between semi-intervals. These labels will be used in addition to the labels introduced by Allen.

We will say X isolder( ol ) than Y when the beginning of Yessthanthe beginningof
Y. Xishead to head hh) with Y when their beginnings are equal and Younger( yo) than
Y when the beginning of X is greater than the beginoiny. Accordingly,we will say, X is
survived by sbh) Y, Xistail to tail (tt) with, or X survives( sv)Y whenthe endingof X
is less than, equal, or greater than the ending oé3fjectively. We will say X precedeq pr)
Y, when the ending of X is not greater than the beginning ofv¥ will say, X succeedg sd)
Y, whenthe beginningof X is not less than the ending of Y, otherwise(i.e., when the
intersection of X and Y is not empty) X icantemporary ct) of Y. If X doesot precedeY,
we will say X isborn before death dfbd) Y and if X doegsot succeedy, we will say X died

after birth of( db) Y. These relations are shown in Figure 2 (compare Allen [1983], Figure 2).

Relation L abel Inverse Illustration
X is olderthan Y ol XXX?7?27?7?
Y is youngerthan X yo YY
X is head to headvith Y hh XXX?7?
hh YYYY
X survivesY SV ???72?7XXX
Y is survived byX sb YY
X is tail to tail with Y tt P?XXX
tt YYYY
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X precedes! pr XXX?

Y succeedX sd YYY

X is acontemporaryof Y ct PXXX???
ct ?2?2?2YYY?

X is born before death of bd XXX??27?7?7?

Y died after birth ofX db ??2?2??2YYY

Figure2: Elevensemi-intervalrelationships. Questionmarks (?) in the pictorial illustration
stand for either the symbol denoting the event depicted in the same lmeY{Xor for a blank.
The numberof questionmarksreflectsthe numberof qualitatively alternativeimplementations
of the given relation.

Combining constraintsfrom abovewe obtain the relationsolder & survivedby ( ob) ,
younger & surviveg ys) Jolder contemporary( oc) ,surviving contemporary( sc) survived-

by contemporary bc) , andyounger contemporarfyyc) .

3.1 Uncertainty about temporal relations

Allen’s compositiontable [1, Figure 4] establishesthe set of theoretically possible
relations between two intervals which both hawkaawn qualitativerelationto a third interval.
The table does not represent knowled@eutthe effectsof small variationsor degradationsn
the input knowledge, specifically, lack of knowledge about certain details. vV@rekionsmay
be presentin the knowledgeabout the real world due to perceptualuncertainty and/or the
dynamics of thelomain. For example we may not know if eventX takesplacebeforeevent
Y, if X meetsY, or if X overlapsY, but we can distinguishthesethree options from the

remaining ten alternatives.

Uncertaintyasto which temporalrelation holds betweentwo eventsdoesnot typically

mean that any of the thirteen relatiare consideredossibleby a perceivingcognitive system
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— otherwise thesystemis not perceiving. Rather,uncertaintymay exist betweenfew options.
Furthermore perceptualuncertaintiesusually do not causelarge jumps in the conclusions;
rather, conceptuallyrelated options are obtained. In orderto model such lateral knowledge
dependenciesye structurethe temporalrelationsbetweeneventsaccordingto a conceptual
neighborhoodelation. This neighborhoodelationis determinedby our understandingas to

which uncertainties in perception are physically feasible and/or cognitively plausible.

3.2 Conceptual neighborhoods among temporal relations
natura non facit saltus

Linnaeus

Accordingto our definition of conceptualneighborhoodn section2.2, we arrangethe
thirteen mutually exclusive relations between events in such a way that conceptually
neighboringrelationsbecomeneighborsin our depiction. Figure 3 showsthis arrangement.
The two eventsare depictedby a dumbbell-shapedtine anda rectangle respectively; time is
assumed to proceed from left to right. We obtain two dimensions of neighbortheoctrtical
dimensioncorrespondgo the relative times at which the eventstake place; the horizontal

dimension corresponds to the relative duration of the events.
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Figure 3: Left: Temporal relations between two events arraragedrdingto their conceptual
neighborhood. Right: The corresponding labels arranged accordingly.

Dependingon the typesof deformationof eventsandtheir relations,we obtain different
neighborhood structures. If we fix three of the feami-intervalsof two eventsandallow the
fourth to be movedywe obtainthe A-neighborrelation (Figure4). If we leavethe durationof
events fixed and allow complete events to be moved in tre@btainthe B-neighborrelation.
If we leave the ‘temporal location’ of an event fixgdflected,for example by the midpoint of
the correspondingnterval) and allow the duration of the eventsto vary, we obtain the C-

neighborrelation.
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A-neighbors B-neighbors C-neighbors

Figure 4: Differing deformations of events induce different neighborhood structures.

Which of theseoptions is most appropriate,may dependon the specific domain of
reasoning. Unless otherwise noted, the statementsin this paper are independentof the
particular choice. We therefore depict the most demandingsituation with the most liberal

interpretation of the neighborhood relation where all three neighbor relations are permitted.

For easy visual reference to the thirteen temporal relations betweentervalsandtheir
neighborhoodelationsas depictedin Figure 3, we will useicons symbolizing the neighbor-
hood structureas shownin Figure5. The black dots indicate which of the thirteenrelations

within the structure is being referred to. Below the icons the corresponding labels are indicated

SARESERAKERR:

< m o fi di si = s d oi

Figure 5: The thirteen qualitative relations between intervals depicted by icons.
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I am putting forward the thesisherethatif a cognitive systemis uncertainas to which
relation betweentwo eventsholds, uncertaintycan be expectedparticularly betweenneigh-
boring concepts. The introduction of movementinto our static domain of relationsis not
intendedto makea complexsituationevenmoredifficult; ratherl suggestthat we easily can
discoverneighboringconceptshy imagining gradualchangesn the representedavorld and by
observing the corresponding statansitionsin the conceptualvorld. This will turn out to be
very helpful for adequately representingstatic situations, particularly for representing

uncertainty.

4 Neighborhood-based reasoning

In this chapter,we will first revisit temporal reasoningon the basis of the thirteen
relations used by AllenAllen’s compositiontableis discussedn the contextof the neighbor-
hood-based representation. This leads to some observations regardingctioeeof temporal
knowledge. On the basisof theseobservationsconceptualneighborhoods exploited more

radically. The resulting approach is presented in the remainder of the chapter.

In order to visualize the use of thenceptuaheighborhoodelations,we presentAllen’s
composition table iran arrangementvhich preservesomeof the neighborhoodelations: the
rows and columnsare arrangedin sucha way that neighboringrows and columns always
correspondo neighboringpreconditionsn the sensedefined above. The two neighborhood
dimensions span a 4-dimensional (2*2) composition structure. Since it is not easy to depict a
dimensional structure on papene depict a linearized version thfe structure: in Figure 6 we

arrange the rows and columns accordmghe following sequence:<, m o, fi ,di,si,=,

1 For the discovery of the regularities and the development of the reasoning system pregainiethdwas im-
plemented in HyperCard which aided in representing and manipulating the 4-dimensional neighborhood structure.
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s, d, f, oi, m, >. (Thisis one of two possible ways ofdistilogsbachthat eachis

listed exactly once and that all neighbors in the list correspond to neighbors in Figure 3.)

In addition,in the new compositiontable temporalrelationsare presentedn canonical
form by iconsasdevelopedn the previoussection(insteadof arbitrarily arrangedmnemonic
labels). Thisis donefor severalreasons:1) A canonicalarrangementf relationsmakesthe
regularity of the internal structuresmore visible; 2) the conceptualneighborhoodrelations
between temporal relations are directly reflected in the icon struc®)réte iconsallow for the
direct representation of coarse relations (rather than as disjunctions of fine relatimhg);the
representationsan be useddirectly for performingsimple operations. Coarserelations are

represented by superposition of the corresponding icons from Figure 5. For example,

7

corresponds to the disjunction of the relatishsm o, s, d, and

9

correspondgo the disjunctionof all thirteenrelationswhich meansthat no constrainton the

relationships between the events is given.
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Looking at the compositionstructuredepictedin Figure 6, we can make a numberof
observations:

1) only a fraction of the inferences that can be drawn from the compasibt@are given in
termsof uniquerelationsbetweenintervals; mostof the conclusionsappearin terms of
disjunctions of alternative relations;

2) the setsof alternativerelationsin the entriesof Allen’s compositiontable always form
conceptual neighborhoods;

3) in many cases, the transition to neighbommiriesleadsto sub-neighborhoodsr super-
neighborhoods rather than to completely different relations;

4) the transition to neighboring entries never causes to a jump to non-neighboring relations;

5) only a smallfraction of combinatoriallypossibleneighborhoodsactually appearsn the
table;

6) there is a lot of symmetry which may be exploited for temporal reasoning;

7) the observations anelid not only with respecto the presentedinearizedneighborhood

table; they hold for the complete 4-dimensional structure.

Observationd) and 2) shouldnot be completelysurprising,sincethe structureexhibits
gradual transitions from one gualitative state to another; onlymiceo-) featureis changedat
a time; these microfeature transitions correspond tagighborhoodelationsin the structure.
Observation 3) is veryseful sinceit allows for reasoningunderuncertainty. Observationg})
and 5) provoke the questionof the cognitive significance of the neighborhoods. If the
neighborhoodsappearto correspondto cognitive relevantconcepts,may be the reasoning
shouldbe donebasedon theseneighborhoodsvhich correspondo classeof relationsrather

than on the individual relations themselves.
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Note thatthe neighborhoodshat arefound in the table eitherare containedin our list of
conceptsderived from relating semi-intervals(Figure 2) or are obtainedby conjoining such
concepts (except for the non-informative ertryorresponding tthe disjunctionof all thirteen
relations betweentwo intervals). Figure 7 associateshe icons and their corresponding
neighborhoodsvith their mnemonicstheir associatedabels,the correspondindist of Allen-
relationsandthe correspondingonstraintsbetweenbeginningsand endingsof the respective
events. With help fronfrigure 7 we canreadthe compositiontableasfollows: If X meetsY
and Y isafter Z then XsurvivesZ; or: If X overlapsY andY is overlappedby Z thenX is a

contemporanof Z, etc.
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| CON LABEL NMNEMONI C ALLEN

’ < mo fi di si

' =sdf oi nm"Ne
& ol older <mo fi di a<A
$ hh head to head with si =s a=A
i;' yo younger df o m > a>A
é sb survived by <mosd w<Q
? tt tail to tail with fi =f w=Q
# SV survives di si oi m %>Q
(zi pr precedes <m w<A
+ bd born before death of < mo fi _di Sd( <Q

=s df oi
* ct contemporary of ]? foli di st =3.h w>A
* db  died after birth of S
oh m >

(J') sd succeeds m > a=Q
4 ob older & survived by <mo a<A w<Q
¢ ocC older contemporary of o fi di a<A w>A
L# sc surviving contemporary of di si oi a<Q,w>Q
¢ bc survived by contemporaryof o0 s d W>A, w<Q
¢) yc younger contemporary of d f oi a>A,a<Q
# ys younger & survives oi m > a>A w>Q

Figure 7: Neighborhoods, their icons, labels, mnemonics, correspondences, and constraints.
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4.1 Coarse reasoning based on neighborhoods

We haveseenthat the inferenceghat canbe drawn from the compositiontable may be
coarser than the initial conditions. We may have several reasons for stating theondiibns
for temporal inferences in coarser terms:

1) uncertaintymay exist as to which initial condition in terms of the thirteen mutually
exclusive relations holds;
2) the initial conditionamay be statedin coarsertermscorrespondingo knowledgerelating

beginnings and/or endings of events (compare examples in section 2.1);

3) we wantto usethe conclusiondrom one inferencestep as initial conditionsfor further
inference steps.
Coarserknowledgecan always be expressedn terms of disjunctionsof finer knowledge,
inferences can be drawn on the basis of the finer knowledge, and conclusionsleandatby
forming conjunctionsof theseinferenceson a caseby casebasis. However,this approachis
comparableto deriving general algebraic relationshipsfrom specific numerical instances.
Rather tharsolving problemson the finest level of resolutionwe would like to solvethemon

the coarsest possible level.

In order to do this, we use astial conditionsneighborhood®f relationscorresponding
to disjunctionsof fine relationswhich canbe found as conclusionsin the compositiontable.
We selectthe neighborhoodsn sucha way that finer initial conditionscan be expressedn
terms of conjunctionsof coarserinitial conditions,if necessary. This step correspondgo
aggregatingheighboringAllen-relations. Initially, we do not aggregate<, m m , >, since
theserelationsdo not have enoughneighborsto form conjunctionsfor refinement. The ten
relationsand neighborhoodslepictedin Figure 8 were selected. An interestingquestionis,
how much knowledgeaboutthe correspondingemporaldomain can be recoveredfrom the

coarse representation (compare ‘coarse coding’ in distributed representations, e.g.[13]).
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< m oc hh yc bc tt sc m >

Figure 8: Ten relations and neighborhoods used as initial conditions for coarse reasoning.

We now form a compositiontable whose cell valuesconsistof the disjunctionsof all com-
binationsof compositionsof the constituentrelationsof the initial neighborhoodgFigure 9).
Not surprisingly, we obtain similar patterns as in the case of fine reasoning. Dudsitt that
we did not have any abrupt jumps betweenneighboring patterns,we only find connected
neighborhoodsagain; due to the fact that in many casesneighboring patternswere sub-

neighborhoodsr super-neighborhoodsf each other, we do not get many new patterns.
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The aggregatedable shownin Figure9 permitsus to do two things: coarsereasoning
andfine reasoning. For coarsereasoningwe simply look up the neighborhoodof possible
relations in the table. For example, if we know that Ari®lder contemporaryof (oc) Y and
Y is ayounger contemporary ¢fyc) Z, we can infedhat X is a contemporaryof (ct) Z or if
insteadY is headto headwith ( hh) Z thenX is alsoan older contemporaryof (oc) Z (see
Figure 10). So, theonclusionsdo not necessarilypecomecoarserwhenthe initial conditions

become coarser.

KocYvye Z-——>Rctl X oc Y hh Z -—> K oc Z
beo — | | bew — &

Figure 10: Two instances of the coarse composition relation (denotéd by

4.2 Fine reasoning based on neighborhoods

For fine reasoningwe form the conjunctionsof the inferenceswe can draw by coarse
reasoning. By algebraic consideratioms obtainat leastall fine relationswhich are obtained
by fine reasoning. For example (see Figure 11), the fine relatiort Xorrespondgo the two
coarserelationsX yc Y andX t t Y; thefine relationY o Z corresponddo the two coarse
relationsY oc Z andY bc Z. So,if X f Y andY o Z hold, then the correspondingcoarse
relationsalso hold and so do the conclusionswvhich we candraw from the interactionsof the
coarse relations. Thesgeractionsyield the neighborhood®, bd, db, bc; theintersection

of these neighborhoodshs .

The result is identical to the result we get by fine reasoning. InWaatptainthe correct
optimal result in all cases. This is not due to the algebraicpropertiesof the operations

performed but due to the independence of constraints bethearighborhoodshat are being
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combined. For examplggc corresponds tthe constraintsx > A, a <Q andt t corresponds
to the independentconstraint w=Q which combined yield the constraints a > A and
w = Q, which are the conditions for the relation f (compareFigure 1). The constraint

a < Q follows fromw = Q and the domain-inherent constraing w.

AfY ol
¢®¢
Ko(yea tt) ¥ (bcaoc) Z

(¢¢ A

(KycYbcZ) a (KycYocZ) A (KttYbcZ) A (KttYocZ)

Gt od 1 dob « dody

bd A ? A bc A db
lb A 4] A ér] A (r
bc

i

Figure 11: Elaborate fine reasoning by intersecting results from coarse reasoning.

In the samemannerit is possibleto combinefine knowledge(i.e., completeknowledge
aboutthe relation betweentwo events)and coarseknowledge (here: knowledge about the

relation between semi-intervals), in this inference scheme.
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5 Inferential power and computational complexity

In this chapter,we first comparethe inferential power of neighborhood-basetémporal
reasoningwith that of Allen’s approachand proposecriteria for selectingappropriatecompo-
sition tables. Then we discussthe subalgebraor neighborhood-baserkasoningand apply

complexity-theoretical results to this subalgebra.

5.1 Inferential power of neighborhood-based reasoning

If we consider the neighborhood-based compositabie depictedin Figure 6, we easily
can seethat it hasall the inferencingcapabilitiesof Allen’s original table: the represented
knowledgein both tablesis identical; only the arrangementliffers. The new arrangement
togetherwith the monotonicity propertiesdescribedin chapter4 yields additional reasoning
capabilities: the table can be used for interpolation betweenknown conclusionsand for

predicting conclusions in the case of uncertain initial conditions.

What happenswith the inferential power when we condensethe compositiontable for
coarse reasoning (Figure 9)? First of all, all inferences that can be drawAllenitk table still
can be drawn and yield identical resultdowever,inferencesbasedon the fine relationsused
by Allen can becomecomputationallymore expensive: in 81 of 169 possibleinferences,a

simple table look-up is replaced by a conjunction of four table look-ups.

Reasoningwith the condensedable, however,is cheaperwhen coarserknowledgeis
involved. The computational pay-off is best when the processed knowledge grains agee in
and shapewith the neighborhoodsepresentedn the compositiontable. This minimizesthe
number of conclusions to be computed and combined by disjunetnaiigrconjunctions. For
example for the centralpart of the condensedompositiontable (granularity 3), an inference
from two neighborhoodtriplets involves a single table look-up instead of forming the

disjunction of nine individual look-ups, as with Allen’s table.
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Thus, the condensedable shifts computationaleffort and yields additionalinferencing
capabilities. For processingfine knowledge,Allen’'s compositiontable is advantageoudpor
processingcoarserknowledge, the condensedtable works more efficiently. In general,
knowledgeprocessingoecomesmore efficient when it can be shifted to a coarserlevel of
processing: one coarseinferencecan do the work of nine fine inferences,under favorable

conditions.

Therearetwo ways of combiningtemporalinferences: 1) propagatinginferred knowl-
edge along amferencechainby the compositionoperation; hereknowledgetendsto become
coarser— by a factor of 2.4 per operation,in the average; 2) combining knowledge from
multiple evidence sources by forming the logical conjunctioereknowledgetendsto become
finer by the sameorderof magnitude— precisevaluesdependon the specific datainvolved.
Dependingon the granularity of the inference table used, the sequenceof propagating
knowledge from a single source or combining knowledge from mukiplecescan be adapted

in order to optimize the knowledge granularity for the given table.

Dependingon the aspectgo be optimizedin a given application,we can conceiveof a
variety of different inference tables from a compact table requiring disjunctions and/or
conjunctions of inferences to an elaborate table representing the closédetationsgenerated
by the compositionof the 13 fine relations. This table consistsof 29*29 entries(the 13 fine
relationsplus the relationsshownin Figure 7, exceptpr andsd, which do not occurin the
inferencetablesdiscussedso far). The resultingtable is closed under neighborhood-based
reasoningand does not require disjoining or conjoining neighborhoodsfor knowledge

propagation. The table is shown in Figure 12.

Next page: Figure 12: 29 convAxneighborrelations forming a closed set under composition.
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As the discussion has shown, efficiency can be improved by ‘tuningiférencetables,
but this is not a big issue — at least not in the simple domain of temporal reasonifag;oref
improvements unlikely to exceed3, for typical applications. A more substantialresult con-
cernsthe complexity of computingthe closurefor neighborhood-baseaasoning. This topic

will be addressed in the following section.

5.2 Neighborhoods and convex relations

Allen’s polynomial time algorithm for temporal reasoningnever infers invalid conse-
guencedrom a setof assertionshut it doesnot guaranteethat all the inferencesthat follow
from the assertionsre generated; thus the algorithm is incomplete. Vilain and Kautz have
shown that computing the closure in the full interval algebaa iP-completeproblem(which

only can be solved in exponential time) [20, 21].

Vilain, Kautz, and van Beek [21] and N6K&B] discussa subsetof Allen’s full interval
algebrawhich hasa tractableclosurealgorithm, i.e., closurecan be computedin polynomial
time. This subsetis defined by a property of semi-intervalrelationswhich Vilain et al. call
‘continuousendpointuncertainty’. Continuousendpointuncertaintyis a convexity property
and meansthat for any two interval end points belongingto a commonsemi-intervalrelation,

intermediate end points belong to the relation as well.

Vilain et al. define continuousendpointuncertaintyfor the relation betweentime points.
They apply this definition to the relation betweenintervalsby consideringindividual relations
betweenthe beginningsand endingsof two intervals. By this method,the continuousuncer-
tainty propertygenerateshe setof ‘convex interval relations’[19] on the structuredefinedby
the A-neighborrelationin section3.2 (Figure4). 808 of the 8191 possibleinterval relations
form A-neighborhoodgi.e. neighborhoodsunder the A-neighbor structure). 82 of these
neighborhoodsre convexrelationsin this structureand form the tractablealgebradiscussed

above. The closedsetof 29 neighborhoodgeneratedy the 13 fine interval relationsunder
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composition, in turn, forms a subalgebratwt algebraof convexrelations; thusit is tractable

as well.

When continuousendpoint uncertaintyis applied simultaneouslyto pairs of relations
between beginnings and endings of two intervals, different neighborhood structures alve:
obtain the B- and C-neighbor relations depictedin Figure 4. Additional relations become
neighbors(o =, oi =, d =, anddi =); they were only indirect neighborsunderthe A-
neighborrelation (via a chain of two direct neighbor links). The pairs of relatorsf =, s i

=, fi = are not neighbors in tH& andC-neighborrelations.

There are 769 B-neighborhoodsand 529 C-neighborhoods 1255 neighborhoodsare
obtained by combining thiareetypesof neighborrelations. Someof the 29 convexrelations
forming a closedset under compositionare not B- or C-neighbors(hh andtt). For the
disjunction of theA-, B-,andC-neighborrelations, thestrict convexity propertydisappearsor
the closedsetof 29 neighborhoods:for example the conceptualneighborhoodo s d is not

convex without the relation under the disjunction &-, B-andC-neighborrelations.

Nevertheless, thB- andC-neighbormrelationsand their combinationwith the A-neighbor
relationare usefulfor neighborhood-baserkasoning: recall that the monotonicity properties
describedn chapter4 hold for all threeneighborhoodelationsandthus may be usedfor the

interpretation of the conclusions drawn on the basis of the neighborhood subalgebra.

In summary,real-world constraintson temporaleventsand their interrelationshipshave
allowed us to condensetemporal knowledge by removing redundancies; as a side-effect,
temporal reasoning becomes more efficiefte structureobtainedin this processurnsout to
be aninterestingsubsetof the full interval algebra: 1) it is a natural subsetgeneratecby the
compositionoperationas the closureof the basictemporalrelations; 2) it correspondgo an

importantclassof physicalsituations; and3) it is computationallytractable. In the following
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chapter, we will discuss additional regularities of temporal relationships wiagamplify our

understanding of temporal structures.

6 Compacting the knowledge base

The smoothnesof the transitions between neighborhoodsallowed us to aggregate
temporalrelationsfor neighborhood-basegtasoning. By aggregatingelations,the composi-
tion table shrank from 13*13 = 169 to 10*10 = 100 entries (FiguréA8)we will showin the

presentchapter,we areableto further simplify the knowledgebaseunderlying the reasoning

scheme.

In the examplagiven in section4.2 we showedhow fine knowledgecan be obtainedby
combiningintersectingpiecesof coarseknowledge. The final conclusionwe obtainedin the
inference process was already preseritill detailin one of the four inferencesve combined,
namelyin the inferencedrawnfrom X tt Y andY bc Z. Do we alwayshaveto form the
conjunctionof all possibleinferencesfrom the intersectinginitial neighborhoodsor can we

systematically simplify the procedure?

Inspection of thenferenceshasedon the condensedompositiontable (Figure 9) shows
thatin no casemorethantwo sub-inferencesontributetowardsthe solution of the full infe-
rence. In fact, only 54 of thE00 entriesof the tableyield useful constraintdor the reasoning

procedure. These entries are depicted in Figure 13.



TR EXY:
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6.1 Symmetry and redundancy

There is quite dit of symmetryin the neighborhood-basecbmpositiontable which can
be exploitedfor matrix simplification. Most obviousis the symmetrybetweenthe top and
bottom halfs of theable: if for bothinitial conditionsA andB (compareFigure 13) the icons
are flipped vertically, the table entries dliipped vertically. This corresponds$o the symmetry

between '<’ and'>" when comparing semi-intervals.

After compactionof the table due to this symmetry,the columnscorrespondingo the
neighborhood$c, tt, sc arenot neededand can be eliminated. In addition, the first two
columns can be merged. This corresponds to forming a neighborhood of the relatoima
Figure 14 shows the table compacte@®5 entries. On the right handand bottom sidesof the

table the initial conditions for the entries to be vertically flipped are shown.
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Figure 14: Transitivity table compacted to 25 entries.
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Further symmetriesand other regularitiesallow the elimination of all but seventable
entries: The entriesin the upperright hand cornerof the table shownin Figure 14 can be
mappedinto the lower left half of the table by exchangingthe x- and y-axesof the initial
conditionsand by flipping the correspondingentrieshorizontally. This transformationyields

layers Il - ii of initial conditions (Figure 15).

The entries in the lower right hand corner of the table in Figure 1decarappednto the
upper left half of the table by inverting the x- and y-axes of the initial conditions and fliyeing
table entries both vertically and horizontally (or equivalentlyrdigitingthem by 180 degrees).

This transformation yields layers Il - iii and IV - iv.

Furthermore we find four identical entriesin the upperleft hand cornerof the table.
They canbe mappednto a single entry by addinglayersV - v, VI - vi, and VIl - vii, each

containing one singleton of initial conditions.

Finally, the table can be simplified in order to minimize transformationson the table

entries; this is done by rotating the remaining entries by 180 degrees.

Figure 15 shows the compressed table consisting of seven entriesardacicessibldy
2*7 layersof initial conditions. Two of the entry patternsare identical (yo) . The initial
conditions in each layer are mutually exclusive. Neighboring initial conditions always
correspond to neighboring neighborhoods, in each layer. Only paiomditionsbelongingto
the samelayer (I-VII or i-vii) haveto be usedfor accessinghe entries. Entriesderived from
layersmarkedwith a vertical doublearrow haveto be flipped vertically, entriesderived from
layersmarkedwith a horizontaldoublearrow haveto be flipped horizontally, entriesderived

from layers marked with both arrows have to be flipped in both directions.
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6.2 Reasoning based on the compressed composition table

The compressed@ompositiontable representyery generalregularitiescorrespondingo
the symmetriesnvolved in the relationsbetweenneighborhoods.Only the first 2*4 layersof
initial conditions (I - IV and i - iv) actually define the structure of the talthes other 2*3 layers

(V - Vll and v - vii) all refer to the same single entry in the table.

In order to use this table feemporalreasoningneighborhood®f eventrelationsand/or
individual eventrelationsare matchedwith the correspondingnitial conditionsfor the tableas
in the previous compositiontables. Then the conjunction of the correspondingentriesis
formed. The entries corresponding to the initial conditions marked with amostdoe flipped

as suggested by the arrow before the conjunction is formed.

Flipping the entry patternscorrespondsto a very simple re-labeling of relations.
Specifically, horizontaflipping correspondso exchanginghe labelsf i ands, di andd, s i

andf ; vertical flipping corresponds to exchanging the lakedad>, mandmi , andoi ,f i

T il

T X
NEEEEE.
Tle e oo

Figure 16: The effect of horizontal and vertical flipping of the 6 distinct entiethe compres-
sed composition table. Blank entries indicate thatransformatiorhasno effectandis there-

fore not required.



Freksa Temporal Reasoning Based on Semi-Intervals 38

andsi , s andf ; flipping both dimensionscorrespondso exchanginghe labels< and>, m

andm , o andoi, fi andf, di andd, si ands (compare Figure 16).

6.3 Examples for reasoning with the compressed composition table

1) Fine reasoning. Suppose,X is startedby Y and Y finishesZ. What is the
relationshipbetweenX and Z? We check the layers of initial conditionsfor pairs A, B
correspondingo the pair si , f . We obtainfour matches: a) layerl: bottomright entry; b)
layer i: center entry; c) layer ii: top right entry; d) layer Ill: center entry. a) atar@spond
to non-contributingentries; thus, we only haveto considerb) andd). Both setsof initial
conditions point to the center entry of the table corresponding to refatiomhe tablendicates
that entriesassociatedvith layer i have to be flipped horizontally; thereforewe form the
conjunction ofyc and its horizontally flipped imagec. We obtairoi . Thus( is overlapped

by Z is the final conclusion.

2) Coarse reasoning. Suppose, Xy®anger contemporary &f and Y is headto head
with Z. Layerlll containsthe matchingpair of initial conditionswhich point to the relation
younger Layer IlIl does not indicatthat flipping is required; thus X is youngerthanZ is the

final conclusion.

3) Combiningfine and coarseknowledge. Suppose X meetsY andY is a younger
contemporaryof Z. How are X and Z temporallyrelated? We check the layers of initial
conditions for pairs A, B of initial conditions corresponding to the pgriryc. We obtaintwo
matches: top right entry fdayer| andcenterentry for layerll. The top right entryis a non-
contributing entry, so we only have to consittex centerentry of the table which corresponds
to the neighborhooglc. The table indicates that the entries obtained through lalyavéito be
vertically flipped; this yieldstherelationbc. Thus, X is a survivedby contemporaryof Z

(compare Figure 17).
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INITIAL meetsy
CONDITIONS X m Y yc is ayounger contemporary &
COMPOSITION
RELATION @
MATCHING
LAYERS I I1
TABLE
ENTRY (none) #l ye
FLIPPING I
OPERATION
CONJUNCTION ér]
Xis as
RESULT #] X bc Z contempore

Figure 17: The reasoning steps involved in reasoning with the compressed composition table.
The example shows how fine and coarse knowledge can be combined.

7 Conclusions

We have modified Allen’sipproachto interval-basedepresentatioof temporalrelations
in suchaway thatit can be usedrathernaturally for reasoningwith incompleteknowledge,
specifically with coarse knowledge about tempoeddtionships. Our approachaddsflexibility
andappeardo be cognitively more adequate.lt is basedon a neighborhood-orientediew of
events: eventsare not treatedas isolatedentities; rather,they areviewedas conceptualitems
which areembeddedn a networkof relatedevents. In this view, the notion of ‘conceptual

neighborhood’ becomes essential.
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Conceptual neighborhood plays an important role in cognitdany cognitive functions
rely on the assumptiotiat the world they are dealingwith is continuousor quasi-continuous,
i.e., changeshappenin stepsratherthanin jumps. For the specific domain of temporal

relations we have shown that this assumption is justified.

The conceptof neighborhoods a prerequisitefor our conceptof coarseknowledge.
Coarseknowledgeallows for short-cutsin reasoningin the following way. Allen’s original
reasoning strategy conceptually contains four levels of knowledge: 1) problerimler@hsof
coarse knowledge; 2) initial conditions expressed in terms of fine knowledge; 3) conetraints
the composition relation corresponding to coarse knowledyeonclusionexpressedn terms
of fine knowledge. Level 1) is presentonly if the problemis initially given in coarseterms;
level 4) is present only if the result is stated in fine terinsour approachwe mergelevels1)

to 3) by reasoning directly on the coarse level.

| would like to suggestthat this short-cutis just one instanceof neighborhood-based
problem reduction and that the general idea can be applied in various domains of coguwition.
example,in naturallanguagerepresentationconceptsare frequentlyrepresentedh fine terms;
asa consequencesemanticabmbiguitiesdemanda multiplication of processingeffort. If the
conceptsvererepresentedn a higherconceptualevel, someof the ambiguitieswould never
ariseand consequentlyvould not haveto be resolved. Another domainis theoremproving?
whereit is desirableto identify coarserconceptswhose conceptualinstants shareimportant

properties.

The neighborhood-based inference strategy described iarticie hasbeenimplemented
and comparedwith with Allen’s strategy[17], but a large scaleperformanceanalysisunder
variousconditionshasnot yet beendone. We view the neighborhoodstructuresdescribedas

basic generic structures for the constructbivery small sequentiafeasonerand of regularly

2 this suggestion is due to Steffen Hdélldobler.
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structuredparallel reasoners. For a sequentialreasoner,the compressedcompositiontable
would be sequentiallyaccessedby the layersmatchingthe initial conditionsbefore the entries

are flipped and conjoined. For a parallel reasoner, several coplestalble could be accessed
simultaneously; the entry-flipping could be wired-in directly. Also, the simple and regular
structure of the neighborhood reasoning structure (Figure 9) appears to make implem@ntation

means of an associative memory appropriate.

The presentedapproachcan be extendedin various directions. The neighborhood
conceptcanbe usedfor reasoningunderuncertainty. Uncertaintyor incompleteknowledge
correspondo a neighborhoodof possibilities comparedto a single possibility within this
neighborhood in the case of certainty or complete knowledge. This view is in contragwo a
in which uncertainty or incomplete knowledge correspondto disjunctions of unrelated
possibilities. If coarseknowledge becomescoarserdue to fuzziness,the samereasoning
principles can be applied to coarseknowledgewhich we have applied to fine knowledge;

although full recovery of fine knowledge will no longer be guaranteed.

An obviousextensionof the approachs for reasoningwith 1-dimensionalspacewhich
sharesmany propertieswith time. Extensiongor reasoningabout2- or 3-dimensionalspace
are more challenging(compare[4]), but a coarsereasoningapproachappearsto be better
tractable than a fine reasoning approad¥e expectthat the large amountof regularity andthe
conceptual simplicity of the system will proof helpful for developing representstizemedgor

more-dimensional spaces.
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