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Abstract

The paper investigates the possibilities for using simple recurrent networks as transduc-
ers which map sequential natural language input into non-sequential feature-based seman-
tics. The networks perform well on sentences containing a single main predicate (encoded
by transitive verbs or prepositions) applied to multiple-feature objects (encoded as noun-
phrases with adjectival modifiers), and shows robustness against ungrammatical inputs. A
second set of experiments deals with sentences containing embedded structures. Here the
network is able to process multiple levels of sentence-final embeddings but only one level of
center-embedding. This turns out to be a consequence of the network’s inability to retain
information that is not reflected in the outputs over intermediate phases of processing. Two
extensions to Elman’s [9] original recurrent network architecture are introduced.

!The author is supported by an IBM Graduate Fellowship.



1 Introduction

Since their introduction by Elman [9] backprop-
agation networks with one time step of hidden
layer recurrence (simple recurrent networks,
SRNs) have been extensively exploited as a sim-
ple, efficient, and yet surprisingly powerful ar-
chitecture for dealing with sequential input and
output patterns. The sequential nature of these
networks makes them a natural candidate for
natural language processing tasks, as has been
variously demonstrated [1, 22, 23, 11, 13, 19].
The application of SRNs presented here pur-
ports to use a task and training environment
that is ‘natural’ in several ways. First, the
goal for the network is to act as a surface-to-
semantic transducer, i.e. to map a sequence of
words into a representation of the correspond-
ing semantics. This contrasts with other ap-
proaches which have the network predict next
words [11], or fill in the unaltered word pat-
terns into slots [19]. Second, the representa-
tions are sequential at the input (word) level,
but parallel at the output (semantic) level. This
is intended to be a rough approximation of a
real-world learning situation in which an ob-
server tries to infer word and sentence mean-
ings by matching low-bandwidth linguistic in-
put against high-bandwidth input from other
modalities (such as vision). This idealizes a sit-
uation where there are no temporal clues con-
cerning the correlation between input elements
and target elements. This approach contrasts
with others where the network is trained to map
the sequential input into sequences of outputs
with a temporal structure that is essentially iso-
morphic [22]. It also differs from schemes which
present inputs sequentially, but encode some of
the sequential structure redundantly in the in-
put patterns themselves, or preprocess inputs
into phrase-level chunks, thus avoiding even
simple syntactic complexities such as adjective-
noun combinations and function words [23].
The learning environment is largely consis-
tent with the miniature language acquisition
problem recently proposed as a framework for
interdisciplinary research by Feldman et. al [12],
although it addresses only a subset of the learn-
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Figure 1: Grammar generating language frag-
ment.

ing task proposed by the authors.

2 The learning task

The semantic domain selected for our exper-
iments consists of two-dimensional geometric
objects (circles, squares, triangles), unary pred-
icates of these objects (size, shade), and spatial
relations between objects (left, right, above, be-
low, contact). The subset of English sentences
used to describe this domain is generated by
the phrase structure grammar in Figure 1.1

The mapping from entities in the seman-
tic domain to verbalizations is straightforward.
Objects are described by noun phrases (NPs)
with up to two adjectives, e.g.

a small circle

Spatial relations are expressed as complete sen-
tences, with the predicate expressed either by
a transitive verb (touches) or the head of a
prepositional phrase (PP), optionally modified

by far:

!Note that the fragment represents a a slightly re-
stricted version of the Lo language specified by Feldman
et. al [12].




a light circle touches a small square
a large dark square is far to the left of
a small triangle

Note that isolated NPs are allowed as sentences,
denoting minimal subsets of the domain (i.e.,
objects and unary predicates).

On the input side, words are encoded by 19
orthogonal vectors (this includes non-function
words such as a, to, the, of ). This representa-
tion, although wasteful, was chosen because it
does not encode any similarities between word
functions given a priori. Such similarities will
have to be detected and re-encoded by the net-
work using its hidden unit activations.

Note that the language fragment as consid-
ered so far is not even properly context-free
(in fact, it is finite), and each sentence con-
veys at most a binary predicate and two argu-
ments, plus possibly some unary predications
(an extension to a real context-free fragment
with multiple predicates per sentence is dis-
cussed below). Therefore sentence semantics
can be encoded in a 22-bit, fixed-width feature

vector of the following form

Predicate Argument 1 Argument 2

TLRAB F
————

CSTSML DL CSTSML DL
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shade

relation mod shape size shade shape size

A bit takes on the value 1 if the corresponding
semantic feature is present, and 0 otherwise.
The semantics of a single object (described by
an isolated NP) are encoded by activations in
the ‘Argument 1’ slot with all other features
turned off.

Initial experiments were conducted using El-
man’s original recurrent network architecture,
depicted in Figure 2a. Word patterns were pre-
sented sequentially at the input layer, while the
target semantics pattern was held constant for
the duration of the entire sentence. The hidden
layer was fed with the current word pattern as
well as a copy of its own activations from the
previous time step (initialized to zero at the be-
ginning of each sentence). After each processing
step backpropagation (with sum-of-squares er-
ror function) was applied to adjust all weights
on-line.

(a)
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Figure 2: (a) Simple recurrent network ar-
chitecture.  Solid arrows represent mnormal
weighted, learnable links (layers fully con-
nected). Dashed arrows indicate transfer of ac-
tivations from the previous time step. (b) Re-
current network enhanced to support incremen-
tal construction of output vectors.

As expected, the network trained in this way
learned to build the output pattern incremen-
tally, essentially turning on bits as soon as the
corresponding words had been seen in the in-
put and then keeping them on. To support this
incremental behavior and unburden the hidden
layer from the task of memorizing the outputs
constructed so far, a small addition to the archi-
tecture was made, shown in Figure 2b. An ad-
ditional recurrent loop at the output should en-
able the network to memorize and reuse previ-
ous outputs in a more straightforward manner.?

?But note that the connections from the ‘output
memory’ back to the output layer still have to be learned
as all others. The resulting recurrent architecture com-
bines features of both the Elman and the Jordan [15]

type.



Although the total number of links was not re-
duced this way, the smaller number of hidden
units (15 instead of 25 in this experiment) sped
up convergence.

As various researchers have noted [10, 7],
backpropagation learning on large training sets
with complex underlying structure is helped
by presenting the training set incrementally,
in stages of increasing size and/or complex-
ity. Accordingly, we increased the complexity
of the training set typically along the following
lines: simple NPs (Det-N), one-adjective and
two-adjective NPs, sentences containing simple
NPs, sentences with complex NPs (note that
all these are legal sentences in the grammar).
At each stage, learning rates were gradually
decreased from 0.1 to 0.0001, at which point
training proceeded until the error leveled off;
momentum was held constant at 0.3.

3 Simple Sentences: Results

The final training set consisted of 75% of all
possible simple NP sentences (61 out of 81),
10% of all one-adjective NP sentences (203 out
of 2025) and 3.3% of all two-adjective NP sen-
tences (89 out of 2916). When training was
stopped the average Hamming distance (num-
ber of wrong bits) between the target vectors
and the output generated after having seen the
last word in a sentence was 0.082 on the training
set (chance performance is 5.7 for this set).? All
errors were due to complex-NP sentences. The
network generalized perfectly to the remaining
25% of simple NP sentences and produced an
average Hamming distance of 1.07 (chance: 5.5)
and 0.94 (chance: 7.5) on one-adjective and
two-adjective NP sentences, respectively. (Per-
formance figures are summarized in Table 1.)

A more qualitative evaluation of the gener-
alizations the network has extracted from the
training data can be obtained from studying
performance on various kinds of ungrammati-
cal input (not contained in training set).

*In computing Hamming distances, a output was al-
lowed to be within 0.4 of the target value (0 or 1) to
count as correct.

Figure 3a shows the incremental assembly
of the feature vector while processing a gram-
matical input sentence. Figure 3b shows what
happens when articles are omitted from NPs.
Since articles don’t carry any information in
the current training data we would expect the
net to deal well with this case from a semantic
perspective. Still, any change in the sequen-
tial structure of input could potentially disrupt
the succession of state transitions the network
makes in order to arrive at its result. As can be
seen, however, the 1-bits in the output are only
marginally weaker than in the previous case.

A more striking example are sentences where
the relation-encoding preposition or verb is
omitted from the sentence (figure 3c). The net-
work will still correctly associate the two NPs
with the two argument slots in the output vec-
tor. This shows that the rules of English re-
garding relative ordering of subject and object
have been learned. However, the missing verb
does reduce the ability of the network to keep
the argument semantics separated, as features
encoding the object NP ‘leak’ into the subject
slot. This interpretation is consistent with the
case where the subject has been omitted from
the sentence (Figure 3d). The object NP is
mostly assigned to the subject slot (recall that
the network is trained to assign single NP sen-
tences to that slot), but the fact that the NP is
preceded by the verb seems to be evidence for
the network to assign the NP at least partly to
the object slot.

A very subtle form of ungrammaticality
arises from the conventional order of adjectives
in noun phrases. Projected to our language
fragment, size adjectives precede shade adjec-
tives when both are present, and this order was
consistently used in the training set (cf. Fig-
ure 3e). Figure 3f shows the effect of revers-
ing that order. The misplaced second adjective
causes some initial activation in the correspond-
ing output unit, but is then ‘forgotten’ as fur-
ther words are processed. This example shows
that processing NPs is more complex than sim-
ply adding up all the features extracted from in-
dividual words (although this would have been
a minimal solution to the learning task easy



initial final chance
Pattern set Size | s.s. Ham. s.s. Ham. Ham.
training set (75%/10%/3.3%) | 353 | 6.0 13.8 0.12 0.082 5.7
simple NP sentences (100%) 81 |55 11.2 0.098 0 3.5
1-adj NP sentences (100%) 2025 | 7.0 159 0.65 1.07 5.5
2-adj NP sentences (50%) 1458 | 5.9 14.3 0.57 0.94 7.5

Table 1: Summary of network performance after training on simple sentences. The initial perfor-
mance (with randomly initialized weights) is given for comparison, as well as the expected Hamming
distance obtained by chance (guessing the most likely of the values 0 or 1). Both sum squared errors

and Hamming distances are averages per sentence.

to implement with the given architecture). In-
stead, bit correlations and sequential structure
interact in non-trivial ways to yield the output.*
Another interesting feature of the network’s
operation is that ‘meaning’ is non-local in time
in the following sense. The network updates
its outputs constantly according to the seman-
tics expected from the current input. Contrary
to a view held by ‘lexical’ theories of language
and grammar (such as, e.g., Lexical Functional
Grammar [16]) where meanings are localized in
individual lexicon entries, the predicate ‘right’
is not locally attached to the word right. In-
stead, it is shared by the syntagmatic environ-
ment of right. As illustrated in Figure 3g, ac-
tivation on the ‘right’ feature builds up as the
function words is, to, the, and of are processed.

4 Embedded structures

Keeping the output targets static for the en-
tire duration of a sentence is appealing as a
training scheme because it poses an interest-
ing learning problem (the extraction of relative
order information from the input) and is rela-
tively plausible. A severe disadvantage is that
it can only deal with semantic feature vectors

* Although our model does not claim to model linguis-
tic performance at this level of detail, one could object
that the network is too restrictive compared to humans.
Non-conventional adjective order would hardly prevent
a speaker from making sense of a noun phrase. On the
other hand, adjective order is not as strictly enforced in
real language use as it was in our training set.

of a fixed length. Even a single sentence, how-
ever, can encode arbitrarily many propositions
or ‘frames’ if we make the following small addi-
tion to the grammar in Figure 1:

NP — Det N PP

This allows for arbitrarily long chains of re-
duced relative clauses

a circle below a square
a triangle touches a circle below a cir-
cle to the left of a square ...?

Clearly, to represent the semantics of such sen-
tences, the approach of spreading out the com-
plete sentence semantics in space will not do.
Ideally we would like to adopt a representa-
tion that can deal with hierarchical structures
in a completely general way, which is yet to be
discovered for connectionist models. We have
therefore adopted a compromise solution which
tries to preserve the spirit of the original scheme
while still allowing us to get an idea of network
performance on embedded structures.

We use the time dimension to multiplex the
sentence semantics at the frame level, i.e. as an
embedded clause is processed its semantics re-
place the previous feature vector in the output
layer. Thus, when processing

(1) a triangle touches a circle below a
square

“For our purposes we ignore the alternative reading
of such a sentence where the iterated embedded clauses
are all attached to the first NP.



the network is trained to produce the semantics
of ‘triangle touches circle’ up to the word circle.
Following that the target is changed to ‘circle
below square’. Similarly, for

(2) a triangle to the left of a circle
touches a square

the target is ‘triangle touches square’ for the
entire sentence except for the duration of to the
left of a circle, when it becomes ‘triangle left of
circle’.%

To accomplish this task successfully the net-
work has to deal with at least two potential
difficulties. First, the material in embedded
clauses has to be kept separate from the sur-
rounding context. In particular, in sentence (2)
the network must not mistake the NP immedi-
ately preceding the verb for the subject of the
main clause. Secondly, sentences such as (1)
require that a semantic pattern switch position
in the output vector, since ‘circle’ first appears
as object, but then becomes the subject of the
embedded clause. This creates a type of discon-
tinuity in the output vector the network did not
have to cope with in the previous experiment.

After initial experiments with the kind of net-
works shown in Figure 2 a further modifica-
tion was introduced, as depicted in Figure 4.
Its structure anticipates the need for a finite
state control, directing the information pass-
ing through the network. The left half of the
network operates and is trained as a next-word
predictor, just like originally conceived by FEl-
man [9]. This training setup is known to build
hidden layer representations which are closely
related to the finite-state structure of the input
domain [4]. The design is such that the repre-
sentations in this ‘state’ feedback loop can then
control the information flowing through a sepa-
rate ‘memory’ feedback loop and the semantics
output, but not vice-versa. Note that the rep-
resentations in the ‘state’ hidden layer are in-
fluenced by the constraints of the semantic part

5Note that one element of the semantics that is omit-
ted in this mixed spatio-temporal representation is the
coreference relation between the head of an NP and the
subject of an embedded relation. l.e., a triangle below a
circle touches a square is analyzed essentially as ‘a tri-
angle is below a circle and a triangle touches a square’.

of the output during backpropagation, but its
performance after learning is design to be inde-
pendent of the semantics component.

An informal comparison seemed to favor this
architecture on the basis of faster convergence
and lower final error when compared to previ-
ously used models of comparable size.
ever, a more careful analysis— including the
types of control structures actually developed—
is needed.

How-

A network with ‘state’ vector of size 10, a
‘memory’ vector of size 20 and an additional
hidden layer of 20 units was trained on a train-
ing set of 19% of all possible sentences with a
single level of embedded PPs in either the sub-
ject or the object position, as well as all sen-
tences without embedding, until the average
bit error in the semantics vector was reduced
to 1.2%. To keep training time and network
size tractable, adjectival modifiers were omit-
ted from the training set this time. As before,
traces of unseen input sequences were exam-
ined to investigate the structural criteria the
network uses for its task.

The main conclusion is that the network ac-
quired the regularity that, when entering an
embedding, the last NP seen moves to the first
argument position in the embedded frame (in
case it is not already the first argument in the
matrix frame). This can be seen when testing
how the network generalizes from the one-level
embeddings seen during training to multi-level
structures.

The network correctly generalized to two lev-
els of embedding in sentence-final position, as
shown in figure 5a. In this case, iteratively in-
serting the last NP into first argument posi-
tion and rebuilding predicate and second ar-
gument produces the right results. After ad-
ditional training on 1% of the sentences with
2-level sentence-final embeddings the network
could handle structures of at least 5-levels.

The same principle is used for PPs embed-
ded in the subject of the the main clause, as
shown in Figure 5b. However, the second level
of embedding wipes out the top-level subject in
the first argument slot, which is never recovered
after leaving the embedded clause (Figure 5c¢).



Additional training on precisely these problem-
atic cases was unable to force the network to
reinstate feature vectors from ‘memory’. This
confirmed that the network is not able to re-
tain information which is not correlated with
the output target for a number of intermediate
processing steps, a limitation of SRNs previ-
ously found by Cleeremans et. al. [4].

5 Related work

A number of researchers have explored sequen-
tial recurrent networks (or related models) for
language processing tasks.

Allen [1, 3, 2] uses networks were both the
word input and a representation of the ‘world’
(corresponding to our semantic vectors) are
given as inputs and the network typically has to
give a yes/no answer regarding the correctness
of the linguistic description.

Sopena [22] applies sequential networks to
a domain very similar to ours (visual scenes),
but his networks perform transductions of in-
put to output sequences which closely parallel
each other. The changing semantic representa-
tions are meant to model an attentional mech-
anism which shifts focus as the corresponding
verbal sequences are processed.

St. John and McClelland’s [23] network dif-
fers from ours mainly in the output representa-
tion. Instead of representing the full sentence
semantics in parallel they use an additional ‘se-
lector’ input to select the particular slot to be
considered. Although the outputs are built in-
crementally like in our case almost all syntac-
tic complexities are removed by treating entire
phrases as input units and encoding sequential
order information explicitly in the input vec-
tors.

Several studies investigate the use of sequen-
tial networks for the recognition of scripts (i.e.
schematic event sequences). Harris and Elman
[13] use the word prediction training scheme to
address the question how well SRNs can cap-
ture correlations between temporally distant
script variables.

Miikkulainen and Dyer [19] use the same

training target principle as adopted here,
namely the network is required to transform a
sequential information into a static structure.
The issue of syntactic complexity is addressed
by building in a two-level hierarchy, where out-
put patterns of one level become the sequential
inputs items at the next. Also of interest is the
idea of inverting the SRN architecture for the
purpose of sentence generation.

All authors except the first two explicitly
want their networks to capitalize on priming
effects due to statistical dependencies between
elements in the semantic domain (e.g., certain
relations tend to hold between certain objects
and not others). The work reported here em-
phasizes the combinatorial nature of syntactic
and semantic structure. As a result, such de-
pendencies are mostly considered undesirable,
except were they reflect syntactic regularities.

6 Conclusions

The aim of the work reported here was to ex-
plore the possibilities and limitations of simple
recurrents network in a fairly natural language
learning task, namely extracting semantic fea-
tures from sequential word input.

Our first experiments with declarative sen-
tences encoding single two-place predications
and attributes showed that these networks can
indeed learn to extract the appropriate corre-
lations between word encodings, output fea-
tures and sequential structure to incrementally
assemble the complete semantics of such sen-
tences. The network thus trained exhibited a
fair amount of robustness in dealing with in-
complete syntax, as well as sensitivity to fine
points of sequential order.

However, our experiments with sentences
containing embedded structures indicate that
simple recurrent networks of the types inves-
tigated here are not able to retrieve informa-
tion that was detected previously, but was tem-
porarily uncorrelated with the target output
during some phase in sequential processing.
This led to an inability to correctly process
center-embedded PPs, while multi-level embed-



dings in sentence-final position could even be
generalized from one-level training cases.

Although this particular phenomenon may
be in rough accordance with psycholinguistic
data, a general inability to handle embedded
structures is clearly not acceptable. Geofl Hin-
ton (personal communication) has recently sug-
gested applying full backpropagation in time
[21] to this language learning problem, but it
remains to be seen whether this is sufficient to
learn to solve the center-embedding problem.

Simple recurrent networks have proven to be
quite effective in extracting syntactic structure
as it is manifest in distributional properties of
the input. However, according to cognitively
oriented linguistic theories [18, 17], the seman-
tic and conceptual domain provides not only a
target for language learning, but also constrains
syntactic form to be motivated by the concep-
tual structure it conveys. For example, Lan-
gacker [18] suggests that there exists an iconic
relationship between the syntactic unity of a
noun phrase and the conceptualized unity of
the properties it encodes (such as shape, size,
color). The general idea that a combination
of semantic grounding and distributional induc-
tion leads to syntactic structure is also consis-
tent with theories of language acquisition and
development [20].

Clearly the localist, flat feature encoding
used here, although initially convenient and ef-
ficient for our purposes, does not have enough
structure to explore any of those possibly cru-
cial relationships between syntax and seman-
tics. Even in our simple domain this lack be-
came evident: there is no way the network could
possibly generalize from the noun phrases it has
seen in subject position to those in object po-
sition. The reason is that the relevant output
features are completely disjoint and every pair
of bits within one argument slot has no more
in common than a pair of bits from different
arguments.7

These considerations suggests that further
progress towards learning of both natural lan-

"Due to this second reason, the problem is not solved
by simply replacing the local representation with a dis-
tributed one.

guage syntax and semantics will crucially de-
pend on advances in the connectionist treat-
ment of hierarchical representations, be they
localist, structured models [8] or PDP mech-
anisms [14].
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16 32 21 24 18 13 17 0 99 98 0 0 99 0 57 15 29 38 45 14 45 40 triangle

249 15322220 1 09999 0 097 0 78 11 19 25 42 26 43 38 is ...
(f) 15 21 17 23 18 33 47 24 46 18 24 11 31 27 48 18 23 28 28 2 8 22 a

21 23 21 20 17 32 47 8 58 7 28 3 95 26 46 31 25 36 46 3 17 38 dark

2821 326 93071 08035 6 099 981 5 16 64 48 6 19 65 small

20 17 16 19 20 47 10 0 9916 1 0 99 0 33 8 69 38 35 3 10 32 triangle

33016223748 0 099 0 1 098 06115212633 1 8 11 is ...
(g) 15 21 17 23 18 33 47 24 46 18 24 11 31 27 48 18 23 28 28 2 8 22 a

315 18 24 26 41 763 10 9 1 0 3 17 34 30 28 17 26 2 4 22 square

217 27 21 3241 596 3 2 8 3 110 21 4127 12 14 0 1 10 is

146 48 1 2 1 396 0 1 7 3 0 02248301310 0 0 8 +to

25945 2 0 0 297 0 5 3 3 1 020393112 9 0 0 7 the

0 097 7 0 0 099 0 0 O O 1 017 3739 812 0 0 4 right

0 098 2 0 0 099 0 0 0 1 O 0143839 613 0 0 4 of

0O 09 3 0 0 198 0 0 0 3 O 0153445 615 0 0 4 a

0 09 1 0 2 08 1 0 1 0 0 O 2 894 430 0 0 2 triangle

Figure 3: Network performance on sample inputs. For each word processed the output layer
activations are shown (multiplied by 100).
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Figure 4: Extended recurrent architecture for merged predictive and semantics training.
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Figure 5: Processing of embedded clauses.

11



