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ABSTRACT

In a random n-vertex digraph, each arc is present with probability p, independently of
the presence or absence of other arcs. We investigate the structure of the strong com-
ponents of a random digraph and present an algorithm for the construction of the tran-
sitive closure of a random digraph. We show that, when n is large and np is equal to a
constant c greater than 1, it is very likely that all but one of the strong components are
very small, and that the unique large strong component contains about Θ2n vertices,
where Θ is the unique root in [0,1] of the equation 1 − x − e −cx = 0. Nearly all the ver-
tices outside the large strong component lie in strong components of size 1. Provided
that the expected degree of a vertex is bounded away from 1, our transitive closure
algorithm runs in expected time O (n). For all choices of n and p, the expected execu-
tion time of the algorithm is O (w (n) (n log n)4/3), where w (n) is an arbitrary nonde-
creasing unbounded function. To circumvent the fact that the size of the transitive
closure may be Ω(n 2) the algorithm presents the transitive closure in the compact
form (A × B) ∪ C, where A and B are sets of vertices, and C is a set of arcs.

1. INTRODUCTION

The probability space of digraphs DDn, p is defined as follows: each point in the space is a
digraph with vertex set {1,2, ...,n} having no loops or multiple arcs, and the probability of a given
digraph D with e arcs is p e(1 − p)n (n −1) − e. In other words, each arc is present with probability p,
independently of the presence or absence of other arcs. We shall study the structure of the
strongly connected components of digraphs drawn from DDn, p , and shall give a very fast algorithm
for constructing the transitive closure of such a digraph. All the results are asymptotic; i.e., they
show that certain events hold almost certainly in the limit as n tends to infinity, with p varying in
a prescribed way as a function of n.

The following is an informal sketch of the main results of the paper. Let D be a "typical"
digraph drawn from DDn, p . The structure of D depends on the quantity np, which gives the
expected degree of a vertex. Let X (r) denote the set of vertices reachable from vertex r, and let
Y (r) denote the set of vertices from which r is reachable (a vertex is defined to be reachable from
itself). Let h be a fixed small positive constant. When np < 1 − h each of the sets X (r) is of size
�����������������������������������
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less than or equal to B (h) log n, and the expected size of X (1) is bounded above by a constant
C (h), where B (h) and C (h) are constants related to h. When np > 1 + h each of the sets X (r) or
Y (r) is either of size less than B (h) log n or else contains a nonnegligible fraction of all the ver-
tices; in the former case the set is called small, and in the latter case, large. The expected size of
a small set is bounded above by C (h). The 2n events "X (r) is large" or "Y (r)is large" are nearly
pairwise independent. Whenever X (u) is large and Y (v) is large there exists a path from u to v.
The vertices r such that X (r) is large and Y (r) is large form a "giant strong component" of D con-
taining a nonnegligible fraction of all the vertices. Each of the other strong components contains
at most B (h) log n vertices. Nearly all the vertices outside the giant strong component lie in
strong components of size 1. If np tends to infinity as n tends to infinity then the fraction of ver-
tices lying in the giant strong component tends to 1.

When np remains equal to a constant c > 1 as n tends to infinity, more quantitative informa-
tion can be given. The size of each large set X (r) or Y (r) is close to Θn, where Θ is the unique
root of the equation 1 − x − e −cx = 0 in [0,1]. The probability that X (1) is large is approximately
Θ, and the size of the giant strong component is approximately Θ2n.

Similar results hold when np (n) = 1 + ε(n), where ε(n) tends to 0 as n tends to infinity, but

log2 n

ε(n)3 n
� �����������

n→∞→ ∞. In this case the size of a small set is bounded above by a constant times

ε(n)−2 ln n, and the giant strong component is of size approximately 2n ε(n)/(1 + ε(n))2 .

When np < 1 − h the number of pairs (u,v) in the transitive closure of D is O (n), and the
transitive closure can be computed in expected time O (n) by conducting a breadth-first search
from each vertex, provided that the arcs out of any vertex are accessible in a random order. When
np > 1 + h the number of pairs (u,v) in the transitive closure is Ω(n 2), but the transitive closure
can be represented in the compact form (A × B) ∪ C, where A = {u | X (u) is large},
B = {v | Y (v) is large} and C is a set of O (n) ordered pairs of vertices. An algorithm based on a
combination of forward and backward breadth-first search computes this compact representation
of the transitive closure of D in expected time O (n). When np is extremely close to 1 the algo-
rithm no longer runs in linear expected time. Instead, its expected execution time is
O (w (n) (n log n)4/3) where w (n) is an arbitrary nondecreasing unbounded function.

Throughout our investigation of the structure of random digraphs we emphasize proof tech-
niques based on the analysis of search procedures for constructing the sets X (r) and Y (r). This
algorithmically oriented approach is in contrast to the usual proof methods in the theory of ran-
dom graphs, which are based on estimating the numbers of subgraphs with various properties.
We believe that our approach leads to more straightforward proofs than the conventional methods
do, and provides more insight.

Eddie Grove of the Computer Science Division at Berkeley has performed computations
that provide insight into the rate at which the asymptotic behavior predicted by our theorems is
approached. His program generated a set of random digraphs and, for each, computed the size of
the giant strong component, the sizes of the sets A,B and C in the representation of the transitive
closure as (A × B) ∪ C, and several other quantities of interest. The results of these computations
are presented in Section 5.
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Although there is an immense literature on the structure of random undirected graphs, ran-
dom digraphs have been studied very little. An early result about the structure of the strong com-
ponents is given in [Palásti, 1966], where it is shown that, as n tends to infinity with
np = ln n + a, the probability that D fails to be strongly connected tends to exp(− 2 e −a). Some
futher results are given in [L/ uczak, 1988]. An entirely different model of random digraphs is stu-
died in [Fenner & Frieze, 1988]. The paper [Schnorr, 1985] presents an algorithm for construct-
ing the transitive closure of a random digraph. For all n and p, Schnorr’s algorithm runs in
expected time O (n 2).

2. THE GAP THEOREM

When np < 1 − h it is likely that, in a random digraph D, every set X (r) or Y (r) is quite
small. More interestingly, when np > 1 + h, a "gap phenomenon" occurs: it is likely that every
set X (r) or Y (r) is either quite small or very large. We explore these phenomena in two ways:
first, by introducing a rather general "conversion method" that allows certain results about ran-
dom graphs to be converted directly to statements about random digraphs, and secondly, by a
direct analysis of search methods for constructing the sets X (r) and Y (r).

2.1 THE CONVERSION METHOD2.1 THE CONVERSION METHOD

The theory of random graphs is largely concerned with probability spaces GGn,p . The points
in GGn, p are graphs (undirected, and without loops or multiple edges) with vertex set {1,2, ...,n}.

The probability assigned to a graph G with e edges is p e (1 − p)

��
2
n�� − e

. Thus,in a graph G drawn
from GGn, p , each edge is present with probability p, independently of the presence or absence of
other edges.

We shall show that certain known results about random graphs can be converted directly to
results about random digraphs. As a bridging mechanism we introduce a family of probability

spaces G̃G̃n, p of random digraphs. A digraph Ĝ can be drawn from G̃G̃n, p by the following experi-
ment:

(i) draw a graph G from GGn, p;

(ii) place the arcs [u,v ] and [v,u ] into G̃if and only if G contains the edge { u,v }.

Lemma 1. Let G be drawn from GGn, p , G̃, from G̃G̃n, p and D from DDn, p . Then the following three
random variables are identically distributed: the number of vertices in the connected component
of G containing vertex 1, the number of vertices reachable from vertex 1 in G̃, and X (1), the
number of vertices reachable from vertex 1 in D.

Proof: The fact that the first two random variables are identically distributed follows immedi-
ately from the definition of G̃G̃n, p in terms of GGn, p . To see that the last two random variables are
identically distributed, note that the probability spaces G̃G̃n, p and DDn, p differ in only one respect: in
a digraph G drawn from G̃G̃n, p , arc [u,v ] is present if and only if arc [v,u ] is present, while, in a
digraph D drawn from DDn, p , the event that [v,u ] is present is independent of the event that [u,v ]
is present. Thus, no experiment based on checking for the presence or absence of arcs can
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distinguish between the two probability spaces unless it checks both an arc and its reversal. But
any standard sequential algorithm, such as breadth-first search or depth-first search, for building a
search tree containing exactly the vertices reachable from vertex 1, checks for the presence of arc
[u,v ] only if vertex u is in the search tree and v is not; thus it never checks both an arc and its
reversal, and accordingly cannot distinguish G̃G̃n, p from DDn, p .

�

Lemma 1 allows us to convert results about the connected components of random graphs to
results about reachability sets in digraphs. For example, the following results are either proved in
[Bollobás, 1985] or can easily be extracted from results proved therein.

Let h be a (small) positive constant. Let w (n) be a nondecreasing unbounded function. Let
Θ be the unique root in [0,1] of the equation 1 − x − e −cx = 0. Let the size of a connected com-
ponent be the number of vertices it contains.

Lemma 2. Let p (n) be such that, for all n, np (n) < 1 − h. Then, with probability tending to one
as n tends to infinity, a graph G drawn from GGn, p has all its connected components of size less
than 3(ln n)h −2 .

Lemma 3. Let p (n) be such that, for all n, np (n) > 1 + h. Then, with probability tending to 1 as
n tends to infinity, a graph G drawn from GGn, p(n) has exactly one connected component of size
greater than 3(ln n)h −2 .

Lemma 4. Let p (n) = c/n, where c is a constant greater than 1. Let G be drawn from GGn, p(n) .
Then, with probability tending to 1 as n tends to infinity, the size of the largest component of G
lies between Θn − w (n) √

� �

n and Θn + w (n) √
� �

n , where Θ is the unique root in [0,1] of the equation
1 − x − e −cx = 0.

Applying Lemma 1, we obtain the following results about the distribution of X (1), the
number of vertices reachable from vertex 1 in a digraph drawn from DDn, p .

Corollary 1. Let h be a positive constant, w (n) a nondecreasing unbounded function and Θ the
unique root in [0,1] of the equation 1 − x − e −cx = 0. If np (n) < 1 − h then, with probability tend-
ing to 1 as n tends to infinity, | X (1) | < 3(ln n) h −2 . If p (n) = c/n, where c > 1 then, with proba-
bility tending to 1 as n tends to infinity, | X (1) | lies in the union of the two intervals
[0, 3(ln n) h −2] and [Θn − w (n) √

� �

n , Θn + w (n) √
� �

n ]; moreover, the probability that | X (1) | lies
in the interval [Θn − w (n) √

� �

n , Θn + w (n) √
� �

n ] tends to Θ as n tends to infinity.

2.2 STRONGER FORMS OF THE GAP THEOREM2.2 STRONGER FORMS OF THE GAP THEOREM

Corollary 1 demonstrates an important gap phenomenon: when np = c > 1 + h the number of ver-
tices reachable from a given vertex is likely to be either very small (in the interval
[0, 3(ln n) h −2]) or very large (in the interval [Θn − w (n) √

� �

n , Θn + w (n) √
� �

n ]). The following
theorem is a more quantitative version of Corollary 1; it gives upper bounds of the form n −a on
the probability that | X (1) | does not lie in a prescribed union of two intervals. The proof is based
on the analysis of a natural search process for constructing the set X (1). A closely related process
is studied in [Nagaev & Startsev, 1970].



- 5 -

Theorem 1. Let c be a constant greater than 1. Let a be a positive constant. Let B be a constant
greater than (a + 1) c (c − 1)−2 . Let w (n) be a nondecreasing unbounded function. Let Θ be the
unique root in [0,1] of the equation 1 − x − e −cx = 0. Let D be drawn from DDn, c/n , and let X (1)
be the set of vertices reachable from vertex 1 in D. Then, for all sufficiently large n,
Pr[ | X (1) | ∉ [0, B ln n ] ∪ [Θn − w (n) √

� �
n , Θn + w (n) √

� �
n ] < n −a

Proof: We consider a natural "fanning-out process" for constructing the set X (1). The process
constructs a sequence < (A 0 ,B 0), (A 1 ,B 1), ...,(At ,Bt),... > where Ai ⊆ Bi ⊆ {1,2, ...,n} and
| Ai | = i. The set Bi consists of the vertices that have been reached during the first i iterations of
the process, and the set Ai consists of the vertices that have been scanned during the first i itera-
tions. Here A 0 = φ, B 0 = {1} and the pair (Ai +1 , Bi +1) is constructed from (Ai , Bi) by the follow-
ing rule: Ai +1 = Ai ∪ {v} and Bi +1 = Bi ∪ succ (v) where v is a randomly chosen element of Bi\Ai

and vertex w lies in the set succ (v) if and only if the digraph D contains the edge (v,w). The pro-
cess terminates when, for some t, At = Bt; i.e., termination occurs when every vertex that has been
reached has also been scanned. It is clear that, if the process terminates after t iterations, then
At = Bt = X (1).

At each iteration of the fanning-out process, each vertex not already reached has probability
p of being reached. This observation permits a simple description of the stochastic behavior of
the fanning-out process. Let BIN ( n, p) be the binomial distribution with parameters n and p;
i.e., the probability distribution of the number of heads in n independent coin tosses with proba-
bility of heads p. Then the conditional distribution of | Bi +1\Bi | , given B 0 , B 1 , ...,Bi , is
BIN (n − | Bi | , p) (of course, Bi +1 is defined only if Bi is defined and | Bi | > i). It follows that
the stochastic behavior of the fanning-out process can be described by a sequence of random vari-
ables {Zi}, where Z 0 = 1 and Zi +1 = Zi + BIN (n − Zi , p). The sequences {Bi} and {Zi} have the
same distribution, except that the former sequence terminates as soon as, for some t, | Bt | = t,
while the latter sequence goes on forever. It follows that | X (1) | has the same distribution as
min {t | Zt = t}. This implies the inequality Pr [ | X (1) | = t ] ≤ Pr [Zt = t ].

In view of the inequality Pr [X (1) = t ] ≤ Pr [Zt = t ], we study the probability distribution of
Zt in order to prove an upper bound on the probability that | X (1) | = t. It is easy to prove by
induction that Zt − 1 has the probability distribution BIN (n − 1, 1 − (1 − p)t). Intuitively, this is
because Zt is intended to represent the number of vertices reached in the first t iterations of the
fanning-out process, and the chance that a given vertex (other than vertex 1) gets reached during
the first t iterations is 1 − (1 − p)t , which is the probability of at least one head in t independent
tosses of a coin with probability of heads p.

We shall require the following two bounds on the tail of the binomial distribution [Ragha-
van, 1986]. Let the random variable X have the distribution BIN ( n, p). Then,

(2.1) For every positive real β, Pr [X > βnp ] ≤

��
� ββ

e β−1� �������
���
�

np

;

(2.2) For γ ∈ [0,1], Pr [X < (1 − γ) np ] < e −γ2 np/2
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We shall use these inequalities to get an upper bound on the probability that Zt = t. It will
be convenient to define the auxiliary sequence of random variables {Wi} as follows: W 0 = 1 and
Wi +1 = Wi + BIN (n − t,p). It is easily shown by induction that, for all j ≤ t, and all i,
Pr [Zj ≤ i ] ≤ Pr [Wj ≤ i ]. Hence, Pr [X (1) = t ] ≤ Pr [Wt ≤ t ]. But Wt − 1 clearly has the distri-
bution BIN (t (n − t), p), and it follows from inequality 2.2 that

Pr [Wt ≤ t ] ≤ exp ( − ((c − 1) t −
n

ct 2� ����� )2 /ct). A brief calculation shows that, for any B >
(c − 1)2
(a + 1)c������������� ,

and for all n sufficiently large, Pr [Wt ≤ t ] ≤ n −(a +1) for all t in the interval

��
� B ln n,

3
c − 1� ������� n

���
� .

It remains to consider the case where t >
3

c − 1� ������� n. We use the fact that Zt − 1 has the distri-

bution BIN

	�

 n − 1, 1 −

	�

 1 −

n
c���
���



xn
���

 , where x = t /n. Using the inequalities

(i) for all real z, ln (1 − z) < − z and

(ii) for 0 < z < .69, ln (1 − z) > − z − z 2 , we obtain

Pr [Zt ≤ t ] ≤ exp

	�

 − n

2(1 − e −cx)

(1 − e − (cx + c2 x/n) − x)2� �����������������������������������
���



and a brief calculation shows that, when t = xn, x ≤ Θ − w (n) n −1/2 and n is sufficiently large,
Pr [Zt ≤ t ] < n −(a +1); here, Θ is the unique root in [0,1] of the equation 1 − x − e −cx = 0, and w (n)
is an arbitrary nondecreasing unbounded function.

A similar calculation based on the inequality (2.1) shows that, when t = xn,
x > Θ + w (n) n −1/2 and n is sufficiently large, Pr [Zt ≥ t ] < n − (a +1) .

We have now shown that, for n sufficiently large, and for all t outside the intervals
[0, B ln n ] and [Θn − w (n) √� �n , Θn + w (n) √� �n ], Pr [Zt = t ] < n − (a +1) . It follows that, when n is
sufficiently large, the probability that | Z (1) | lies outside the union of these two intervals is less
than n −a �

We continue to consider digraphs drawn from DDn, c/n , where c > 1. Let us say that X (1), the set
of vertices reachable from vertex 1, is large if | X (1) | lies in the interval
[Θn − w (n) √� �n , Θn + w (n) √� �n ], and small otherwise. Theorem 1 tells us that, if X (1) is small,
then, with overwhelming probability, its cardinality is bounded above by a small multiple of
c (c − 1)−2 log n.

Theorem 2. Let D be drawn from DDn, c/n where c > 1. Then, as n tends to infinity,

(i) The probability that X (1) is small tends to 1 − Θ, where Θ is the unique root in [0,1] of the
equation 1 − x − e −cx = 0;
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(ii) The expected size of | X (1) | , given that X (1) is small, tends to
1 − c (1 − Θ)

1
������������������� .

Proof: We shall analyze the early stages of the fanning-out process for constructing the set X (1).
Recall that a run of this process is described by a sequence {(Ai , Bi)}, where Ai is the set of ver-
tices scanned at or before the ith iteration, and Bi is the set of vertices reached at or before the i th

iteration. Let A be a positive constant, and consider the sequence of iterations in which
| Bi | ≤ A ln n; this sequence of iterations will be called the infancy of the process. The number of
vertices reached for the first time at iteration i + 1 has the probability distribution
BIN (n − 1 − | Bi | , c/n). Since | Bi | ≤ A ln n, this distribution is closely approximated, when n is
very large, by the probability distribution BIN (n − 1, c/n). This suggests that the evolution of the
fanning-out process during its infancy can be closely approximated by a branching process (cf.
[Harris], [Athreya & Ney]) which starts with a single progenitor, and in which the number of chil-
dren of each individual, independently of the behavior of all other individuals, has the distribu-
tion BIN (n − 1, c/n). We shall refer to this process as the binomial branching process. In this
process, let us say that an individual is mortal if his total number of descendants is finite. Let qn

be the probability that the progenitor (or any individual) is mortal, and let sn be the expected
number of descendants of the progenitor (including the progenitor himself), given that the pro-
genitor is mortal. To determine the behavior of qn and sn as n tends to infinity, note that
BIN (n − 1, c/n) converges in distribution to the Poisson distribution with mean c. This suggests
consideration of a Poisson branching process in which the number of children of any individual,
independently of the behavior of all other individuals, has the Poisson distribution with mean c.
Let q be the probability that the progenitor of this process is mortal, and let s be the expected
number of descendants of the progenitor, given that the progenitor is mortal. In the Poisson
branching process the conditional probability that an individual is mortal, given that he has k chil-
dren, is q k. Unconditioning, we find that q is the unique root in [0,1] of the equation

q =
k =0
Σ
∞

e −c

k
c k
����� q k, which becomes, after some simplification, q = e −c (1−q); hence q = 1 − Θ.

Further calculation using Bayes’ Theorem shows that, when we condition on the event that the
progenitor is mortal, the number of children of the progenitor has the Poisson distribution with
mean cq. It is easily verified that cq < 1, and it follows that

s =
h =0
Σ
∞

(cq)k =
(1 − cq)

1
� ������������� =

1 − c (1 − Θ)
1

��������������������� .

From the fact that BIN (n, c/n) converges in distribution to the Poisson distribution with mean c

it follows easily that qn n →∞→ q and sn n →∞→ s. By Markov’s inequality, the probability that the

number of descendants of the progenitor exceeds A ln n, given that the process is mortal, is
bounded above by sn /A ln n, which tends to zero. Thus, the probability that the number of des-
cendants of the progenitor exceeds A ln n tends to Θ = 1 − q as n tends to infinity.

It remains for us to show that the same result holds for the fanning-out process that deter-
mines X (1). The only difference between the fanning-out process and the binomial branching
process is that, in the branching process, no two parents have a child in common, so that the



- 8 -

process can be represented as a tree, while, in the fanning-out process, a node may be reached
along two different paths. However, the probability that such a "collision" will occur during the
infancy of the fanning-out process, up to the point where A ln n nodes have been reached, is

O (
n

log2 n� ��������� ), and it follows that the probability that | X (1) | < A ln n tends to Θ, and the expected

size of X (1), given that it is less than A ln n, tends to
1 − c (1 − Θ)

1������������������� . �

The preceding theorems concern the case where np, the expected degree of a vertex, is
bounded away from 1. We shall also be interested in cases where np converges to 1 from above
as n tends to infinity. Let ε(n) be a positive real function that tends to zero as n tends to infinity,

such that
log2n

ε(n)3 n� �����������
n →∞→ ∞. When n is understood we often write ε instead of ε(n). Let

p (n) =
n

1 + ε(n)� ������������� . Then we obtain the following analogues of Theorems 1 and 2.

Theorem 1′1′. Let w (n) be a nondecreasing unbounded function. Then, for all positive a, the fol-
lowing holds for all sufficiently large n:

Pr

��
� x (1) ∉ [0,(a + 2) ε−2 ln n ] ∪

��
�

(1 + ε)2
2εn������������� − w (n)√ ε

n log n����������� ,
(1 + ε)2

2εn������������� + w (n) √ ε
n log n�����������

���
	 < n −a

Theorem 2′2′. Let us say that X (1) is large if | X (1) | lies in the interval

��
�

(1 + ε)2
2εn� ����������� − w (n) √ ε

n log n����������� ,
(1 + ε)2

2εn������������� + w (n) √ ε
n log n�����������

���
	

and small otherwise. then, as n tends to infinity,

(i) The probability that X (1) is small is 1 −
(1 + ε)2

2ε������������� + o (ε2)

(ii) The expected size of | X (1) | , given that X (1) is small, is
ε

1 + O (ε)�
������������� .

The proofs of these theorems are quite similar to the proofs of Theorems 1 and 2. The
details are omitted.

3. THE STRUCTURE OF THE TRANSITIVE CLOSURE

We continue to consider digraphs drawn from DDn, c/n , where c > 1. Let uRv mean that ver-
tex v is reachable from vertex u. Recall that X (r) is the set of vertices reachable from vertex r,
and Y (r) is the set of vertices from which vertex r can be reached. In view of the gap theorem
there is a constant A such that, with probability tending to 1, the cardinality of every set X (r) or
Y (r) is either less than A ln n or else differs from Θn by at most w (n) √� �n . A set X (r) or Y (r) is
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said to be small in the former case and large in the latter case. By Theorem 2, the expected size
of X (r), given that X (r) is small, is bounded above by a constant independent of n.

Theorem 3. Let D be drawn from DDn, c/n , where c > 1. Then with probability tending to 1, the
following statement holds for all u and v: if X (u) is large and Y (v) is large then uRv.

Proof: Since there are only n 2 choices for the ordered pair (u,v), it suffices to prove that, for any

fixed pair (u,v) Pr [X (u) is large ∩ Y (v) is large ∩ uR/ v] = o (n −2). This probability is bounded

above by Pr [X (u) is large ∩ Y (v) is large ∩ uR/ v]. We shall prove that this conditional proba-
bility is o (n −2). Consider the fanning-out process for constructing the set X (u). Since we are

given that uR/ v, there is no edge from a vertex in X (u) to a vertex in Y (v). Thus, whenever the
process fans out from a vertex, the number of new vertices reached has a distribution stochasti-
cally smaller than BIN (n − | Y (v) | , c/n). For any N, the probability that the process reaches as
many as N + 1 vertices is bounded above by the probability that at least N vertices are reached
during the first N iterations of the fanning-out process; but the probability distribution of the
number of vertices reached during N iterations is stochastically smaller than
BIN (N (n − | Y (v) | ), c/n. Taking N = Θn − w (n) √

� �

n , noting that | Y (v) | ≥ Θn − w (n) √
� �

n and

c (1 − Θ) < 1, and applying the bound (2.1), we find that Pr [X (u) is large | Y (v) is large and uR/ v]
is bounded above by a function that tends exponentially to zero, and thus is certainly o (n −2).

�

Let A (u) be the event that X (u) is large, and let B (v) be the event that Y (v) is large. We
shall show that these 2n events are nearly pairwise independent. It follows from a general result
given in [Harris] about the positive correlation of monotone properties that any two of these
events are positively correlated. Thus, for example, for any two vertices u and v,

Pr [A (u) | ¬ A (v)] ≤ Pr [A (u)] ≤ Pr [A (u) | A (v)] (2.3)

The following theorem shows that the positive correlation is not very strong.

Theorem 4. Let E and F be any two distinct events from {A (u)} ∪ {B (v)}. Then

Pr [E | ¬F ] ≥ Pr [E ] − O (log n/n) (2.4)

Proof: Consider, for example, the case where E = A (u) and F = A (v), u ≠ v. We shall show that,

for every small set X that does not contain u, Pr [A (u) | X (v) = X ] ≥ Pr [A (u)] − O (
n

log n��������� ) | X | .

Consider an experiment to determine, by a fanning-out process, whether X (u) is large. This
experiment terminates as soon as A ln n vertices are reached, and the experiment is unaffected by
the information that X (v) = X unless a vertex in X is reached during the process. But the proba-

bility that a random set X (u) u of size at most A ln n intersects X is at most
n

A ln n | X |������������������� . The

theorem now follows from two facts: given that X (v) is small, the expected size of X (v) is
bounded above by a constant, and the probability that u lies in X (v) is O (1/n). The remaining
cases are argued similarly.
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A similar argument shows that any three or four of the above 2n events are nearly mutually
independent. We now derive several corollaries pertaining to DDn, c/n where c > 1.

Corollary 2. Let E and F be any two distinct events from {A (u)} ∪ {B (v)}. Then
Pr [E | F ] ≤ Pr [E ] + O (log n/n).

Proof: The result follows from Theorem 4 together with the inequality

Pr [E ] = Pr [E | F ] Pr [F ] + Pr [E | F
� �

] Pr [F
���

] and the fact that Pr [E ], Pr [F ] and Pr [F
���

] all
tend to positive constants as n tends to infinity.

Corollary 3. Let LARGEOUT = {u | X (u) is large}, LARGEIN = {v | Y (v) is large} and
LARGE = {u | X (u) is large and Y (u) is large}. Let w (n) be a nondecreasing unbounded func-
tion. Then, with probability tending to 1, | LARGEOUT − Θn | < w (n) √

�����������

n log n ,
| LARGEIN − Θn | < w (n) √

�����������

n log n and | LARGE − Θ2n | < w (n) √
�����������

n log n .

Proof: The proofs of the three results are similar. As an example, consider the random variable

LARGEOUT, which is equal to
u =1
Σ
n

A (u). Theorem 2 tells us that E (A (1)) tends to the limit Θ;

the proof can be strengthened to show that E [A (1)] = Θ + O (n −1). It follows that
E [ LARGEOUT ] = Θn + O (1). Also,
E [ (LARGEOUT)2 ] = E [ LARGEOUT ] + n (n − 1) E [A (u) A (v)], where u and v are any two dis-
tinct vertices. Applying Corollary 2,

E [ A (u) A (v) ] = E [ A (u) ] . E [ A (v) | A (u) ] = E [ A (u) ] (E [ A (v) ] + O ( log n /n ) ].

It follows that the variance of LARGEOUT is O (n log n), and the desired conclusion now follows
from Chebyshev’s Inequality.

�

Theorem 3 and Corollary 3 combine to yield the following fundamental Giant Strong Com-
ponent Theorem for digraphs.

Theorem 5. Let w (n) be a nondecreasing unbounded function. Let c be a constant greater than
1. There is a constant A such that, with probability tending to 1, a digraph drawn from Dn,c/n has
exactly one strong component with more than A log n vertices, and the number of vertices in that
strong component differs from Θ2n by at most w (n) √

�����������

n log n .

Proof: Any strong component containing a vertex not in LARGE must be of size less than
A log n. By Theorem 5, it will be true with probability tending to 1 that, for every pair u,v of ver-
tices in LARGE, uRv. In this case, the set LARGE is a strong component. The result now follows
from Corollary 3.

�

Boris Pittel has pointed out that our proof methods can be adapted to to obtain a simple
proof of Lemma 4, the classic Giant Component Theorem for random graphs. Since undirected
graphs are not our main concern, we merely sketch this development. The main steps correspond
to Theorem 1, Theorem 2, Corollary 3 and Theorem 5 of the present paper. We consider graphs
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drawn from Gn,c/n , where c > 1. Let X (u) denote the number of vertices in the connected com-
ponent of vertex u. Applying our conversion principle (Lemma 1), Theorem 1 tells us that, with
high probability, | X (1) | is either small (i.e., less than A ln n) or large (i.e., close to Θn), and
Theorem 2 tells us that the probability that X (1) is small tends to 1 − Θ. A proof similar to that of
Corollary 3 than tells us that, with high probability, the number of vertices u with X (u) large is
close to Θ. This tells us that there are about Θn vertices in components of size about Θn, with all
the other vertices lying in much smaller components, and it follows that {u | X (u) is large} must
consist of a single component of size about Θn. This proof is somewhat simpler than earlier
proofs of the same result (cf. [Bollobás, 1985]).

The following theorem states that nearly all the vertices of a digraph drawn from Dn,c/n can
be expected to lie either in the giant strong component or in a strong component of size 1.

Theorem 6. Let c be a constant greater than 1. Let Θ be the unique root in [0,1] of the equation
1 − x − e −cx = 0. In digraph D, call a vertex exceptional if it lies in a strong component that is of
size greater than 1 and is not the unique largest strong component. Let the random variable s be
the number of exceptional vertices in a digraph drawn from Dn,c/n . Then the expected value of s

is bounded above by a function of n that converges to the positive constant
1 − c (1 − Θ)
2c 2 (1 − Θ)2���������������������

−
1 − c (1 − Θ)2
c 2 (1 − Θ)4� ��������������������� .

Proof: We may assume that the largest strong component is unique, that it consists of all those
vertices u such that X (u) and Y (u) are both large, and that all other strong components are of size
less than A log n, where A is a constant; the contribution to the expected value of s of the rare
digraphs that violate this condition is o (1). Vertex v is exceptional if and only if it lies in a
directed cycle C of length between 2 and A log n such that either (a) for all w in C, X (w) is small
or (b) for all w in C, Y (w) is small. The expected number of vertices in cycles of each type is
bounded above by

t =2
Σ

Alogn

t
n (n − 1)...(n − t + 1)� ���������������������������������

��
� n

c���
���
�

t

.t Pn,t ,

where Pn,t is the probability that, for each vertex w in a given cycle of length t, X (w) is small.

Here
t

n (n − 1)...(n − t + 1)� ��������������������������������� is the number of cyclic sequences of t distinct elements from

{1,2, ...,n},

��
� n

c���
���
�

t

is the probability that all the edges of such a cyclic sequence are present in the

digraph D, and Pn,t is the probability that, for all w in such a cyclic sequence, X (w) is small.
This latter probability can be shown to be (1 − Θ)t + t 2 O ( log2n /n ) by a branching-process argu-
ment similar to the proof of Theorem 2; the only modification is that the zeroth generation of the
branching process is taken to have t elements (the elements of the cycle) rather than one. It fol-
lows that
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t =2
Σ

Alogn

t
n (n − 1)...(n − t + 1)� ���������������������������������

��
� n

c���
���
�

t

t Pn,t =
1 − c (1 − Θ)
c 2 (1 − Θ)2�	������������������� + o (1).

We must also consider directed cycles c of length between 2 and A log n such that, for each vertex
w in c, both X (w) and Y (w) are small. Similarly, the expected number of vertices in such cycles

is
1 − c (1 − Θ)2

c 2(1 − Θ)4� ��������������������� . the result now follows by the Principle of Inclusion and Exclusion. 


The foregoing results provide information about the probable structure of the transitive closure of
a digraph drawn from Dn, p(n) when np (n) is equal to a constant c greater than 1. Corresponding

results can be proven by similar methods when p (n) =
n

1 + ε(n)� ������������� , where ε(n) tends to zero and

log2 n

ε(n)3 n� �����������
n →∞→ ∞. These results are stated below without proof. In the statements we often abbre-

viate ε(n) by ε. Recall that, in this context, X (u) is said to be large if it lies in the interval

��
�

(1 + ε)2
2εn������������� − w (n) √ ε

n log n����������� ,
(1 + ε)2

2εn� ����������� + w (n) √ ε
n log n�����������


��
� ,

and small otherwise. Also, A (u) denotes the event that X (u) is large, and B (v) denotes the event
that Y (v) is large.

Theorem 3′3′. Let D be drawn from Dn, p(n), where p (n) =
n

1 + ε(n)� ������������� , where ε(n) tends to zero

and
log2 n

ε(n)3 n� �����������
n →∞→ ∞. Then, with probability tending to 1, the following statement holds for all u

and v: if X (u) is large and Y (v) is large then uRv.

Theorem 4′4′. Let E and F be any two distinct events from {A (u)} ∪ {B (v)}. Then
Pr [E | ¬ F ] ≥ Pr [E ] − O (ε−1 /n).

Corollary 2′2′. Let E and F be any two distinct events from {A (u)} ∪ {B (v)}. Then
Pr [E | F ] ≤ Pr [E ] + O (ε−2 /n).
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Corollary 3′3′. Let LARGEOUT = {u | X (u) is large}, LARGEIN = {v | Y (v) is large}, and
LARGE = {u | X (u) is large and Y (u) is large}. Let w (n) be a nondecreasing unbounded func-

tion. Then, with probability tending to 1, | LARGEOUT −
(1 + ε)2

2εn
� ����������� | ≤ w (n) n 1/2 ε− 1/2 ,

| LARGEIN −
(1 + ε)2

2εn
������������� | ≤ w (n) n 1/2 ε− 1/2 , and | LARGE −

(1 + ε)4
4ε2 n 2
������������� | ≤ w (n) n 1/2 ε− 1/2 .

Theorem 5′5′. Let w (n) be a nondecreasing unbounded function. Let D be drawn from Dn, p(n),

where p (n) =
n

1 + ε(n)
� ������������� , where ε(n) tends to zero and

log2 n

ε(n)3 n
� �����������

n →∞→ ∞. There is a constant A ′

such that, with probability tending to 1, D has exactly one strong component with more than
A ′ ε−2 ln n vertices, and the number of vertices in that strong component differs from
4ε2 n 2 /(1 + ε)4 by at most w (n) n 1/2 ε− 1/2 .

Theorem 6′6′ Under the same assumptions as in Theorem 5′, let s be the number of vertices that
lie in a strong component that is of size greater than 1 but is not the unique largest strong com-
ponent. Then the expected value of s is O (ε−1).

4. A TRANSITIVE CLOSURE ALGORITHM

In this section we present an algorithm for constructing the transitive closure of a digraph.
The algorithm runs in expected time O (n) on digraphs drawn from Dn, p ,provided that
| np − 1 | ≥ h, where h is an arbitrary small positive constant. If no restriction is placed on p,
then the algorithm is guaranteed to run in expected time O (w (n) (n log n)4/3), where w (n) is an
arbitrary nondecreasing unbounded function.

The execution time of our algorithm is clearly bounded above by the time required to write
down the output. Since the expected number of pairs in the transitive closure is Ω (n 2) when np
is greater than 1 + h, we adopt a special "Cartesian product representation" for the transitive clo-
sure: this representation is of the form (A × B) ∪ C, where A and B are sets of vertices and C is a
set of ordered pairs of vertices.

Let us check that this representation is sufficiently compact. Suppose first that
np = 1 + ε(n), where ε(n) ≥ w (n) (log n)2/3 n − 1/3 . By Theorem 3, we obtain a correct represen-
tation of the transitive closure, with high probability, by taking A = {u | X (u) is large},
B = {v | Y (v) is large}, and C = {(u,v) | (X (u) is small and v ε X (u)) or (Y (v) is small

and u ε Y (v))} By Theorem 2′, the expected size of the set C is O (
ε
n
��� ) = O (w (n) n 4/3 (log n)2/3),

and hence the expected length of the output is also O (w (n) n 4/3 (log n)2/3). On the other hand,
suppose that np ≤ 1 + ε*(n), where ε*(n) = w (n)1/2 (log n)2/3 n − 1/3 . Then the expected size of
the transitive closure is no greater than the expected size of the transitive closure when
np = 1 + ε*(n); and in that case, Theorems 1′ and 2′ tell us that the expected size of the transitive

closure is asymptotic to
(1 + ε*(n))4

4ε*(n)2
� ������������������� n 2 +

ε*(n)

n
��������� , which is O (w (n) (n log n)4/3 .
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Our algorithm will involve two primitive operations, NEXTSUCC (u) and NEXTPRED (u),
where u is a vertex. Each execution of NEXTSUCC (u) will return a vertex v drawn at random
from the set of vertices that are reachable from u by a single edge and have not been returned in
previous executions of NEXTSUCC (u); if no such vertex exists then NEXTSUCC (u) will return
the special symbol *. Similarly, successive executions of NEXTPRED (u) will return random
samples without replacement from the set of vertices from which u is reachable by a single edge.
We assume that each execution of one of these primitive operations takes unit time.

4.1. A METHOD OF COMPUTING THE SET OF VERTICES REACHABLE4.1. A METHOD OF COMPUTING THE SET OF VERTICES REACHABLE

FROM A GIVEN VERTEXFROM A GIVEN VERTEX

In preparation for giving the transitive closure algorithm, we present a procedure for com-
puting X (r), the set of vertices reachable from a given vertex r. This procedure finds elements of
X (r) one at a time. For all n, p and m, on digraphs drawn from DDn, p , the expected time for the
procedure to find min (m, | X (r) | ) elements of X (r) is bounded above by αm, where α is a con-
stant independent of n, p and m.

It is instructive to understand why the most obvious fanning-out method does not run fast
enough. The following procedure realizes a version of this method.

FORWARD BREADTH-FIRST SEARCH

The input is a digraph D and a root vertex r. The set X contains the vertices reached
so far, and the first-in first-out queue Q denotes the set of vertices that have been
reached but not yet completely scanned. When the procedure terminates, X is equal to
X (r).

X ← {r}; Q ← empty queue;
insert r into Q;
while Q is not empty do

u ← first element of Q
v ← NEXTSUCC (u);
if v = * then delete first element of Q;
if v ∉ X ∪ {*}
then insert v into Q; X ← X ∪ {v}

output X

Consider the execution of the algorithm while | X | = i. Every time the operation
NEXTSUCC (u) is executed, all vertices not previously found to be directly reachable from u are
equally likely to be returned. Thus, given that NEXTSUCC (u) does not return *, the probability
that it returns a vertex not previously reached is at least (n − i)/(n − 1). Hence, the expected
number of vertices drawn while | X | = i is at most (n − 1)/(n − i). Thus, the expected number of
accesses to NEXTSUCC lists, up to the point where m vertices have been reached, is at most��
�

i =0
Σ

m −1
(n − 1)/(n − i)

���
� + m, where the second term is an upper bound on the number of accesses
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that return *. This expectation is only reduced by the possibility that | X (r) | may be less than m,
since, in that case, the computation terminates before m vertices have been reached.

The summation

��
�

i =0
Σ

m −1
(n − 1)/(n − i)

���
� + m, is bounded above by a constant times m only

when m is bounded away from n; when m = n, the summation is Θ (n log n). Thus, the difficulty
with FORWARD BREADTH-FIRST SEARCH occurs when m is close to n. To get around this
difficulty we introduce an alternate algorithm that searches both forward and backward. In its first
phase it conducts a forward breadth-first search from r until either the search terminates or the
number of elements in the queue Q becomes greater than .1n. In the latter case, from each vertex
s that did not enter the set of vertices X reached from r during the forward breadth-first search, the
procedure conducts a backward breadth-first search, using the NEXTPRED operation, to deter-
mine the vertices from which s is reachable. As soon as s is found to be reachable from a vertex
in X the backward search from s terminates, and s is inserted into X. The procedure terminates
with X equal to X (r).

HYBRID SEARCH

X ← {r}; Q ← empty queue; insert r into Q;
while Q is not empty and | Q | ≤ .1n do

u ← first element of Q;
v ← NEXTSUCC (u);
if v = * then delete first element of Q;
if v ∉ X ∪ {*}
then insert v into Q; X ← X ∪ {v}

if | Q | > .1n then
for all s ∉ X do

X ′ ← {s}; Q′ ← empty queue; insert s into Q′;
while Q′ is not empty and X ∩ X ′ = φ do

w ← first element of Q′;
x ← NEXTPRED (w);
if x = * then delete first element of Q′;
if x ∉ X ′ ∪ {*}
then insert x into Q′; X ′ ← X ′ ∪ {x}

if X ∩ X ′ ≠ φ then X ← X ∪ {s}
output X

Theorem 6. For all n, p and m, the expected execution time required by HYBRID SEARCH to
find min (m, | X (r) | ) elements of X (r) in a digraph drawn from DDn, p , is bounded above by αm,
where α is an absolute constant.

Proof: At the point where backward searches are begun from the vertices not in X, each vertex u
in Q except possibly the one at the head of Q is "virgin"; i.e., no accesses have been made to
NEXTSUCC (u), and thus no edge (u,x) directed out of u has been excluded from being present in
the digraph. Now consider the backward search from a vertex s; each time a list NEXTPRED (x)
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is

accessed, each vertex u in Q (except possibly the one at the head of Q) is eligible to be drawn
(i.e., there is no conditional information that the edge (u,x) does not exist), and thus,at each step,

the probability that the next vertex drawn lies in Q is at least
n

| Q | − 1��������������� , which is at least .1. It

follows that the expected execution time of each backward search is O (1), and hence the total
expected execution time of the backward searches is O (n). Since the backward searches occur
only when | X (r) | > .1n, the expected execution time of the backward searches is bounded
above by a constant times | X (r) | .

It remains to be shown that the expected execution time of the forward search, up to the
point where min (m, | X (r) | ) elements are reached or the number of vertices in Q exceeds .1n, is
bounded above by αm. We break the analysis into three cases.

CASE 1: m < .95n. It suffices to note that the forward search conducted by the algorithm is a
truncation of FORWARD BREADTH-FIRST SEARCH, and that, when m < .95n,
FORWARD BREADTH-FIRST SEARCH finds min (m, | X (r) | ) elements of X (1)
in expected time bounded by a uniform constant times m.

CASE 2: m > .95n and np < 3. Let z be the unique root of 1 − x − e −3x = 0 in [0,1]. Then
z < .95, and thus, except with exponentially small probability, the inequality
| X (r) | < .95n will hold. The contribution of the exponentially rare cases in which
| X (r) | > .95n is negligible, since the worst-case running time of FORWARD
BREADTH-FIRST SEARCH is O (n 2). Thus, this case reverts to CASE 1.

CASE 3: m > .95n and np > 3. Consider the execution of FORWARD BREADTH-FIRST
SEARCH up to the point where Q becomes empty or .4n executions of the
NEXTSUCC operation have returned vertices (rather than *). Straightforward analysis
shows that each of the following two events has exponentially small probability:

(i) more than .2n vertices get scanned during this period;

(ii) Q does not become empty during this period, so that .4n executions of NEXTSUCC return
vertices, but the number of distinct vertices reached is less than .3n.

Thus, except in exponentially rare cases, Q will either become empty or attain size .1n by the
time .6n executions of NEXTSUCC have occurred (at most .4n of these will return vertices, and at
most .2n will return *). The exponentially rare exceptional cases make a negligible contribution
to the expected time for the forward search, since the worst-case running time of FORWARD
BREADTH-FIRST SEARCH is O (n 2). It follows that the expected execution time of the for-
ward search is O (m).

�
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4.2. THE MAIN ALGORITHM

We are now ready to present our transitive closure algorithm. The algorithm uses HYBRID
SEARCH as a subroutine for computing min (m, | X (r) | ) elements of X (r), where m is a
specified integer and r is a specified vertex; it also requires a "mirror image" procedure called
REVERSE HYBRID SEARCH that is used to compute min (m, | Y (r) | ) elements of Y (r), the
set of vertices from which vertex r is reachable. The execution of REVERSE HYBRID
SEARCH on digraph D can be viewed as the execution of HYBRID SEARCH on the digraph
obtained by reversing all the edges of D.

It is convenient to present our algorithm as a combination of three separate algorithms hav-
ing different domains of applicability. Let ε*(n) = w (n)1/2 (log n)2/3 n − 1/3 and let h be a small
positive constant. The first algorithm is applicable in the low density case, where
np (n) ≤ 1 + ε*(n); the second is applicable in the high density case, where np (n) ≥ 1 + h; and the
third is applicable in the intermediate density case where 1 + ε*(n) ≤ np (n) < 1 + h. We shall
refer to these three algorithms as the low density, high density and intermediate density algo-
rithms. It is not difficult to dovetail the three algorithms into a single algorithm that runs within
the claimed bounds on expected time for all values of n and p, and does not require the user to
specify p.

The low density algorithm is particularly simple. It computes the transitive closure expli-
citly, using HYBRID SEARCH to determine each set X (u). When np < 1 − h the expected size
of each set X (u) is easily seen to be less than 1/(1 − np), which is bounded above by 1/h. Thus
the expected time for each search is O (1), and the expected time for the entire algorithm is O (n).
When 1 − h < np < 1 + ε*(n) the expected size of each set X (u) is bounded above by the
expected size of X (u) when np = 1 + ε*(n); this latter expectation is equal to Pr [X (u) is
large] . E [X (u) | X (u) is large] + Pr [X (u) is small] . E [X (u) | X (u) is small] which, by
Theorems 1′ and 2′, is asymptotic to

(1 + ε*)2
2ε*

��������������� (2 ε*n) +
(1 + ε*)2
1 − 2ε*

��������������� (
ε*

n
� ��� ) = O (w (n) (n log n)4/3)

It follows that, in the range 1 − h ≤ np (n) ≤ 1 + ε*(n), the expected execution time of the algo-
rithm for the low density case is O (w (n) (n log n)4/3).

In the case where np > 1 + h the high density algorithm identifies a vertex r such that X (r)
and Y (r) are both large, and then computes the transitive closure in the form
(Y (r) × X (r)) ∪ C (r), where C (r) = { (u,v) | (u ∉ Y (r)) ∧ (v ∈ X (u))
∪ ((v ∉ X (r)) ∧ (u ∈ Y (v)). This representation is useful for the following reason: if (X (r) and
Y (r) are represented by n-bit arrays and C (r) is represented by a lexicographically ordered list of
ordered pairs then, using binary search, one can determine in time O (log n) whether any given
ordered pair (u,v) lies in the transitive closure. The algorithm for this case is as follows.

HIGH DENSITY ALGORITHM



- 18 -

/np > 1 + h/
m ←

�
4 h −2 ln n � ; r ← n

for i = 1 to n do
find min (m, | X (i) | ) elements of X (i);
if min (m, | X (i) | ) = m
then find min (m, | Y (i) | elements of Y (i);

if min (m, | Y (i) | ) = m then r ← i; go to EXIT

EXIT: compute X (r) and Y (r);
for v ∉ X (r) compute Y (v);
for u ∉ Y (r) compute X (u)
output (Y (r) × X (r)) ∪ C (r) where
C (r) = {(u,v) | (u ∉ Y (r)) ∧ (v ∈ X (u) ∪ ((v ∉ X (r)) ∧ (u ∈ Y (v)).

Theorem 7. Let h be a positive constant. Let g (n) be the maximum, over all p such that
np > 1 + h, of the expected execution time of the high density algorithm on digraphs drawn from
DDn, p . Then g (n) = O (n).

Proof: We shall show that each of the following is O (n):

(i) the expected time spent in the for loop;

(ii) the expected time to compute X (r) and Y (r);

(iii) the expected time to compute C (r).

The for loop terminates as soon as an index i is found such that | X (i) | ≥ m and
| Y (i) | ≥ m. Since np > 1 + h, the probability that the loop terminates in its first iteration is
greater than or equal to the probability of termination in the first iteration when np = 1 + h; by
Corollary 3, that latter probability is bounded below by a constant b. Each unsuccessful iteration
of the for loop examines 2m vertices, and thus conditions the behavior of later iterations, and
reduces the probability of termination. However, this reduction is not greater than the reduction
that would occur if all vertices reached in unsuccessful iterations were deleted from the digraph.
The probability that the (i + 1)th iteration is affected by such deletions is O (m2 i /n), and thus the
probability of termination at iteration i + 1, given that iteration did not occur during the first i
iterations, is greater than a − O (m2 i /n). It follows that the expected number of iterations is
O (1); and, since the expected time per iteration is O (m), the expected time spent in the for loop
is Θ(n). By Theorem 6, the expected time to compute X (r) and Y (r) using HYBRID SEARCH is
O (n).

Finally, by Theorem 3, we may assume that v does not lie in X (r) if and only if Y (v) is
small, and u does not lie in Y (r) if and only if X (u) is small. By Theorem 4, the expected size of
a small set is O (1), and thus the expected time for HYBRID SEARCH to compute each small set
Y (v) or X (u) is O (1); it follows that the expected time to compute C (r) is O (n). �



- 19 -

The intermediate density algorithm is identical with the high density algorithm, except that
the variable m, defining the boundary between large and small reachability sets, is set to�
4(ε*(n))−2 ln n � instead of

�
4 h −2 ln n � . By a proof quite similar to the proof of Theorem 7, we

obtain the following theorem.

Theorem 7′. Let k (n) be the maximum, over all p such that 1 + ε*(n) ≤ np ≤ 1 + h, of the
expected execution time of the intermediate density algorithm on digraphs drawn from Dn, p .
Then k (n) = O (w (n) (n log n)4/3). �

5. COMPUTATIONAL RESULTS

In this section we describe computational results obtained by Eddie Grove of the Computer
Science Division at Berkeley. His program generated random digraphs for various values of n
and p, and computed the following quantities: s, the number of strong components, g, the size of
the largest strong component, and a representation of the transitive closure in the form
(A × B) ∪ C, where A is the set of vertices from which the largest strong component is reachable,
and B is the set of vertices reachable from the largest strong component.

In Grove’s first experiment n was varied while holding np fixed at various values c > 1.
Our theoretical asymptotic results indicate that, when n is large and c > 1, the sets A and B
should each be of cardinality close to Θn, and g, the size of the largest strong component, should
be close to Θ2n, where Θ is the unique root in [0,1] of 1 − x − e − cx = 0. To facilitate comparison
with the asymptotic results, we give the values of Θ and Θ2 for each c > 1, and tabulate s and g, as
well as the following normalized quantities: g/n, | A | /n and | B | /n.

In Grove’s second experiment n was varied while holding np equal to 1 + n − 1/4 . One hun-
dred trials were carried out for each value of n. In this case our theoretical asymptotic results
indicate that, when n is large, the sets A and B should each be of cardinality close to
2 n 3/4 / (1 + n − 1/4)2 , and s, the size of the largest strong component, should be close to
4 n 1/2 /(1 + n − 1/4)4 . To facilitate comparison with the asymptotic results, we tabulate, for each n,
the average value of s, g, | A | , and | B | over the one hundred trials, and the quantities
2 n 3/4 /(1 + n − 1/4)2 and 4 n 1/2 /(1 + n − 1/4)4 .

The computational results agree well with the asymptotic theory; as expected, the conver-
gence to the asymptotic behavior is slowest when c is near 1. The results also confirm Theorem
6, which predicts that nearly every vertex will lie either in the largest strong component or in a
strong component of size 1.

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
c = 2 ΘΘ = .799 ΘΘ2 = .638

n s g g/n ||A||/n ||B||/n��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
8 6 2 .250 .375 .750

16 7 9 .562 .875 .688
32 18 14 .438 .562 .750
64 30 35 .547 .781 .672

128 70 59 .461 .750 .625
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256 72 185 .723 .855 .848
512 220 293 .572 .721 .795

1024 380 645 .630 .803 .785
2048 743 1306 .638 .798 .806
4096 1429 2668 .651 .800 .809
8192 2953 5240 .640 .793 .806

16384 5819 10566 .645 .799 .805
32768 12025 20742 .633 .799 .793
65536 24327 41210 .629 .793 .794
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�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

c = 1.8 ΘΘ = .732 ΘΘ2 = .536
n s g g/n ||A||/n ||B||/n

�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

8 8 1 .125 .125 .750
16 5 12 .750 .750 1.000
32 8 25 .781 .938 .844
64 30 35 .547 .797 .703

128 60 69 .539 .758 .703
256 129 127 .496 .742 .656
512 211 302 .590 .768 .762

1024 484 541 .528 .725 .730
2048 962 1087 .531 .732 .711
4096 2007 2090 .510 .715 .718
8192 3709 4483 .547 .743 .737

16384 7683 8702 .531 .730 .728
32768 15330 17439 .534 .729 .730
65536 30495 35042 .535 .732 .730

�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

c = 1.6 ΘΘ = .642 ΘΘ2 = .412
n s g g/n ||A||/n ||B||/n

�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

8 7 2 .125 .129 .125
16 7 10 .438 .562 .688
32 21 12 .469 .688 .719
64 50 15 .328 .453 .531

128 121 5 .547 .766 .742
256 158 98 .297 .496 .652
512 339 173 .504 .662 .734

1024 711 314 .448 .699 .636
2048 1652 397 .394 .660 .604
4096 2926 1171 .409 .627 .649
8192 6273 1910 .425 .648 .649

16384 12090 4293 .428 .645 .664
32768 24555 8214 .414 .639 .645
65536 48486 17038 .412 .645 .638
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�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

c = 1.4 ΘΘ = .512 ΘΘ2 = .262
n s g g/n ||A||/n ||B||/n

�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

8 7 2 .250 .750 .375
16 7 10 .625 .688 .938
32 21 12 .375 .594 .625
64 50 15 .234 .344 .391

128 121 5 .039 .539 .078
256 158 98 .383 .547 .684
512 339 173 .338 .566 .604

1024 711 314 .307 .566 .529
2048 1652 397 .194 .457 .440
4096 2926 1171 .286 .527 .537
8192 6273 1910 .233 .475 .501

16384 12090 4293 .262 .512 .515
32768 24555 8214 .251 .504 .502
65536 48486 17038 .260 .512 .510

�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

c = 1.2 ΘΘ = .311 ΘΘ2 = .097
n s g g/n ||A||/n ||B||/n

�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

8 7 2 .250 .250 .750
16 11 3 .188 .250 .875
32 32 1 .031 .031 .031
64 58 7 .109 .375 .188

128 91 25 .195 .547 .414
256 237 12 .047 .211 .316
512 506 7 .014 .062 .281

1024 947 75 .073 .318 .239
2048 1882 164 .080 .359 .250
4096 3600 485 .118 .345 .330
8192 7580 587 .072 .266 .280

16384 14906 1474 .090 .294 .312
32768 29567 3201 .098 .323 .310
65536 59002 6529 .100 .307 .326
�������������������������������������������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������

Table 1. Results of First Experiment
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��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Average Values
n s g ||A|| ||B|| 2n3/4/(1+n-1/4)2 4n1/2/(1+n-1/4)4

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

8 5 3 5 4 3.74 1.75
16 10 5 10 8 7.10 3.15
32 25 7 15 13 13.3 5.57
64 50 13 27 26 24.7 9.54

128 107 18 49 43 45.3 16.0
256 220 33 88 85 81.9 26.1
512 460 46 149 139 147 42.0

1024 950 67 254 239 262 67.6
2048 1923 115 470 459 463 104
4096 3916 167 807 802 807 160
8192 7914 260 1416 1453 1409 246

16384 15981 383 2450 2409 2441 360
32768 32186 557 4171 4234 4194 524
65536 64632 881 7479 7294 7209 786
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Table 2. Results of Second Experiment
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