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Some of the techniques that appear to be used in biological systems have the flavor of the
algorithms described here. Each of the sensory modalities makes use of some form of focus of at-
tention. Presumably this is a mechanism to devote higher level hardware to only a portion of the
data produced by lower level systems. In this way a single piece of high level hardware can be se-
rially applied to different parts of the parallel sensory input. If this were not done, the high level
hardware would need to be replicated for each sensory focus. This kind of pruning of sensory input
is very similar to the pruning of branches in the k-d tree to focus on only relevant knowledge. In
general, hierarchical representations may be used to prune away possibilities at a coarse level and
the strategy of proceeding from coarse to fine in the process of recognition is a common one. There
appears to be psychological and neurophysiological evidence of some form of hierarchical repre-
sentation in virtually every representation area of the brain.

The emergent aspect of the approaches described here arise from the construction algorithm
which attempts to form a hierarchical representation which is optimally adapted to the system’s ex-
periences. One would like a general theory of such algorithms which would apply to both general
algorithmic approaches and those bound by hardware constraints. The particular algorithms dis-
cussed here work in a top down manner and are off line (in that they need to be presented with all
the data before they build their structures). Related structures described in [26] may be constructed
in a bottom up on-line fashion and are probably more similar in character to what is possible with
dynamic networks. Understanding the formation of emergent hierarchical structure in realistic net-
works is a task of fundamental importance.

We have tried to give insights, in the context of specific examples, into someaspects of the
nature of emergent computation in geometric domains. It is clear that a fundamental understanding
of both the algorithmic and physical underpinnings of this kind of emergent computation will be
critically important for both future science and technology.
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bound on the radius of curvature. In general, only simplices with some dimension less than k+1 can
be formed with this constraint and asymptotically this dimension gives the dimension of the sur-
face. Branch and bound may be used to quickly find the closest point on the surface to a given
point. This gives a nonlinear analog of linear pseudo-inverses.

K-d tree like structures are used in Breiman, et.al, [2] for a variety of statistical tasks. For
many of these problems a generalization of k-d trees which we call boxtrees is superior. These
structures store an entire box at each node and the boxes of siblings are allowed to intersect, yet
they may be efficiently constructed and manipulated [26]. They are useful for learning and manip-
ulating not only smooth constraint surfaces, but also smooth probability distributions using adap-
tive kernel estimation [9]. They support efficient random variate generation and Bayesian and
maximum-likelihood inference. For distributions with fractal support they may be used to effi-
ciently estimate the Hausdorf and information dimensions. For classification, variants which use
information theoretic measure in construction are useful [14]. Boxtree structures also provide a
powerful generalization of standard techniques for image decomposition [31].

These structures are also useful as components in larger systems. Graph structures which rep-
resent dependency relationships have become important in both probabilistic domains, where they
are called influence diagrams or Bayesian networks [28, 32] and in deterministic domains where
they are called constraint networks [19]. Both of these domain types may be efficiently extended
to continuous variables by using boxtree structures at the nodes. It appears that in this context al-
gorithmic techniques may improve the speed and performance of the information propagation as
well [4].

7. Relevance to Parallel and Network Systems
While we have only described serial algorithms, many of the concepts are parallelizable.

Omohundro [24] describes a massively parallel algorithm for k-d tree retrieval with almost optimal
speedup on computers like the Connection Machine. When more exotic technologies are consid-
ered, algorithmic comparisons become more complex. While these algorithms eliminate much of
the computation that is needed in straight-forward network approaches, they still use as much
memory to store the structures. In some technologies the cost of memory structures may be equiv-
alent to the cost of computation structures, possibly nullifying some of the gains. In massively par-
allel systems, however, communication tends to be more of a bottleneck than computation. In this
case, the wasted communication required by the straightforward network approaches will still
cause systems which can prune away useless work to make better use of their hardware.

It is interesting to ask what relevance these considerations have for biological networks. Even
though brains are large and highly interconnected, they are still extremely constrained by compu-
tational limitations. For example, a straightforward representation of the space of line segments on
the retina might assign a segment unit to each pair of endpoints. Since there are about  fibers
in the optic nerve, this would require  units, more than using up our entire brain (this observa-
tion is due to Jerry Feldman). Similarly, it is easy to show that the completely connected networks
favored by many backpropagation practitioners would lead to brains of enormous size if applied to
any sizable chunks of cortex. Considerations such as these show that there are tremendous pres-
sures on nervous systems for efficiency in representation, computation, and communication be-
tween areas. Neural hardware has properties which are very different from those of current
computers and one expects the algorithmic trade-offs to be different. In particular, the locus of
memory and computation appear to be the same in biological networks.
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neighbor spheres, but even coarse bounds on the distribution of the radius yield the desired algo-
rithmic performance.

To compute the sphere determined byk+1 points, it is convenient to map the input space onto
a paraboloid of revolution in a space of one higher dimension [29] by sending (x1,..., xk) to (x1,...

xk, x1
2+...+xk

2).Hyperplanes in the space intersect the paraboloid in the image of spheres under

the mapping. To find the sphere determined byk+1 points one need only determine the hyperplane
that their images determine. The Delaunay triangulation corresponds under this mapping with the
convex hull of the images of the points. It is interesting to note that this construction shows that if
a linear-threshold model neuron is given an extra input which is the sum of the squares of the other
inputs, then its receptive field becomes a localized sphere. As the weights of the unit are varied,
the center and radius of the sphere change. The exact form of the nonlinearity is not crucial, and in
this way one may obtain biologically plausible neuronswith localized receptive fields whose loca-
tion and shape varies with simple linear weights.The figure shows a two-dimensional version of
this construction.

6. Extensions
The basic ideas outlined here may be extended in a variety of ways to give algorithmic tech-

niques for solving other important geometric learning tasks. Some of these are discussed in Omo-
hundro [24]. Here we will briefly mention a few extensions that are under active investigation. The
nonlinear mapping problems we have discussed have well defined input and output spaces. In
many situations the system knows the values of different features at different times and from them
would like to predict the values of the others. The relationship between the features may not be in
the form of a mapping but instead may be a multi-sheeted surface or a probability distribution. The
first case naturally leads to the task ofsubmanifold learning. The system is given samples drawn
from a constraint surface relating a set of variables. It must induce the dimension of the surface and
approximate it. Typical queries might include predicting the values of unknown features when a
subset of the features are specified (partial match queries). Geometrically this corresponds to find-
ing the intersection of the surface with affine subspaces aligned with the axes. In situations with
error, it should be able to find the closest point on a constraint surface to a given set. One approach
to this problem is closely related to the Delaunay approach to mapping learning. If the surface to
be learned isn’t self-intersecting and has bounded curvature (the analog of bounded Hessian), then
we may prove that asymptotically a bounded radius variant of the Delaunay triangulation will con-
verge on the surface with high probability. We only include spheres whose radius is less than the
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The first is to find a criteria for selecting a good triangulation for approximation. In general, long
skinny triangles will be bad, because the mapping may vary significantly in a nonlinear way along
the long dimension. The second problem is to efficiently find the simplex in the chosen triangula-
tion which contains the test sample, so that the linear interpolation may be performed. A nice so-
lution to both of these problems may be had by using a special triangulation called theDelaunay
triangulation [29].

The Delaunay triangulation is based on the fact that in a k-dimensional Euclidean space,k+1
points generically determine a sphere as well as a simplex. For example, in two dimensions, three
points determine both a circle and a triangle. A set ofk+1 sample points form the vertices of a sim-
plex in the Delaunay triangulation if and only if the sphere which they determine doesn’t contain
any other sample points. The bounding spheres of the simplices in the triangulation are thus as
small as possible and the triangles are as equilateral as possible. We have proven that among all

mappings with a given bound on their second derivative, the piecewise-linear approximation based
on the Delaunay triangulation has a smaller worst case error than that based on any other triangu-
lation. The intuitive idea behind the result is quite simple. The worst error arises in approximating
functions whose second derivative is everywhere equal to the maximum, i.e. with quadratic func-
tions whose graph is a paraboloid of revolution and whose level sets are spheres. When we linearly
interpolate through the values at the vertices of a simplex, the error will vanish on those vertices.
The worst error function therefore has a level-set which is the sphere determined by the vertices of
the simplex. The worst error occurs at the center of the sphere and is proportional to the square of
the radius. At any input point the worst possible error is smaller when the spheres are smaller, so
the Delaunay triangulation is best. It is straightforward to make this argument rigorously.

The Delaunay triangulation is also useful because the determination of which simplices are
included may be made locally in a region of the input space. If we decompose the input space with
ak-d tree built around the input samples, then the leaf boxes are small where the Delaunay spheres
are small and large where they are large. A branch and bound algorithm very similar to the nearest
neighbor finding algorithm may be used to determine the Delaunay simplex containing an input
point in logarithmic time. Again we maintain the smallest Delaunay sphere whose simplex contains
the point in question. We descend the tree, pruning away any branches whose box doesn’t intersect
the current Delaunay sphere and obtain the provably correct simplex in log expected time. It is not
as easy to analytically obtain the probability distribution of Delaunay spheres as it is of nearest
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the root. Successive “info max” cuts like this do not necessarily yield the “infomax” tree but the
resulting tree should be fairly close to it.

How is this adapted tree used to find the nearest neighbor of a test sample? As described
above we find which leaf box the sample lies in log expected time. For many practical purposes,
simply using the stored samples in this leaf box will be sufficient, yielding an extremely fast clas-
sifier. The nearest neighbor might not be in the same leaf box, however, if it is close to the edge of
a neighboring box. To find it, Friedman,et. al. [13], presents a branch and bound technique. We
maintain the distance to the nearest sample point seen at any point in the algorithm. We descend
the tree, pruning away any subtrees which cannot possibly contain the nearest point. If the entire
box associated with a node is further from the test point than the nearest point seen so far, then the
nearest neighbor cannot possibly lie within it. This branch of the tree need then be explored no fur-
ther. Eventually all branches will have been pruned and the closest point seen so far is guaranteed
to be the nearest neighbor. Both the nearest neighbor balls and the leaf boxes are big in low density
regions and small in high density regions. Using a precise version of this observation, one may
prove that on average only a constant number of leaves need be explored for any number of stored
samples. The entire process is then asymptotically dominated by the initial logarithmic search.

5.2 Mapping Learning

How might we apply similar ideas to the problem of learning nonlinear mappings? As we
have discussed, we would like the system to interpolate between nearby training examples in eval-
uating the output for a test sample. Simple techniques, such as linearly interpolating between the
values at thek+1 nearest neighbors can work well in certain circumstances [8, 12,24], but leads to
discontinuous approximations. A more well behaved approximating mapping may be constructed
from anytriangulation of the sample points. If the input space isk-dimensional,k+1 vertices are
needed to define each primary simplex (i.e. higher dimensional tetrahedron) in a triangulation.k+1
output values are also needed to perform linear interpolation. If we choose a triangulation, then lin-
ear interpolation of the vertex values within each simplex yields a continuous approximating func-
tion. The diagram shows an approximation of a mapping from a two-dimensional input space to a
one dimensional output space. There are two problems immediately suggested by this approach.

Output
Space

Input Space

Triangulation of
Input points

Piecewise
Linear
Approximation
of Mapping
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partitioning of a three-dimensional input space (k=3).

There are four leaves in the tree whose corresponding box regions are labelled A, B, C, and D.

K-d trees are extremely simple and efficient to represent in the computer and yet they directly
support a simple kind of geometric access. If we want to know in which leaf box a sample point
lies, we need only descend the tree, at each node comparing the point’sd-th component with the
valuev. If it is less than or equal tov, we proceed to the left child, otherwise to the right, halting
when we reach a leaf. The number of comparisons involved is equal to the depth of the tree. If the
tree is balanced, it is logarithmic in the number of nodes.

For nearest neighbor finding, we need ak-d tree which is adapted to the training data. Each
node is associated with the set of training samples contained in its box. The root is associated with
the entire set of data. If we build the tree top down, for each node we need to decide which dimen-
sion to cut and where to cut it. There are several useful strategies here but the simplest is to cut the
dimension in which the sample points associated with the node are most spread out and to cut it at
the median value of those samples in that dimension. One might continue chopping until only one
sample remains in each leaf box, but it is often useful in practice to leave a small number (eg. 10)
of samples in each leaf bucket. The expected shape of the leaf boxes under this procedure is as-
ymptotically cubical because the long dimension is always cut. If the points are drawn from an un-
derlying probability distribution, the expected probability contained in each leaf box is the same
because cuts are made with an equal number of samples on each side. Thus the leaf partition is
beautifully adapted to the underlying probability distribution. It chops the space into cubes which
are big in the low density regions and small in the high density regions.

 It is interesting to relate this strategy to Ralph Linsker’s information theoretic analysis of
neural adaptation strategies [18]. He suggests that a powerful way for networks to adapt is to adjust
their properties in such a way that the mutual information between their inputs and outputs is max-
imized subject to any architectural constraints on the units. If the samples are subject to small ad-
ditive noise, then thek-d cutting procedure maximizes the mutual information between an input
sample and the "yes/no" question of which side of a cut it lies on. Using an argument similar to that
in Linsker [17] one can see that cutting at the median makes the output most informative and cut-
ting the long dimension makes the volume of the cut as small as possible, minimizing the region
of confusion caused by the noise. Of all the allowedk-d cuts at a given stage, the procedure chooses
the one which is expected to give the most information about the input sample as we descend from
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using nearest neighbor classification is asymptotically at most twice that of any other classifier.
There are many variants on the basic scheme. For example, if there are labelling errors in the train-
ing set, it may be advantageous to let the nearestm neighbors vote on the class label.

While this basic procedure appears to depend on the notion of distance used, it is in practice
quite robust. There are two length scales associated with a classification problem: the scale of sig-
nificant variation in the underlying probability distributions and the typical spacing of training ex-
amples. Any of a wide variety of distance metrics which preserve the distinction between these two
scales will give similar results. For a fixed number of samples, scaling one of the dimensions by a
large enough number that the sample spacing becomes comparable to the scale of class variation
along other dimensions will dramatically lower classification accuracy. For any fixed metric, how-
ever, such effects wash out as the number of samples increases. While there are many such practi-
cal issues to consider, we will simply consider an algorithmic technique for the basic task of
finding the nearest neighbor.

Algorithms for finding nearest neighbors are studied in the field ofcomputational geometry.
This discipline was developed less than 15 years ago but has blossomed in recent years [10, 16].
Most of the work has been concerned with algorithms with good worst case performance. The most
straightforward approach to nearest neighbor finding is to measure the distance from the test sam-
ple to each training sample and choose the closest one. This requires a time which is linear in the
number of samples. Unfortunately, it doesn’t appear that in high dimensional spaces the worst case
performance can be much better than this. If there are twice as many samples in a system, the re-
trieval will take twice as long. Most commercial speech recognition and optical character recogni-
tions systems on the market today use the straightforward approach and so are limited in the
number of training samples they can deal with.

In practical applications one is usually concerned with good performance on average rather
than with worst case performance, but theoretical analyses are then faced with the choice of distri-
bution to average with respect to. The field of non-parametric statistics has developed techniques
for analyzing the average properties of sets of samples drawn fromunknown underlying distribu-
tions. Friedman,et. al. [13] used some of these techniques to develop a nearest neighbor finding
algorithm which asymptotically runs in a time which on average is only logarithmic in the number
of stored samples.

The algorithm relies on a data structure known as ak-d tree (short fork-dimensional tree).
This is a binary tree with two pieces of information stored at each node: a dimension numberd, and
a valuev. The nodes correspond to hyper-rectangular regions of the input space which we shall re-
fer to asboxes. The root of the tree corresponds to the whole space. The two children of a node
correspond to the two pieces of the parent’s box that result when thed-th dimension is cut at the
valuev. The left child corresponds to the portion of the box in whichxd ≤ v and the right to the

portion in whichxd > v. As we descend the tree, the root box is whittled down to smaller and small-

er boxes. The boxes of all the nodes at a given level in the tree form a partition of the input space.
In particular, the leaf boxes form theleaf partition. Each box may be cut along any of thek dimen-
sions and may be cut at any value which it includes. As a simple example, the diagram shows the
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basic trick of computer science: divide and conquer. Here the input space is two-dimensional and

the hyperplanes corresponding to input units are just lines. Once we have determined that the input
point is above lines A and B, there is no longer any need to compare it with line C; it must lie above
it. In this manner we can use the results of earlier queries to rule out possibilities and avoid having
to do computation. In the next section we will discuss techniques for ruling out about half of the
remaining possible questions for each question that is asked. In this way the number of questions
whose answer must actually be computed is only the logarithm of the number of possible questions.

To see what effect such an approach might have on realistic computational problems, consid-
er the robot arm task. Let us analyze the approach based on units with overlapping localized recep-
tive fields. If we assign 50 units to represent each dimension, we need a total of 50 × 50 × 50 or
about 100,000 input units. Each input unit synapses on each of the 12 output units, so there will be
over 1,000,000 weights. On each input presentation, there is a multiplication and an addition asso-
ciated with each weight, so there are at least two million floating point operations involved in each
query. For any particular query, only about 50 of these operations are actually relevant to the out-
put. Variants of the algorithmic approaches discussed in the next section need only about 100 float-
ing point operations to complete the task. The extra operations are used in the determination of
which operations are actually relevant to the output. We see that even on this relatively small prob-
lem the speedup can be a factor of 20,000. For larger tasks, speedups can be even more spectacular.

5. Algorithmic Implementations
Let us now consider algorithmic approaches to the two problems under consideration. We

will present specific solutions for illustration’s sake, but there are many variations which may be
superior in specific situations. The presentation is intended to emphasize algorithmic techniques
whose basic principles are applicable to a wide variety of specific procedures.

5.1 Classification

There are many different approaches to learning a classifier from examples. In the asymptotic
limit of a large number of examples, however, there is a universal classifier which does nearly as
well as any other. Nearest neighbor classification simply assigns a new input the class label of the
nearest training example. A theorem proved by Cover and Hart [6] shows that if we describe the
classes by probability distributions on the input space, then the probability of a classification error

Input

Input Space

A B

C
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We may take advantage of the smoothness of the desired mappings while still retaining many
of the advantages of localization by allowing the input receptive fields to overlap somewhat. In the

diagram we see the activities of six input neurons as a function of a one-dimensional input. The
response is peaked at the center of each receptive field and dies down linearly away from it. Neigh-
boring input neurons have overlapping receptive fields. We again assume a single linear output
neuron for each output dimension which receives input from each input neuron. A simple learning
procedure will allow the system to approach a piecewise linear approximation of the desired map-
ping. If each unit has the correct output when the input is at its center, then as we move from one
center to the next, the output linearly interpolates between the two central values. Similar behavior
may be achieved in higher dimensions by making a unit’s receptive field be the star of a vertex in
a triangulation and its response be linearly decreasing to zero in each bordering simplex. Again the
receptive fields may be made adjustable, though now they need only be small in regions of high
curvature rather than high variation. Again, precise error bounds may be obtained for mappings
with bounded Hessian. The learning procedure is no longer one-shot, but must only simultaneously
adjust the weights of units with overlapping receptive fields and so is fast, reliable, and analyzable.
The degree of approximation and level of generalization of this kind of representation is far greater
than with non-overlapping units, and yet most of the advantages of localization are retained. This
kind of coding appears to be used extensively in biological nervous systems, especially near the
periphery.

4. Why Networks Can Be Inefficient
We can see immediately the origin of computational inefficiency in networks with localized

units. For each input presentation we must evaluate the state of each unit in the network, even
though only a few of them contribute to the desired output. If you are only worried about the state
of your hand, all of the computational capacity in the sensory system of your legs is wasted. This
same kind of inefficiency occurs in the networks with global receptive fields, though it is less ob-
vious. As an example, consider a perceptron classifier made up of linear threshold units. The hy-
perplanes corresponding to the input units partition the input space into regions. Within each region
the classifier must produce the same response. The perceptron learning algorithm adjusts the hy-
perplanes to fit the desired classification regions as well as possible. To determine the classification
of an input we need only know which partition region the input lies in. A perceptron network de-
termines this by computing the activity of each unit. This corresponds to testing the input against
each hyperplane. Looking at the diagram, however, we see that this task might be amenable to that

1 2 3 4 5 6
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Most of the problems with backpropagation in geometric domains stem from the fact that the
units have global “receptive fields”. By the receptive field of a unit we mean the region of the input
space in which that unit has significant activity. The units in the class of networks we have de-
scribed tend to have very large receptive fields. A single linear-threshold unit is active in the entire
region of the input space which is bonded by a hyperplane. As the weights are varied, the hyper-
plane moves about. When the mapping is incorrect in a part of the space, it is the units whose re-
ceptive fields overlap that portion which have their weights adjusted. When receptive fields are
global, most of the units must be adjusted for every kind of error. In correcting an error in one part
of the space, there is a tendency to disrupt improvements made in another part. The large receptive
fields are also largely responsible for the problems with local minima. Because a unit contributes
to so many regions of the mapping, it is possible for it to get wedged in a position where any weight
change is detrimental, even though there is a better state available. Several authors have discussed
advantages of localized receptive fields [1, 35, 23].

The extreme of a network with localized receptive fields would have a separate input neuron
for each small region of the input space, with no overlap. In the diagram we only show one output

neuron. There will be as many such neurons as there are output dimensions. Learning a mapping
in such a network is trivial. The partition of the input space shows the regions within which each
input neuron fires. For any given input, only one input neuron is active. This makes the learning
procedure extremely simple and fast. For each input/output pair, the system need only set the
weight for the active input neuron at the value which produces the desired output level. This simple
learning rule gives a piecewise constant approximation to the mapping. It is easy to give explicit
error bounds for a set of units representing a mapping with bounded Jacobian [24]. The receptive
fields may also be adaptive to the underlying mapping, being larger in regions of small variation
and smaller in regions of high variation. There are several approaches to adjusting the receptive
fields automatically [15]. Such a system generalizes by assuming that the output should be constant
over the disjoint receptive fields of the input units. For smooth functions, we can do much better
than this. Consequently, the extreme localist representation tends to require a large number of units
for a given level of accuracy.

Input Space

One
dimension of
Output

Piecewise constant
mapping approximation

Output

Input
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output to each output neuron. The output of each model neuron is obtained by composing a linear

combination of its inputs with a nonlinear “squashing function” such as a sigmoid. In forming the
linear combination, each input to a neuron is multiplied by a “weight” which is meant to represent
the strength of a biological synapse. For each setting of the weights the whole network computes
a mapping from the input space to the output space. As we vary the weights, the mapping varies in
a smooth but complex way. During learning the system is presented with inputs and the corre-
sponding desired outputs. For any setting of the weights the mapping implemented by the network
will make some errors compared to the desired mapping. If we estimate this error by taking the
mean squared error on the training set, we obtain an error function on the space of weight settings
of the network. The backpropagation learning procedure just performs gradient descent on the error
in this weight space. One cycles through the training set and on each example changes each weight
proportionally to its effect on lowering the error. One may compute the error gradient using the
chain rule and the information propagates backwards through the network, which accounts for the
procedure’s name.

There has been much recent interest in this learning procedure partly because it is easy to im-
plement and apply to a wide variety of problems. Unfortunately, a number of difficulties with it
have become evident with experimentation. If one has an engineering task to solve, there are at
present no techniques for obtaining bounds on how well a specific network will do on the task. The
choice of how many hidden units to use is something of a black art. If there are too many, the net-
work tends to just store the training examples and generalizes inappropriately. If there are too few,
then it won’t have sufficient representational power to approximate the desired mapping. The train-
ing procedure tends be very slow and unpredictable, often depending strongly on the random start-
ing conditions, and getting stuck at suboptimal local minima. Preliminary experiments indicate that
the procedure doesn’t scale well with the size of the problem [33]. If one is thinking of constructing
large systems, it is a disadvantage that the activity of the units typically doesn’t have a well defined
“meaning” in terms of the input patterns. The procedure also appears to be biologically implausi-
ble.
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Input
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The traditional approach to implementing a system of this type [27] would be to write down
a set of model equations for the kinematics of the arm and for the imaging geometry of the camera,
to form their composition analytically, and to evaluate the resulting mapping numerically. If the
system is precisely constructed, such an approach can work well. With inexpensive or changing
components, however, such an approach is likely to end up smashing the arm into the table. Biol-
ogy must deal with the control of limbs which change in size and shape during an organism’s life-
time. An important component of the biological solution is to build up the mapping between
sensory domains by learning. A baby flails its arms about and sees the visual consequences its mo-
tor actions. Such an approach can be much more robust than the analytical one. MURPHY’s cam-
era had an auto-focus lens which caused the imaging geometry to vary dynamically as the arm
moved. The system cheerfully succeeded in learning the effects of this complexity.

We have identified two important geometric learning tasks. As shown in the diagram, a clas-

sification learner must form a partition of the input space based on labelled examples. The geomet-
ric inductive bias should cause it to prefer to label nearby points similarly, leading to compact
partition regions with small boundaries. Mapping learning is more like interpolation. We would
like the learner to smoothly change the output as we vary the input. In [25] we discuss other a va-
riety of other geometric learning tasks that arise in the visually guided robot arm domain.

3. Artificial Neural Network Implementations
How might we build a system to perform these learning tasks? One currently popular ap-

proach is to use an artificial neural network with the backpropagation learning rule [20]. In this ap-
proach the system consists of a number of model neurons connected in a feedforward network. To
be specific, let us consider the robot arm task described above. The system is supposed to learn a
smooth mapping from a three-dimensional space to a twelve-dimensional one. We may represent
the input vector by the real valued activities of three input neurons and the output vector by the real
valued activities of twelve output neurons. In addition there is an intermediate layer of units (usu-
ally called thehidden layer), each of which receives input from each input neuron and sends an
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jected onto the horizontal and vertical axes. The extracted feature vector is sent to a classifier
whose job it is to choose the ASCII character which produced the image. A wide variety of fonts
are used in modern publications and current systems attain robustness by using learning. A system
is trained by presenting it with a sample document along with the identity of its characters. The
system must adjust its classification procedure on the basis of this example input. Any classifier
defines a partition of the input space with a region corresponding to each possible output. An adap-

tive classifier must learn this partition from a set of labelled examples.

An example of a system for the evaluation of smooth nonlinear mappings which was studied
in my laboratory is provided by MURPHY, a visually guided robot arm [21]. The system controls
three of the joints of robot arm and receives visual feedback from a video camera. Six white dots

are painted on the arm and a real-time image processing system is used to identify their x and y
coordinates in the image. The system thus has two descriptions of the state of the arm: a kinematic
one represented by a vector in the three-dimensional space of joint angles, and a visual one repre-
sented by a vector in the twelve-dimensional space of image dot locations. Because many problems
are specified in visual coordinates, but the system only has direct control over kinematic coordi-
nates, one important task is for the system to predict the visual state corresponding to any given

kinematic state. This is a smooth nonlinear mapping from  to . In Mel [21], this mapping
was used as the basis for a variety of behaviors including reaching around visually defined obsta-
cles to reach a visually defined goal.

A

B

C

D

Input space partition defined by a classifier.

System

Camera

Arm

Kinematic space Visual space

R
3

R 12

ℜ3 ℜ12



Geometric Learning Algorithms Page 3

of intelligence. The idea was that if one just found the right clever inference mechanism, a simple
system could exhibit human level intelligence (apparently John McCarthy believed that a PDP-1
was a sufficiently powerful computer for human level performance [7].) Unfortunately, the early
AI systems were found to be quite rigid and to lack common sense [3].

 During the seventies interest shifted away from fancy inference mechanisms and toward the
representation of task-specific knowledge. The success of a variety of expert systems showed that
with enough knowledge even systems with quite limited inferential power could perform quite
well. The phrase “knowledge is power” was used to describe the new emphasis. It is now believed
that large amounts of knowledge about a domain are needed to achieve human level performance.
Recent estimates suggest that people know at least 70,000 “chunks” of information in each of the
domains in which they are expert [30]. Most AI systems are currently constructed entirely by hand
and an enormous effort would be needed to give them anywhere near this amount of knowledge.
It is perhaps this realization which has stimulated the great interest in machine learning, neural net-
works, and other systems with emergent computation during the past few years.

We would like machines to build up their knowledge bases through experience, as people do.
Simply remembering past experiences is a conceptually trivial task. The key to effective learning
is the ability togeneralize previous experience to new situations. It is difficult to precisely identify
the nature of desirable generalizations because of the philosophical obstacles in inductive logic and
the philosophy of science as discussed by Churchland [5]. Any criterion which a procedure uses to
prefer one generalization over another, such as Occam’s razor, is called theinductive bias of the
procedure. Many different inductive biases have been studied in purely symbolic domains [22].

Unlike general domains, there is a natural inductive bias in geometric domains such as those
of interest here. We might call this bias theprinciple of continuity. Unless a system explicitly
knows otherwise, it should assume that geometrically nearby perceptions correspond to nearby
states of the world. A system faced with a problem can apply previous experiences which were geo-
metrically near to it. We will call problems in which this inductive bias is applicable “geometric
learning” problems. Learning tasks are generally separated into “supervised learning” in which a
teacher provides example inputs with corresponding desired outputs and “unsupervised learning”
in which there is no teacher present and the nature of the task is more amorphous. There are a large
number of important tasks for which the basic point made here is relevant, but we will focus on the
two most natural supervised geometric learning tasks: classification learning and smooth nonlinear
mapping learning.

For both of our tasks, we will assume that the input to the system may be represented as a

point in ann-dimensional Euclidean feature space. The geometric structure of this space is
meant to capture the geometry of the input in the sense that inputs which are close in Euclidean
distance in the space should have a similar structure in the world. For classification tasks, the out-
put of the system is one of a discrete set of classes. For mapping tasks, the output lies in another
continuous space and varies smoothly with changes in the input.

A topical example of classification isoptical character recognition. There are now several
products available for scanning documents as bitmap images and converting them to machine-
readable text. After the images of individual characters have been isolated, the essential recogni-
tion step is to classify them as characters. Most of the commercial products work by extracting
about ten or twenty real-valued features from the image of the character, such as the ratio of its
width to height, the density of its darkened pixels, or Fourier components of its image density pro-

ℜn
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implementation are. The three terms used in this paper’s title suggest that such a discipline will be
a symbiosis of the fields of mathematics (geometric), statistics (learning), and computer science
(algorithms). While the joint interaction of these three fields together appears to just be beginning,
there has been significant recent activity between them in pairs. Stochastic geometry studies sta-
tistical properties of geometric entities and much of classical statistics is being reformulated in a
geometric coordinate-free form, the statistical analysis of probabilistic algorithms has become a
central topic in theoretical computer science and computational issues have begun to be of critical
importance to modern statistical analysis, and computational geometry and computational learning
theory have flourished in the last decade. The time appears ripe for the development of a deeper
understanding of emergent computation for the geometrical tasks essential to perception and motor
control.

In this paper we will focus on the learning of relationships which have a geometric character
to them. This is a small subclass of all possible emergent behavior, but it is one which is relevant
to perceptual and motor tasks. We will examine a spectrum of implementation choices ranging
from artificial neural networks to computational geometry algorithms and will identify some im-
portant trade-offs between them. We will see that in the network approaches a fundamental choice
is the extent to which individual units are localized in their response. The use of localized units
leads to faster and more reliable learning and is more robust in general, but global units may be
more efficient if they are specifically tuned to the task at hand. We present a new biologically plau-
sible implementation for a localized unit.

It is particularly clear in the systems with localized representations, but also true for those
with global ones, that much of the computation involved in a typical retrieval is not actually used
in determining the answer. We examine computational techniques for avoiding this computational
inefficiency and describe some powerful data structures which have proven to be efficient, power-
ful, and easy to implement in practice. We describe a geometric construction known as the De-
launay triangulation and show that it is an optimal decomposition in a certain sense and that it may
be efficiently implemented computationally. The algorithmic ideas presented apply to both serial
and parallel implementations and the underlying concepts are generally useful for the construction
of emergent systems. We describe how the basic concepts naturally lead to networks which employ
strategies, such as focus of attention, which are commonly seen in animal brains. We also discuss
extensions to both the emergent tasks and their implementations.

2. Two Geometric Learning Tasks
Our motivating goal is the construction of the components of an intelligent system which in-

terface with the physical world. On the input side this includes components for visual, auditory,
and somatosensory perception, and on the output side, graphics, sound production and robotics.
These components must provide the interface between the primarily geometric nature of the world
and the apparently symbolic nature of higher intelligence. As Harnad [11] discusses, it is these in-
terface systems which provide the conceptual grounding for internal symbols.

An example task of great importance is visual object recognition. It takes you perhaps half a
second to visually recognize the volume in your hands as a book, yet no current engineered systems
are capable of this task. Because this kind of processing happens so quickly and is mostly below
the level of consciousness, people notoriously underestimate its difficulty. Artificial intelligence
researchers in the early sixties consistently underestimated the time and computing power needed
for intelligent computation. Partly motivating this optimism was a belief in a kind of “holy grail”
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Abstract

Emergent computation in the form of geometric learning is central to the de-
velopment of motor and perceptual systems in biological organisms and promises
to have a similar impact on emerging technologies including robotics, vision,
speech, and graphics. This paper examines some of the trade-offs involved in dif-
ferent implementation strategies, focussing on the tasks of learning discrete classi-
fications and smooth nonlinear mappings. The trade-offs between local and global
representations are discussed, a spectrum of distributed network implementations
are examined, and an important source of computational inefficiency is identified.
Efficient algorithms based onk-d trees and the Delaunay triangulation are presented
and the relevance to biological networks is discussed. Finally, extensions of both
the tasks and the implementations are given.
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1. Introduction
Intelligent systems must deal with complex geometric relationships whenever they interact

with their physical environment. The relationship between the motor signals sent to a set of mus-
cles and the corresponding effect on the configuration of an organism’s body in space is extremely
complex and yet must be faithfully represented internally if the organism is to be able to effectively
plan and carry out effective actions in the world. The relationship between the pattern of stimuli in
different sensory modalities and the physical properties of the stimulus source is similarly geomet-
rically complex. As if this intrinsic complexity wasn’t enough, the perceptual and motor relation-
ships change dramatically during an organism’s lifetime as its size grows and its morphology
matures. On an evolutionary time scale the change is even more dramatic and alterations to the or-
ganism’s somatic form must be accompanied by altered internal models of its interaction with the
world. A powerful strategy in the face of this variability is to base systems at least in part on learned
instead of hardwired relationships. Aspects of the computations required must emerge during the
interaction of the organism with the world.

As we attempt to build ever more complex and adaptive machines, we as engineers are faced
with similar pressures toward systems in which at least part of the computational behavior is emer-
gent. If successful, such systems should be far more robust and flexible than current hardwired sys-
tems. It is clear, however, that we are still at an early stage in the development of a discipline which
will tell us which aspects of such systems can be made emergent and what the best approaches to


