PraatLib 0.3

Michael Feld, Michael.Feld @dfki.de
Gerald Friedland, fractor@icsi.berkeley.edu

Introduction

PraatLib 0.3 is a Praat C++ Library Wrapper that contains routines designed mainly for three
purposes:

1) To provide access to the full set of Praat functions as a C++ library which can easily be integrated
into other applications

2) To provide performance optimizations of Praat routines, including some that may have a trade-off
between accuracy and speed (in which case a switch is available)

3) To have a feature-oriented wrapper around the Praat functions. The idea is to provide a simple-
to-use interface that takes care of the computing of all eventually needed intermediate objects
while avoiding redundant computations i.e., you only need to specify a sound file and the features
to be extracted.

This library is based on Praat (http://www.praat.org) version 5.0.3.0 source code, which is available
under GNU General Public License v2. As a result, PraatLib is also available under the GNU
General Public License v2.

Technicalities at a Glance

The library is provided as a static library (1i bpr aat . a) which is pre-compiled for Red Hat 4 Linux, as
well as a header file (Praat Sound. h) containing the required declarations. To use it, include the
header file in your C++ source code and link the library Iibpraat.a to your application (e.g. g++
myapp.o libpraat.a).

e The provided binary library is compiled for Red Hat 4 Linux. For use with different architectures,
the library might have to be recompiled using the supplied Makefile (see “Compiling the Library}.

e The wrapper has to be called from C++ code. The rest of the functions should also be callable
from C code.

e Some Praat functions are dependent on dynamic system libraries; however, it is very unlikely that
they will ever need to be called in the library use-case.

e Using Praat as a native Win32 library will not be possible without a number of modifications, MAC
OS X might work but we did not test it.

Basic Usage

If you want to use the Praat functions directly, you can do this by simply including the corresponding
header files from Praat and calling the functions.

http://www.praat.org/
mailto:Michael.Feld@dfki.de
mailto:fractor@icsi.berkeley.edu

The wrapper is contained of a single class named PraatSound. You will need to create one such
object for each sound file that is to be processed. Do not forget to destroy the object using delete
afterwards to free the memory required by the sound and all cached intermediate data structures.

The constructor of PraatSound will require the file name of the audio file as an argument (either as
normal or wide characters). Only file formats readable by Praat are supported (e.g. WAVE and NIST
Sphere). To achieve maximum computational efficiency, the entire audio file is read into
memory.

If an error occurs within the wrapper library for some reason, an integer exception is thrown and an
error message is printed on the console.

After the sound file has been loaded, you can request features from it. There are basically two
methods for doing this:

1) Calling each feature extraction function separately.

2) Calling the fnu lti-extract” function with a list of features that are to be extracted in one call.

The names of the feature extraction functions have to be looked up in the Praat Sound. h header file
or in the list below (see Feature Index). The function for extracting multiple features is

doubl e* GetMultiple(char** features, int numfeatures, int segnent = -2)

It receives an array of feature names (see Feature Index), the number of elements in the array,
and - optionally — a segment number (see below). The return value will be an array with one value
per feature.

Note: The approach using Get Ml tiple(...) is slightly slower because of the string comparisons,
but this should not be a concern except for very optimized applications.

Most feature computation functions have associated parameters. When you are using individual
functions to compute the features, the parameters are specified as function arguments. For easier
handling, each parameter has a reasonable default value (taken over from Praat), so you do not
need to specify any of them. Parameters and default values can be looked up in the header file. For
the multi-feature-extraction method, there are public fields in the PraatSound class that can be set to
the default values. However, because some variables are re-used for multiple features (e.g. the
minimum frequency is used for both pitch_mean and pi t ch_st ddev features), there are some cases
where you have to call the individual functions.

The library will compute the required intermediate objects as needed, caching them when possible.
Yet, only one object is cached for each combination of parameters, so if you need to extract several
features with different sets of parameters, try to group them by their parameters (i.e. pitch_nin and
pi t ch_max with parameter set A together, instead of pi t ch_ni n with parameter set A and B together).
The return value is always of type doubl e. Sometimes features cannot be computed e.g., pitch for
unvoiced segments. In this case, the special value | NF is returned.

Specifying Segments

The library can extract features either on the full waveform or on segments. To accomplish this,
each feature extraction function provides an optional “segment” argument, which is the first
argument for all functions except Get Mul tiple(...). If omitted or if -1 is specified, it will default to
using the entire sound file.

Segments are referred to by their index. To extract a feature for a specific segment, specify its index
for the segment parameter. There two ways to define segments:

1) Call segnent sd ear (i nt capaci t y) with the maximum number of segments you want to add, then
call segnent sAdd(doubl e start, double end, W ndowFunctions func) to define each segment
with its boundaries and (optionally) window function.

2) Call

Segnment sReadRTTM char* fil enanme, W ndowFunctions func=Praat Sound: : wf Rect angul ar)
to parse a NIST RTTM formatted file for segments. If a window function is specified, it will be
applied to all segments.

You can also use the first approach to redefine your segments during usage.

The window function can be one of the following values defined inside PraatSound: wf Rect angul ar,
wf Tri angul ar, wf Parabolic, wf Hanning, w Hanmi ng, wf Gaussianl, w Gaussian2, w Gaussian3,

W Gaussi an4, wf Gaussian5, wfKaiserl, wfKaiser2. The value wfRectangul ar means essentially
that no window function is applied (and corresponds to wf None in earlier versions). Using a window
function may require additional objects to be computed. This can increase the overall computation
time by more than a factor of two if global features are also used.

When using the multi-feature-extraction function with segments, the default will be to compute the
features for all segments, and the returned array will contain the feature vector for each segment. To
force using the global waveform, specify - 1 for the segnent parameter.

Important: Not all features can (or should) be computed on segments of any size (especially small
segments may be problematic). For example, computing pitch on very small segments may return
the 1 NF value.

Performance notice: Features computed on segments may not always use cached objects created

for features extracted on the full waveform. The exact behavior depends on the feature requested
and on whether a non-rectangular window function is used.

Example

The directory exanpl e contains an example program that takes the filename of an audio file as
argument and extracts some features.

To build the sample program, just run make from a shell inside the example directory. To run it, type
praat sanpl e <audi ofi | e>, for example praat sanpl e test.wav. Take a look at the nakefil e for the

example program to find the external libraries needed for compiling applications that are using the
Praat library for both static and dynamic linking.

You can change the features that are computed by editing the source code accordingly. You can

also compute the features on segments and read from an RTTM file as opposed to the whole wave
by the running pr aat sanpl e <audi ofile> <rttnfile>.

Compiling the Library
There is a directory src included in the package that contains the sources from which the Praat
library (praat.a) is compiled. When you are making changes to the source code or when you want to

port the library to another architecture or platform, you will need to recompile the code.

To build the library, run make from the src directory. The output (i bpraat.a) will be copied to the
parent directory.

Note: There may be some warnings when compiling the Praat sources. These warnings can usually
be ignored.

Feature Index

This table lists the features that are available in the library. For more information on how they work
and what they compute, please see the Praat manual (run the Praat binary, click menu H elp).

Function name Name for Get Mul ti pl e() Remark
Cet Pi t chMean f0_nean
CGet Pi t chMedi an fO_ned
CetPitchM n fO _mn
Get Pi t chMax f 0_max
Get Pi t chRange f0_range [1]
Get Pi t chSt dDev f 0_stddev
Get Pi t chMAS f0_mas [2]
CGet Pi t chVoi ced fO_voi ced
Get Pi t chCandi dat esMean f 0_cand_nean
CGet Pi t chCandi dat esMedi an f0_cand_nedi an
Get Pi t chCandi dat esM n fO_cand_min
Get Pi t chCandi dat esMax f0_cand_nmax
CGet Pi t chCandi dat esRange f0_cand_range [1]

Cet Pi t chCandi dat esSt dDev

f0_cand_st ddev

CGet Pi t chSt rengt hMean

fO_str_nean

CGet Pi t chSt r engt hMedi an

fO_str_med

Function name
GetPitchStrengthM n
Get Pi t chSt rengt hMax
CGet Pi t chStrengt hRange

Name for Get Mul ti pl e()
fO str_nmin
fO_str_max

fO_str_range

Remark

[1]

CGet Pi t chStrengt hSt dDev
CGet Pi t chEner gyMean

Get Pi t chEner gyMedi an
Get Pi t chEner gyM n

Get Pi t chEner gy Max

Get Pi t chEner gyRange

fO_str_stddev
f0_en_nean
fO_en_ned

fO en nmn

f 0_en_nmax

f0_en_range

[1]

CGet Pi t chEner gy St dDev

f0_en_stddev

CGet Pi t chTi er NunSanpl es
Get Pi t chTi er Mean

Get Pi t chTi er St dDev

Get Poi nt ProcessNunsanpl es
CGet Poi nt ProcessNunPer i ods
Get Poi nt ProcessPeri odMean

f0_sanpl es
fO0_nean_curve
fO0_stddev_curve
pp_sanpl es
pp_peri ods

pp_peri od_nean

[2]

2]

Cet Poi nt Pr ocessPeri odSt dDev

pp_peri od_st ddev

CGet Ji tter RAP jitt_rap

CetJitter PPQB jitt_ppg5

CGet JitterLocal jitt_|

Get JitterLocal Abs jitt_la

Get Ji tter DDP jitt_ddp

Get Shi mrer APQG shi m apg3 2]
Get Shi nmer APQB shi m apgb [2]
Cet Shi mrer APQL1 shi m apqll [2]
Get Shi mmer Local shim| [2]
Get Shi mer Local Db shim| db [2]
Get Shi nmer DDA shi m dda [2]
Get Har nmoni ci t yMean har m nean

Get Har noni ci t yMedi an har m_nmed [2]
Get Har moni cityM n harm nn

Get Har noni ci t yMax har m_max

Get Har noni ci t yRange

har m r ange

[1]

Get Har noni ci t ySt dDev

har m st ddev

Get For mant Mean
Cet For mant Medi an
Get Formant M n

f1 mean, ..., f9 _nean
fl1nmed, ..., f9 ned
flmn, ..., f9 mn

Function name Name for Get Mul ti pl e() Remark
Get For mant Max f1_max, ..., f9_max
Cet For mant Range fl1 range, ..., f9_range [1]
CGet For mant St dDev fl1 stddev, ..., f9 stddev
Get For mant sDi spMean form.di sp_nean [1]
Get For mant sDi spMedi an formdisp_ned [1]
Get For mant sDi spM n formdisp_nin [1]
Get For mant sDi spMax form di sp_nax [1]
CGet For mant sDi spRange formdisp_range [1]
Cet Ener gyMean en_nean
CGet Ener gyMedi an en_ned
Get Ener gyM n en_mn
Cet Ener gy Max en_nax
Cet Ener gyRange en_range [1]
Get Ener gy St dDev en_st ddev
Get Lt asEner gyMean I tas_mean [2]
Get Lt asEnergyM n Itas_mn 2]
Get Lt asEner gy Max I tas_max [2]
Get Lt asEner gyRange | tas_range [1][2]
CGet Lt asEner gy St dDev | tas_stddev [2]
CGet Lt asEner gy Sl ope | tas_sl ope 2]
CGet Lt asEner gyLocal PeakHei ght Itas_I ph 2]

Remarks:

U This feature is based on other features which are not cached, but are (a) fast to compute and (b)
easy to combine. It is included to provide a more complete list of features. You may be able to get a
minimal performance gain by manually computing the feature.

€ This feature is always computed on full sound objects. If you are using segments without a

window function and compute this feature on a segment, there is some additional overhead of

copying the sound and re-creating intermediate objects. This means that if you are using only a

single feature of this type under the aforementioned conditions, consider dropping it if it's not

essential when you want to improve performance.

