
PraatLib 0.3

Michael Feld, Michael.Feld@dfki.de
Gerald Friedland, fractor@icsi.berkeley.edu

Introduction

PraatLib 0.3 is a Praat C++ Library Wrapper that contains routines designed mainly for three
purposes:

1) To provide access to the full set of Praat functions as a C++ library which can easily be integrated
into other applications

2) To provide performance optimizations of Praat routines, including some that may have a trade-off
between accuracy and speed (in which case a switch is available)

3) To have a feature-oriented wrapper around the Praat functions. The idea is to provide a simple-
to-use interface that takes care of the computing of all eventually needed intermediate objects
while avoiding redundant computations i.e., you only need to specify a sound file and the features
to be extracted.

This library is based on Praat (http://www.praat.org) version 5.0.3.0 source code, which is available
under GNU General Public License v2. As a result, PraatLib is also available under the GNU
General Public License v2.

Technicalities at a Glance

The library is provided as a static library (libpraat.a) which is pre-compiled for Red Hat 4 Linux, as
well as a header file (PraatSound.h) containing the required declarations. To use it, include the
header file in your C++ source code and link the library libpraat.a to your application (e.g. g++
myapp.o libpraat.a).

● The provided binary library is compiled for Red Hat 4 Linux. For use with different architectures,
the library might have to be recompiled using the supplied Makefile (see “ Compiling the Library”).

● The wrapper has to be called from C++ code. The rest of the functions should also be callable
from C code.

● Some Praat functions are dependent on dynamic system libraries; however, it is very unlikely that
they will ever need to be called in the library use-case.

● Using Praat as a native Win32 library will not be possible without a number of modifications, MAC
OS X might work but we did not test it.

Basic Usage

If you want to use the Praat functions directly, you can do this by simply including the corresponding
header files from Praat and calling the functions.

http://www.praat.org/
mailto:Michael.Feld@dfki.de
mailto:fractor@icsi.berkeley.edu

The wrapper is contained of a single class named PraatSound. You will need to create one such
object for each sound file that is to be processed. Do not forget to destroy the object using delete
afterwards to free the memory required by the sound and all cached intermediate data structures.

The constructor of PraatSound will require the file name of the audio file as an argument (either as
normal or wide characters). Only file formats readable by Praat are supported (e.g. WAVE and NIST
Sphere). To achieve maximum computational efficiency, the entire audio file is read into
memory.

If an error occurs within the wrapper library for some reason, an integer exception is thrown and an
error message is printed on the console.

After the sound file has been loaded, you can request features from it. There are basically two
methods for doing this:
1) Calling each feature extraction function separately.
2) Calling the “mu lti-extract” function with a list of features that are to be extracted in one call.

The names of the feature extraction functions have to be looked up in the PraatSound.h header file
or in the list below (see “Feature Index”). The function for extracting multiple features is

double* GetMultiple(char** features, int num_features, int segment = -2)

It receives an array of feature names (see “Feature Index”), the number of elements in the array,
and – optionally – a segment number (see below). The return value will be an array with one value
per feature.
Note: The approach using GetMultiple(...) is slightly slower because of the string comparisons,
but this should not be a concern except for very optimized applications.

Most feature computation functions have associated parameters. When you are using individual
functions to compute the features, the parameters are specified as function arguments. For easier
handling, each parameter has a reasonable default value (taken over from Praat), so you do not
need to specify any of them. Parameters and default values can be looked up in the header file. For
the multi-feature-extraction method, there are public fields in the PraatSound class that can be set to
the default values. However, because some variables are re-used for multiple features (e.g. the
minimum frequency is used for both pitch_mean and pitch_stddev features), there are some cases
where you have to call the individual functions.

The library will compute the required intermediate objects as needed, caching them when possible.
Yet, only one object is cached for each combination of parameters, so if you need to extract several
features with different sets of parameters, try to group them by their parameters (i.e. pitch_min and
pitch_max with parameter set A together, instead of pitch_min with parameter set A and B together).
The return value is always of type double. Sometimes features cannot be computed e.g., pitch for
unvoiced segments. In this case, the special value INF is returned.

Specifying Segments

The library can extract features either on the full waveform or on segments. To accomplish this,
each feature extraction function provides an optional “ segment” argument, which is the first
argument for all functions except GetMultiple(...). If omitted or if -1 is specified, it will default to
using the entire sound file.

Segments are referred to by their index. To extract a feature for a specific segment, specify its index
for the segment parameter. There two ways to define segments:

1) Call SegmentsClear(int capacity)with the maximum number of segments you want to add, then
call SegmentsAdd(double start, double end, WindowFunctions func) to define each segment
with its boundaries and (optionally) window function.

2) Call
SegmentsReadRTTM(char* filename, WindowFunctions func=PraatSound::wfRectangular)

to parse a NIST RTTM formatted file for segments. If a window function is specified, it will be
applied to all segments.

You can also use the first approach to redefine your segments during usage.

The window function can be one of the following values defined inside PraatSound: wfRectangular,
wfTriangular, wfParabolic, wfHanning, wfHamming, wfGaussian1, wfGaussian2, wfGaussian3,

wfGaussian4, wfGaussian5, wfKaiser1, wfKaiser2. The value wfRectangular means essentially
that no window function is applied (and corresponds to wfNone in earlier versions). Using a window
function may require additional objects to be computed. This can increase the overall computation
time by more than a factor of two if global features are also used.

When using the multi-feature-extraction function with segments, the default will be to compute the
features for all segments, and the returned array will contain the feature vector for each segment. To
force using the global waveform, specify -1 for the segment parameter.

Important: Not all features can (or should) be computed on segments of any size (especially small
segments may be problematic). For example, computing pitch on very small segments may return
the INF value.

Performance notice: Features computed on segments may not always use cached objects created
for features extracted on the full waveform. The exact behavior depends on the feature requested
and on whether a non-rectangular window function is used.

Example

The directory example contains an example program that takes the filename of an audio file as
argument and extracts some features.

To build the sample program, just run make from a shell inside the example directory. To run it, type
praatsample <audiofile>, for example praatsample test.wav. Take a look at the makefile for the

example program to find the external libraries needed for compiling applications that are using the
Praat library for both static and dynamic linking.

You can change the features that are computed by editing the source code accordingly. You can
also compute the features on segments and read from an RTTM file as opposed to the whole wave
by the running praatsample <audiofile> <rttmfile>.

Compiling the Library

There is a directory src included in the package that contains the sources from which the Praat
library (praat.a) is compiled. When you are making changes to the source code or when you want to
port the library to another architecture or platform, you will need to recompile the code.

To build the library, run make from the src directory. The output (libpraat.a) will be copied to the
parent directory.

Note: There may be some warnings when compiling the Praat sources. These warnings can usually
be ignored.

Feature Index

This table lists the features that are available in the library. For more information on how they work
and what they compute, please see the Praat manual (run the Praat binary, click menu “H elp”).

Function name Name for GetMultiple() Remark
GetPitchMean f0_mean

GetPitchMedian f0_med

GetPitchMin f0_min

GetPitchMax f0_max

GetPitchRange f0_range [1]

GetPitchStdDev f0_stddev

GetPitchMAS f0_mas [2]

GetPitchVoiced f0_voiced

GetPitchCandidatesMean f0_cand_mean

GetPitchCandidatesMedian f0_cand_median

GetPitchCandidatesMin f0_cand_min

GetPitchCandidatesMax f0_cand_max

GetPitchCandidatesRange f0_cand_range [1]

GetPitchCandidatesStdDev f0_cand_stddev

GetPitchStrengthMean f0_str_mean

GetPitchStrengthMedian f0_str_med

Function name Name for GetMultiple() Remark
GetPitchStrengthMin f0_str_min

GetPitchStrengthMax f0_str_max

GetPitchStrengthRange f0_str_range [1]

GetPitchStrengthStdDev f0_str_stddev

GetPitchEnergyMean f0_en_mean

GetPitchEnergyMedian f0_en_med

GetPitchEnergyMin f0_en_min

GetPitchEnergyMax f0_en_max

GetPitchEnergyRange f0_en_range [1]

GetPitchEnergyStdDev f0_en_stddev

GetPitchTierNumSamples f0_samples [2]

GetPitchTierMean f0_mean_curve

GetPitchTierStdDev f0_stddev_curve

GetPointProcessNumSamples pp_samples [2]

GetPointProcessNumPeriods pp_periods

GetPointProcessPeriodMean pp_period_mean

GetPointProcessPeriodStdDev pp_period_stddev

GetJitterRAP jitt_rap

GetJitterPPQ5 jitt_ppq5

GetJitterLocal jitt_l

GetJitterLocalAbs jitt_la

GetJitterDDP jitt_ddp

GetShimmerAPQ3 shim_apq3 [2]

GetShimmerAPQ5 shim_apq5 [2]

GetShimmerAPQ11 shim_apq11 [2]

GetShimmerLocal shim_l [2]

GetShimmerLocalDb shim_ldb [2]

GetShimmerDDA shim_dda [2]

GetHarmonicityMean harm_mean

GetHarmonicityMedian harm_med [2]

GetHarmonicityMin harm_min

GetHarmonicityMax harm_max

GetHarmonicityRange harm_range [1]

GetHarmonicityStdDev harm_stddev

GetFormantMean f1_mean, ..., f9_mean

GetFormantMedian f1_med, ..., f9_med

GetFormantMin f1_min, ..., f9_min

Function name Name for GetMultiple() Remark
GetFormantMax f1_max, ..., f9_max

GetFormantRange f1_range, ..., f9_range [1]

GetFormantStdDev f1_stddev, ..., f9_stddev

GetFormantsDispMean form_disp_mean [1]

GetFormantsDispMedian form_disp_med [1]

GetFormantsDispMin form_disp_min [1]

GetFormantsDispMax form_disp_max [1]

GetFormantsDispRange form_disp_range [1]

GetEnergyMean en_mean

GetEnergyMedian en_med

GetEnergyMin en_min

GetEnergyMax en_max

GetEnergyRange en_range [1]

GetEnergyStdDev en_stddev

GetLtasEnergyMean ltas_mean [2]

GetLtasEnergyMin ltas_min [2]

GetLtasEnergyMax ltas_max [2]

GetLtasEnergyRange ltas_range [1] [2]

GetLtasEnergyStdDev ltas_stddev [2]

GetLtasEnergySlope ltas_slope [2]

GetLtasEnergyLocalPeakHeight ltas_lph [2]

Remarks:

[1] This feature is based on other features which are not cached, but are (a) fast to compute and (b)
easy to combine. It is included to provide a more complete list of features. You may be able to get a
minimal performance gain by manually computing the feature.

[2] This feature is always computed on full sound objects. If you are using segments without a
window function and compute this feature on a segment, there is some additional overhead of
copying the sound and re-creating intermediate objects. This means that if you are using only a
single feature of this type under the aforementioned conditions, consider dropping it if it's not
essential when you want to improve performance.

