Speech Recognition with Dynamic Bayesian Networks
by
Geoffrey G. Zweig
B.A. (Universtity of California, Berkeley) 1985

M.A. (University of California, Berkeley) 1989
M.S. (University of California, Berkeley) 1996

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:

Professor Stuart J. Russell, Chair
Professor Nelson Morgan
Professor Jitendra Malik
Professor John J. Ohala

Spring 1998

The dissertation of Geoffrey G. Zweig is approved:

Chair

Date

Date

Date

University of California, Berkeley

Spring 1998

Date

Speech Recognition with Dynamic Bayesian Networks

Copyright 1998

by
Geoffrey G. Zweig

Abstract

Speech Recognition with Dynamic Bayesian Networks
by

Geoffrey G. Zweig
Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart J. Russell, Chair

Dynamic Bayesian networks (DBNs) are a powerful and flexible methodology for
representing and computing with probabilistic models of stochastic processes. In the past
decade, there has been increasing interest in applying them to practical problems, and this
thesis shows that they can be used effectively in the field of automatic speech recognition.

A principle characteristic of dynamic Bayesian networks is that they can model an
arbitrary set of variables as they evolve over time. Moreover, an arbitrary set of conditional
independence assumptions can be specified, and this allows the joint distribution to be
represented in a highly factored way. Factorization allows for models with relatively few
parameters, and computational efficiency. Standardized inference and learning routines
allow a wide variety of probabilistic models to be tested without deriving new formulae, or
writing new code.

The contribution of this thesis is to show how DBNs can be used in automatic
speech recognition. This involves solving problems related to both representation and infer-
ence. Representationally, the thesis shows how to encode stochastic finite-state word models
as DBNs, and how to construct DBNs that explicitly model the speech-articulators, accent,
gender, speaking-rate, and other important phenomena. Technically, the thesis presents
inference routines that are especially tailored to the requirements of speech recognition:
efficient inference with deterministic constraints, variable-length utterances, and online in-
ference. Finally, the thesis presents experimental results that indicate that real systems
can be built, and that modeling important phenomena with DBNs results in improved

recognition accuracy.

Professor Stuart J. Russell
Dissertation Committee Chair

iii

Contents

List of Figures vi
List of Tables xi
1 Introduction 1
1.1 Motivation e e e e e e 1
1.1.1 Probabilistic Models for Speech Recognition 1

1.1.2 A Next Step o 3

1.2 Goals and Accomplishments o o oL 6
1.3 Outline . . . o . 0 7

2 Probabilistic Models for Temporal Processes 9
2.1 Overviewl e e e 9
2.2 Hidden Markov Models 11
2.2.1 Variations e e e e 12

2.2.2 Algorithms L 13

2.3 Kalman Filters e 14
2.4 Neural Networks e e 15
2.4.1 Multi-Layer Perceptrons o oL 15

2.4.2 Finite Impulse Response MLPs, 16

2.4.3 Recurrent NNs 17

2.4.4 Radial Basis Function Networks 18

2.5 Dynamic Bayesian Networks o oo 19
2.5.1 Bayesian Networks o o 22

2.5.2 Dynamic Bayesian Networks, 24

2.5.3 Strengths of DBNs L oL 24

2.6 Discussion Lo e e e e e e e 26

3 Inference and Learning with DBNs 27
3.1 Inferenceona Tree e 28
3.1.1 Definitionso Lo 29

3.1.2 Algorithm L 30

3.1.3 Comparison with HMM Inference 32

3.1.4 A Speedup 33

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1
4.2
4.3

3.1.5 Proofof Speedup o
Inference in General Graphs L oo oo
3.2.1 Equivalent Representations of Probability Distributions
3.2.2 Inference with Trees of Composite Variables
3.2.3 Summary of Inference in a Clique Tree
Fast Inference with Deterministic Variables
3.3.1 Motivation
3.3.2 Approach
3.3.3 Enumerating the Legal Clique Values
3.3.4 Discussion of Time and Space Requirements
A Tree-Building Procedureo oo
3.4.1 Moralization L
3.4.2 Triangulationo
3.4.3 Tree Formation L
3.4.4 Tree Reduction o L
3.45 An Exampleo oo
3.4.6 Correctness of the Tree-Building Procedure
Comparison with Other Approaches
Variable Length Observation Sequences
3.6.1 Motivation
3.6.2 Definitions and the Splicing Algorithm
3.6.3 Proof of Splicing Algorithm
3.6.4 Comparison with HMMS 0.0 o o oL
Online Inference L
3.7.1 Chain Decoding
3.7.2 Backbone Decoding o oo
Learning e
3.8.1 Gradient Descent Techniques
3.82 EM Lo e
3.8.3 Comparison with HMMs o 0 oL
DBNs and HMMs on Artificial Problems
Overview L e e
Converting DBNs to HMMs o o L.
Performance on a Family of Regular Graphs
4.3.1 Learning with an Incorrect Model
Discussion L e

4.4

Speech Recognition

5.1

5.2

Overview e e e e e e e
5.1.1 The Problem
5.1.2 Approacheso L
Standard Techniques L L L L
5.2.1 Hidden Markov Models
5.2.2 Neural Networks

v

34
35
36
36
38
40
40
40
41
41
43
44
44
45
45
46
48
51
53
53
55
56
62
62
63
65
66
67
68
68

69
69
69
71
75
7

5.2.3 Kalman Filters o o
5.3 Outstanding Problems o oL
6 Speech Recognition with DBNs
6.1 Model Composition with DBNs
6.1.1 Motivation L
6.1.2 Encoding an SFSA with a DBN
6.1.3 Discussion: Write Networks not Code?
6.2 Model Structures for ASR o oo
6.2.1 Articulatory Modeling o oL
6.2.2 Modeling Speaking Style o oL
6.2.3 Noise Modeling e
6.2.4 Perceptual and Combined Models
6.3 Discussion Lo L e e e
7 Speech Recognition Experiments
7.1 Database e
7.2 Acoustic Processing
7.3 Phonetic Alphabets
7.3.1 Context Independent Alphabet
7.3.2 Context Dependent Alphabet 0.
7.4 Experimental Procedure o 00 oL
7.4.1 Training, Tuning, and Testing
7.4.2 Models Tested L
7.5 Results with a Single Auxiliary Variable
7.5.1 Context Dependent Alphabet
7.6 Results With Two Auxiliary Variables
7.7 Cross-Product HMM 0.0 o o
7.8 Clustering Results
7.9 Discussion e e e e
7.9.1 Improvements. e
7.9.2 What Does it Mean? L oo
7.9.3 Perspective L
8 Conclusion and Future Work
8.1 A Roadmap for the Future oL
8.1.1 Technological Enhancements
8.1.2 Modeling Strategies oL
8.2 Closing o i e e

Bibliography

95
97

98
98
98
99
110
110
110
113
115
116
118

119
119
120
121
121
121
122
122
123
125
125
126
127
129
130
130
133
135

138
138
138
139
141

143

List of Figures

1.1

1.2

2.1

2.2
2.3

2.4

2.5

3.1
3.2
3.3

3.4
3.5

A Bayesian network for a simple medical situation. The shaded variables
have known values, while the unshaded variable does not.
An articulatory model of the pronunciation of “ten cats,” adapted from Deng
and Sun, 1994. The linguistic units are shown along the top row. The
numbers in the chart represent target articulator positions that correspond
to these linguistic units. The shaded boxes represent the range of variability
in articulator positions from utterance to utterance and person to person.
While Deng and Sun use rules to determine the possible ranges, this kind of
information can be encoded probabilistically in a Bayesian network.

A MLP with one hidden layer. The nodes are typically fully interconnected
between layers.
A RTR-NN. . .o
A radial basis function neural network. The first layer computes Gaussian
activations while the second layer is linear.
A Bayesian network. The shaded nodes represent variables whose values are
observed. Each variable has an associated conditional probability table (or
equivalent functional representation) that specifies a distribution over values,
conditioned on the values of the variable’s parents.
Top: A simple DBN, “unrolled” to show five time steps. Bottom: A DBN
with a factored state representation. The factored representation can de-
scribe the evolution of an equal number of total states with exponentially
fewer parameters. L. L. L

A tree of variables. The partitioning of the evidence is shown for X;.
Inference in atree. L
A chain structured graph. A two-dimensional grid is an adequate data struc-
ture for computing the As and 7s for a chain. In this case, the As are analogous
to HMM fs and the 7s are analogous to as. The diagonal arrows in the grid
show the values that are used to compute the A and 7 values for a particular
cell. e
Enumerating the legal values of each clique.
The triangulation algorithm. L0

vi

16
17

19

23

25

29
31

32
42
44

vii

3.6 Clique tree formation. L 45
3.7 Non-deterministic tree condensation.00 46
3.8 A linear time algorithm for producing MAC. 46
3.9 A Bayesian network and its clique tree. Lo Lo 47

3.10 Splicing a clique tree. The triangles represent non-repeating initial and final
portions of the clique tree. The rectangles represent repeating segments.

Splicing is accomplished by redirecting arcs connecting repeating segments. 54
3.11 Splicing terms defined. L o oL 55
3.12 The splicing algorithm. o oL 56
3.13 The backbone of a clique tree. o Lo 59

3.14 Two slices of a complex DBN; when reduced to a chain-structured tree, the
computational requirements are significantly lower than if a cross-product of
the state values were used in aan HMM. 63

4.1 A 3 —3 DBN and an equivalent HMM. Both have been unrolled four time
steps. The observation variables are boxed. The variables in the HMM can
take on many more values than those in the DBN: each state variable must
have a distinct value for each way the DBN’s cluster of state variables can

be instantiated. The same is true for the observation nodes. 71
4.2 Solution quality as a function of the number of training examples. The
horizontal axis is logscale. Large values represent good HMM performance. 72

4.3 Absolute number of EM iterations required as a function of the number of
training examples. The average number of iterations is about 3 except for
the HMM on a 2 — 2,3 — 3, and 4 — 4 network, which require many more. . 73
4.4 Time to process one example through one EM iteration. Times are shown for
a DBN and analogous HMM. The horizontal axis shows k in a k — k network. 74
4.5 Solution quality as a function of the number of state nodes in the learned
network. Note that the lines for the simpler models lie to the left of the line
generated when the correct network is used. This indicates a faster increase
in the HMM’s performance. o o Lo 75
4.6 Log probability of the learned DBN model vs. log probability of the training
model. The DBN’s learning performance is degraded as the number of states
in the learned model decreases. Lo Lo, 76
4.7 Solution quality as a function of the number of state nodes in the learned
network. Note that the lines for the correct models lie to the left of the lines
generated when the over-complex network is used. This indicates a slower
increase in the HMM’s performance. 77
4.8 Log probability of the learned DBN model vs. log probability of the training
model. Learning performance is degraded when the learned model has too
many states and only a small number of training examples are available. . . 78

5.1 Overlapping, triangular, nonlinear MFCC-style filterbank. The peaks have
a constant spacing on the mel-frequency scale. The output of each filter is a
weighted sum of the sound energy in its frequency range. 82
5.2 Word model for “tomato” showing two possible pronunciations. 86

5.3
5.4

5.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Utterance A is time-aligned to utterance B.
An HMM for the word “because.” The transition matrix is defined graphi-
cally by the solid arcs; if there is no arc between two states, the transition
probability is 0. The small shaded nodes represent artificial initial and final
states. . . . L L e
A Kalman filtering approach to ASR, loosely adapted from Anderson and
Moore, 1979. The probability of a phone ¢; at time ¢ is recursively calculated
from the acoustic input a;, and all prior acoustic input, a{~! by P(g]a}) =
P(atlai™ qi)P(gilai™")
Yo Placlai™ ;)P (gjlal™)

. All the required quantities are readily available.

Concatenating submodels. Naive submodel concatenation requires specifying
which state-evolution model to use at each point in time.
An SFSA and a DBN network representation for fixed-length observation se-
quences. Note that in the automaton the arcs represent transition probabil-
ities while in the Bayesian network they represent conditional independence
relations. The initial and final states of the SFSA are shaded. The shaded
node in the DBN represents an artificial observation; the CPT of this variable
will encode the length of the observation sequence.
A DBN structured for model composition. The submodel-index variable
specifies which submodel to use at each point in time.
Mapping states into equivalence sets with respect to transition probabilities.
The variables are labeled with one possible assignment of values. States 1
and 3 both map into the same transition equivalence set..
Mapping states into multiple equivalence classes. There is a transition equiv-
alence class, and an acoustic one. The states behave differently with respect
tothe two. o L L
The control structure used in this work. A state maps into a phone label,
and this value will determine both durational and acoustic properties.

Modeling null states with a DBN. At the top is a portion of two concatenated
SFSAs, showing the final state of one connected to the initial state of the next.
At the bottom is a DBN with two auxiliary state and transition variables per
timeslice. These allow the null states to be skipped. The state and transition
variables from a single timeslice are boxed with the dashed line.
SFSA structure structured to reflect a trigram language model. The shaded
circles represent dummy states; there is one for each pair of words. The
rectangles represent whole word models (each with its own initial and final
state). The total number of boxes is equal to the cube of the vocabulary size:
there is a box for each word preceded by every possible two-word combination.
Since the combination of the last two words with the current word uniquely
determines the two-word context for the next word, the arcs leading out of
the word models have transition probabilities of 1. The trigram probabilities
are associated with the arcs from the dummy states into the word models.
To avoid clutter, a only subset of the possible arcs are drawn.

viii

92

96

100

101

104

105

105

106

107

6.9

6.10

6.11
6.12
6.13
6.14

6.15
6.16

7.1

7.2
7.3

7.4

7.5

7.6

7.7

7.8

7.9

X

A DBN representation of a simple HMM. Nodes with fixed CPTs are fixed
on a per-example basis. oL o oL Lo 109
An articulatory DBN structured for speech recognition. The tongue moves
from the alveolar ridge to the back of the mouth; the lips move from an
unrounded to a rounded configuration. The properties of each node are

shown to the right. o o 111
Tongue position for different vowels, adapted from Deller et al., 1993. . . . 112
A DBN structured to model speaker-type. 114
A DBN structured to model speaking-rate. 115
A DBN structured to model speaking-rate, with observations that are highly

correlated with rate. L L L L 116
A DBN structured to model speech in a noisy environment. 117
A perceptually-structured DBN (top), and a combined perceptual-generative

model. For clarity, the index, transition, and phone variables are simply
represented by a “phonetic state” variable. L0000, 117

The acoustic models for four of the network topologies tested. The index
and transition variables are omitted. The dotted lines indicate conditioning
on the previous frame. oL Lo 123
Network with two context variables. 126
Top: afour-state HMM phone model. Bottom: the same model with a binary
context distinction. There are now two states for each of the previous states,
corresponding to the different combinations of phonetic and contextual state. 127
The frequency with which utterances from a single speaker were assigned
to the same cluster. For example, about 15 speakers has their utterances
clustered together with 85% consistency. On average, there are 68 utterances
per speaker.o L oL e 130
The frequency with which utterances of a single word were assigned to the
same cluster. The area of the histogram representing a random distribution
is greater than the area of the observed histogram because of of a binning
artifact. On average, there are 12 occurrences of each word; the first bin
represents 6 or 7 being classified together; the next 8, then 9, and so on. Due
to the small number of bins, the widths are large. 131
Probability that the context variable has the value 1 as a function of Cy and
delta-Cy. To minimize occlusions, the graphs are viewed from different angles.134
Learning continuity. The lines show P(Cy = 0|Cy—1 = 0,0Q¢ = p), i.e. the
probability of the context value remaining 0 across two frames of speech, as
a function of phone. The solid line is before training, and the dotted line is
after training. The context variable represents voicing, so values close to 1.0
are for voiced phones. After training, the context value is unlikely to change,

regardless of phone. This reflects temporal continuity. 136
Learning continuity. This graph shows shows that a context value of 1 also
shows continuity. L e e 136

Error rate as a function of the number of network parameters. The errorbars
represent one standard deviation in either direction. 137

8.1 Network structure for automatic induction of context dependent units. . . . 141

List of Tables

5.1

6.1

7.1
7.2

7.3

7.4

7.5

7.6

7.7

The ARPAbet. This phonetic alphabet was adopted for use by ARPA, and

is representative of phonetic alphabets.

The properties of the different variables. In this work, we use a chain-
structured pronunciation model, so the value of the initial state is uniquely
determined. This allows all occurrences of the index variable to be deter-
ministic. The CPTs that are not learned are adjusted on an utterance-by-
utterance basis.o L oL L

Typical words in the Phonebook database.
Test set word error rate for systems using the basic phoneme alphabet. All
the systems had slightly different numbers of parameters. The standard error
is approximately 0.25%. Results from Zweig & Russell, 1998.
Test set word error rates for systems using context dependent alphabets. The
first two results use an alphabet with 336 units, and the last result uses an
alphabet with 666 units. The standard error is approximately 0.20%. Results
from Zweig & Russell, 1998.
Test results with multi-valued and multi-chain context variables; the stan-
dard error is approximately 0.25%. The double-chain network used binary
variables, and thus had a total of 4 possible context values.
Results for cross-product HMMs. Due to computational limitations, three
states per phone were used in combination with the four-valued context dis-
tinetion. L oL e e e e
The words that occurred in a particular cluster more than 90% of the time.
About half the words in the first cluster end in liquid consonants (/1/ or
/r/), even more if terminal /s/ is allowed. For example, “unapproachable”
and “astronomical.” None of the words in the second cluster end in liquid
consonants. Instead, about a quarter of them begin with liquid consonants,
e.g. “lifeboat” and “laundromat.” Only one of the words in the first cluster,
“reels,” begins with a liquid consonant.
Percent similarity in the errors made by pairs of recognizers. If A and B are

the |sets |0f words the systems respectively got wrong, similarity is defined as
ANB
100

[AUB|* * " &ttt t ottt e e e

xi

85

109

120

125

126

127

128

132

xii

Acknowledgements

This work benefited from interactions with numerous people during the course of
my graduate study. In addition to my committee members, I would like to thank Richard
Karp, Steve Glassman, and Mark Manasse. Working with Richard Karp on computational
biology impressed on me the importance of addressing practical problems. Steve Glassman
and Mark Manasse at DEC SRC introduced me to the world of large-scale computing, and
taught me that every bit counts.

The speech group at the International Computer Science Institute provided an
exceptionally supportive and pleasant atmosphere to work in. I fondly acknowledge all the
members: Nelson Morgan, Steven Greenberg, Dan FEllis, Jeff Bilmes, Eric Fosler-Lussier,
Daniel Gildea, Adam Janin, Brian Kingsbury, Nikki Mirghafori, Michael Shire, Warner
Warren, and Su-Lin Wu.

My ideas on Bayesian networks benefited from discussions with Nir Friedman,

Kevin Murphy, Paul Horton, and especially Stuart Russell.

Chapter 1

Introduction

1.1 Motivation

1.1.1 Probabilistic Models for Speech Recognition

The problem of automatic speech recognition (ASR) consists of writing computer
programs that are able to examine a speech waveform and emit the same sequence of words
that a person would hear when listening to the sound. Essentially, this requires defining
an association between the acoustic features of sounds and the words people perceive; ASR
further imposes the constraint that the association must be defined so precisely that it can
be evaluated by a computer. In the course of the last quarter century, probabilistic models
have become the predominant approach to defining the association between sounds and
words, and have been used to model the processes of both speech perception and speech

generation.

These models work in terms of linguistic units that represent the different kinds of
sounds that are encountered in a language. As an example, syllables are representative and
intuitive. Taken together, the set of syllables spans the range of sounds used to produce

words, and syllabic word representations can be found in any dictionary.

A perceptual model makes the association between sounds and words in a bottom-
up fashion, and can be thought of as two black boxes. The first takes acoustic features from
a short period of time as its input, and produces a probability distribution over the the set

of possible linguistic units. The second black box takes this stream of disjoint probabilities,

CHAPTER 1. INTRODUCTION 2

and incorporates information about which sequences of linguistic units constitute acceptable
words, in order to find an interpretation that makes sense over a long span of time. The
association between sounds and linguistic units is most often made with artificial neural
networks (ANNs) (Robinson & Fallside 1988; Waibel et al. 1989; Robinson & Fallside 1991;
Bourlard & Morgan 1994). The linkage between subword linguistic units and complete word
models is made with a stochastic finite state automaton (SFSA) that defines a distribution

over the possible pronunciations of a word.

A generative model works the other way around, and starts with a word hypothesis.
It first relates this hypothesis to a sequence of linguistic units, and then relates the linguistic
units to sounds. The linkage between words and subword units is made with the same SFSA
that the perceptual approach uses, and the association between subword units and sounds
is established with a simple lookup table or equivalent functional representation. Hidden
Markov models (HMMs) encompass both aspects of this process, are the most commonly

used generative models.

Despite a great deal of success, as indicated by current commercial products from
companies such as IBM and Dragon Systems, current systems have significant problems
(Makhoul & Schwartz 1995; Young 1996). These problems are caused by a number of
different factors, including coarticulation (the modification of a sound in the context of sur-
rounding sounds), rate-of-speech variability, speaker accent, and ambient noise conditions.
Although there are techniques for addressing these problems within the current frameworks
of speech recognition, they are limited by the fact that the basic representational unit is the
subword linguistic unit, and there is no explicit causal representation of either generative

or perceptual processes.

In the HMM framework, the subword linguistic unit is atomic, and there is not
typically any explicit representation of the physical process by which sound is generated
or modified by noise. In the ANN framework, below the level of the linguistic unit there
does exist a highly distributed representation of the perceptual process — in the form of a
multiplicity of artificial neurons — but no explicit meaning is assigned. The contributions of
this thesis are to apply a new probabilistic modeling framework, Bayesian networks, to the

problem of speech recognition, and to show how it can be used to address these problems.

CHAPTER 1. INTRODUCTION 3

1.1.2 A Next Step

Computational power has doubled roughly every 18 months since the late 1960s,
and this trend is expected to continue for another ten to twenty years. This increase in
computing power makes it feasible to move beyond the simple representational framework
of current ASR systems, and Bayesian networks provide an ideal framework in which to

formulate probabilistic models that are simultaneously expressive, precise, and compact.

A Bayesian network (Pearl 1988) has the ability to represent a probability dis-
tribution over arbitrary sets of random variables. Moreover, it is possible to factor these
distributions in arbitrary ways, and to make arbitrary conditional independence assump-
tions. The combination of factorization and conditional independence assumptions can
vastly reduce the number of parameters required to represent a probability distribution.
Because of Ockham’s razor, this is desirable on general principles; on a more practical level,
it allows the model parameters to be estimated with greater accuracy from a limited amount

of data (Zweig 1996; Ghahramani & Jordan 1997).

As a simple example of the application of a factored probabilistic model, consider
a doctor with a patient who is complaining of headaches and blurred vision. Suppose the
doctor knows that the person has a family history of diabetes, and also that the person is a
programmer who stares long hours at a computer screen, and is under stress at work. The
doctor is interested in evaluating the probability that the patient has diabetes. The set of

relevant variables is:
{headaches, blurredVision, programmer, stress, family History, diabetes},
and the doctor wants to evaluate

P(diabetes = truelheadaches = true, blurredVision = true,

programmer = true, stress = true, familyHistory = bad).

In order to do this, it is necessary to be able to compute
P(headaches,blurredVision, programmer, stress, family History, diabetes)

for every possible combination of variable values, and one way to do this is to maintain a

full representation of the joint probability distribution. However, in situations where there

CHAPTER 1. INTRODUCTION 4

headaches blurred vision

stress programmer

family-history

Figure 1.1: A Bayesian network for a simple medical situation. The shaded variables have
known values, while the unshaded variable does not.

are a large number of variables, there are an excessive number of combinations, and the
scheme ignores the fact that not everything is relevant to everything else. A more reasonable
approach might be to factor the full joint distribution as:

P(programmer)P(stress)P(familyHistory)

P(headaches| familyHistory, stress)P(blurredVision| family H istory, programmer).
This factoring expresses a good deal of intuition, e.g. that both family medical history and
stress at work are relevant to the existence of headaches, but also that being a programmer
is irrelevant to the family medical history. With a factored model like this, the doctor can

look up a small number of probabilities, multiply them together, and get the answer.

Perhaps, however, being a programmer is not irrelevant to stress, and a factoriza-
tion such as
P(programmer)P(stress|programmer)P(familyHistory)
P(headaches| familyHistory, stress)P(blurredVision| family H istory, programmer)

would be more appropriate.

The primary strength of a Bayesian network system is that once the program is
written, it is extremely easy to switch from one model to another and evaluate different

ideas. There can also be savings in the number of model parameters, and it should be noted

CHAPTER 1. INTRODUCTION 5

T T T T T T
| | | | | |
[T/ JEHE NG K AR TS
1 1 1 1 1 1
| | | | | |
Lips o ,0 ,0 ,0 ,0 ,0 ,0
l l l l L
[T T T [7#774 3 [
Tongue Blade 1 7‘0‘””1”‘: 0 | 0 L””‘,, ,,,, '
T T N S
TongueBody [O | 9 o 1+ 10 o | o
l l l l l l
| | | | | |
Nasality 1 1 :7”5”711 1 01 1
| N | | |
ST } S | CT T T T T T I
Larynx izﬁa 1.2 1 LZ?ZI
| | |

Figure 1.2: An articulatory model of the pronunciation of “ten cats,” adapted from Deng

and Sun, 1994. The linguistic units are shown along the top row. The numbers in the chart
represent target articulator positions that correspond to these linguistic units. The shaded
boxes represent the range of variability in articulator positions from utterance to utterance
and person to person. While Deng and Sun use rules to determine the possible ranges, this
kind of information can be encoded probabilistically in a Bayesian network.

that both of the factorizations presented above require fewer parameters than the unfactored
representation. Finally, Bayesian networks have the advantage that the mathematics which
they express is also simple to represent in graphical form. The first factorization is shown

in Figure 1.1. The second differs simply by the addition of an arc.

Dynamic Bayesian networks (DBNs) extend the Bayesian network methodology to
address temporal processes. DBNs are used to model discrete time processes that evolve over
fixed time intervals. To do this, a set of variables is associated with each time interval, and
the joint probability distribution over assignments of values to these variables is specified
with a set of conditional independence assumptions as in a static Bayesian network. DBNs
have the same strengths as static networks, and allow for arbitrary sets of variables, and

arbitrary conditional independence assumptions.

The ability to model arbitrary sets of variables is highly desirable in ASR because
it enables the construction of explicit models of speech generation and perception. There

are several ways in which the expressive power of Bayesian networks can be used to model

CHAPTER 1. INTRODUCTION 6

speech generation, perhaps the most attractive of which is in the construction of articulatory
models. In contrast to conventional models, where the atomic representational unit is the
subword linguistic unit, articulatory models maintain an explicit representation of speech
articulators such as the lips, tongue, jaw, velum, and glottis. These models have been
used previously, e.g (Deng & Erler 1992), and have the advantage of naturally modeling

pronunciation variability as a causal process.

As an example, consider Figure 1.2, which is adapted from (Deng & Sun 1994).
This shows the expected positions of several speech organs as the phrase “ten cats” is
pronounced. This type of information can be conveniently expressed in a Bayesian network
by modeling a set of variables corresponding to the articulators. Once programs for inference
and learning are written, it is easy to test different model structures, and learn model

parameters.

1.2 Goals and Accomplishments

This thesis has both theoretical and computational goals. The main theoretical
goal is to demonstrate how to structure DBNs in a way that is appropriate for speech
recognition. This requires first creating DBNs that are able to achieve the functionality of
HMMs, and then showing how to extend them to address the problems with current systems.
The challenge of emulating an HMM is that the dynamic programming procedures that an
HMM uses to consider all possible partitionings of a speech signal into subword linguistic
units must be encoded declaratively in terms of variables and conditional probabilities.
This is significantly different from the usual imperative way of accomplishing the task (see
Chapter 6). The problem is exacerbated by the fact that interpretations of the speech signal

must respect known facts about word pronunciations.

Once the basic machinery for emulating an HMM is in place, it is straightforward
to address many current problems in ASR. A second theoretical contribution of this thesis
is to show how to address speaking-rate variability, accent, gender, coarticulation, noise,

and combined generative and perceptual models in a unified Bayesian network framework.

In order to build a working Bayesian network system for ASR, it is necessary
to solve a number of algorithmic challenges, and the final theoretical contribution of the

thesis is to present inference algorithms that are especially tailored to the speech recognition

CHAPTER 1. INTRODUCTION 7

application. This application imposes the following constraints:

e The routines must be extremely efficient, and in particular able to handle deterministic
relationships between variables (i.e. cases where a variable’s value is uniquely deter-
mined by its parents’ values). This constraint stems from the necessity of encoding

the deterministic constraints of pronunciation models.
e The routines must be able to efficiently handle variable length training utterances.

e The routines must be able to do online recognition, where words are recognized before

an utterance is completed.

These issues are resolved in Chapter 3.

The main computational goal of this work was to implement a general Bayesian
network system for ASR, and test it on a challenging database. This goal was achieved,
and the thesis presents results that show that it is in fact practical to base an ASR sys-
tem on Bayesian network technology, and that significant benefits accrue from using the
technique. Chapter 7 presents results that indicate that modeling acoustic and articulatory
context with a DBN reduces the word error rate by between 10 and 30%, depending on the
exact conditional independence assumptions. The flexibility of the methodology is further
demonstrated by presenting results with multiple context variables, and for networks that

perform unsupervised utterance clustering.

1.3 Outline

This thesis is divided into two main parts. Chapters 2 through 4 present Bayesian
networks as a general tool for modeling stochastic processes. Chapter 2 describes a range
of current methods for stochastic modeling, and places Bayesian networks in that context.
Chapter 3 describes in detail the algorithms that are necessary for inference and learning in
Bayesian networks. In this chapter, special attention is given to the requirements imposed by
the specific application of speech recognition, including the ability to do online recognition.
Chapter 4 presents a set of experimental results that illustrate the benefits of using factored

representations of probability distributions.

CHAPTER 1. INTRODUCTION 8

The second half of the thesis applies Bayesian networks specifically to the problem
of speech recognition. Chapter 5 presents background material on speech recognition, and
illustrates the use of the standard stochastic modeling techniques introduced in Chapter 2
in this area. Chapter 6 shows how to structure Bayesian networks specifically to do speech
recognition. The chapter begins by showing how to encode finite state pronunciation models
of the type used by HMMs and ANN/HMM hybrids in Bayesian networks. Then we present
a set of Bayesian network structures designed to address different issues in ASR. Chapter
7 presents experimental results that indicate that significant benefits can accrue from more

detailed models of speech generation.

Chapter 2

Probabilistic Models for Temporal

Processes

2.1 Overview

The purpose of this chapter is to describe the main approaches that have been used
to model stochastic processes in the past, and to describe the use of Bayesian networks in
this context. The stochastic processes we will be concerned with generate a sequence of
observable quantities, or observations, as they evolve over time in a non-deterministic way.
Although stochastic processes occur in a large range of application areas, there are a number
of common themes, and the modeling methods fall into a well-developed taxonomy. The

principal distinctions are:

e Continuous-time vs. discrete-time processes. Continuous time processes occur nat-
urally in many models of physical systems. Discrete time models can be used as
approximations to continuous models, and also occur naturally in many areas of eco-

nomics, communications and computer science.

e Use of hidden state. Many time-series modeling techniques work exclusively with
observable quantities. More complex techniques posit the existence of a hidden un-

derlying state, whose value determines in some way the observed quantities.

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 10

e Continuous-state vs. discrete-state processes. Again, when modeling physical sys-
tems, continuous state variables are often most appropriate, whereas discrete state

variables are more appropriate in other areas.

e Continuous vs. discrete observables. This distinction is analogous to the dichotomy

in hidden state types.

An example of a completely continuous stochastic process is the trajectory of a ball when
thrown in the air and buffeted by the wind. An example of a completely discrete process
is the sequence of dice rolls in a backgammon game. In this chapter, we will be concerned
with hidden-state, discrete-time modeling techniques that are applicable to systems with
both discrete and continuous variables. The standard techniques we will examine are hidden

Markov models, Kalman filters, and neural networks.

A key feature of the methods we will study is that they all have probabilistic

interpretations, and may be used to generate one or more of the following;:

e The likeliest hidden state value(s) at each point in time.
e A marginal posterior distribution over the hidden state values.

e The probability of an observation sequence.

Furthermore, the models make the first-order Markovian assumption that the present state
is conditionally independent of the entire past given the immediately preceding state. This
enables a factorization of the joint distribution as the product of localized factors, each of

which involves variables from no more than two time-slices.

A final key point of similarity is that the modeling techniques all have associated
learning procedures by which their parameters can be adjusted. This adjustment is usually
done according to the principle of maximum likelihood: the model parameters @ are ad-
justed to maximize the probability that a collection of data D was generated by the model:
0* = argmaxe P(D|0), where ©* is the optimal set of parameter values. Neural networks
differ from the other approaches in this respect because there are a variety of different

criteria that are used.

We turn now to a more specific discussion of the different techniques.

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 11

2.2 Hidden Markov Models

Hidden Markov models (HMMs) are a powerful modeling technique for discrete
state processes (Baum et al. 1970; Baker 1975; Jelinek 1976; Rabiner & Juang 1986). The
basic idea of a hidden Markov model is that the observation sequence o is generated by a
system that can exist in one of a finite number of states. At each time-step, the system
makes a transition from the state it is in to another state, and the emits an observable
quantity according to a state-specific probability distribution. More precisely, a hidden
Markov model is defined by the following things:

1. A set of possible states @ = |J; ¢;.

2. A state transition matrix A where a;; is the probability of making a transition from

state ¢; to state g;.
3. A prior distribution over the state of the system at an initial point in time.

4. A state-conditioned probability distribution over observations. That is, a specification

of P(o|q;) for every state and all possible observations.

The observation sequence modeled by the HMM may be either discrete or continuous in
nature, but because of the transition matrix, the state space is required to be discrete. Hid-
den Markov models have been used in a wide variety of application fields, with great suc-
cess. Examples include gene prediction, protein secondary-structure prediction, handwriting
recognition, and speech recognition (Hu et al. 1996; Bengio et al. 1995; Karplus et al. 1997;
Krogh et al. 1994; Levinson et al. 1983; Kulp et al. 1996).

The use of HMMs is well-illustrated by a (simplified) example from computational
biology: the problem of predicting whether a region of DNA codes for a gene. The DNA
in the chromosome of a higher animal falls into one of two categories: it either codes for
a protein, and can be used by a cell as a template for constructing that protein, or it is
extraneous with respect to protein coding. The former regions are referred to as exons,
and the latter as introns. Introns are “spliced out” of a DNA strand in the process of
transcription. The ability to recognize exons is significant to biologists because it allows
them to identify and study regions of biological significance. An HMM can be used to
model this distinction by assuming that the DNA sequence is generated by a system that

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 12

essentially acts like a typist. The system can either be in the state of “typing out” a gene, or
of “typing out” a non-coding region. When in the gene-producing state, base pairs from the
set {A,C,T,G} are emitted with characteristic frequencies. When in the intron state, the
characteristic frequencies are different. The HMM is “trained” to learn these characteristic
frequencies, and the probability of switching from one region to another, with examples
of DNA where the coding and non-coding regions are known. Using this information, the
HMM can find the likeliest partitioning of an unknown sequence into coding and noncoding
regions. A more sophisticated approach that has been found to produce good results in

practice can be found in (Kulp et al. 1996).

2.2.1 Variations

The HMM methodology has been quite successful, and this is indicated by a large
number of variations that have been explored. One approach, used by researchers at IBM,
is to associate output distributions with transitions, rather than states. Ostensibly, this has
the effect of squaring the number of output distributions; in fact, the two approaches are

formally equivalent (Jelinek 1997).

The assumption of time-invariant transition probabilities implies an exponentially
decreasing a-priori distribution over durations, but in cases where this is undesirable, it
is possible to explicitly model the state durations. A particularly elegant parametric rep-
resentation based on the gamma distribution is discussed in (Levinson 1986); the gamma
function looks like a skewed Gaussian, and is defined for positive durations. Related work is
presented in (Russell & Moore 1985). Although more sophisticated transition probabilities
can give a better fit to the data, it is often the case that the behavior of the model is

dominated by the observation probabilities.

Another important variation deals with the modeling of autoregressive observa-
tion sequences. The assumption behind autoregressive HMMs (Poritz 1982) is that it is
reasonable to model the output 7; at time t as a linear combination of the immediately
preceding values. The precise assumption is that the observation stream is real-valued,
and y; = Zlf apyi—r + u;. The term uy represents a normally distributed error term, and
the a; are autoregressive coefficients. Essentially, this model tries to predict the current

observation from the past k& observations. Since the errors are assumed to be normally

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 13

distributed with some standard deviation o, the probability of a particular error can be

computed as \/zlr—gexp(ut/Qaz). The errors are also assumed to be independent and iden-
tically distributed, so that the probability of a sequence of observations can be computed
from the product of their individual probabilities. The idea behind an autoregressive HMM
is to associate a set of predictor coefficients with each state, and compute the observation
probability from the prediction errors. This type of model is extended to autoregressive

mixtures in (Juang & Rabiner 1985).

This sampling of HMM variations shows that one must be careful in defining an
HMM. That said, in this thesis, the term HMM will be used to refer to the “plain vanilla”
kinds of HMMs described in early papers (Baum et al. 1970; Baker 1975; Jelinek 1976),
and now defined in standard texts (Rabiner & Juang 1993; Deller et al. 1993; Lee 1989;
Jelinek 1997). The only significant difference between the formulations found in these
sources is the question of state vs. transition emissions, which is universally agreed to be

irrelevant.

2.2.2 Algorithms

We now turn to the algorithms that are available for use with HMMs. Denote a
fixed length observation sequence by o = (01,0, ...,0,) and a corresponding state sequence
by q = (¢1,92,--.,¢,). An HMM defines a joint probability distribution over observation

sequences as follows:

Plo) = ZP P(olq)

= ZP (1) P(galq1) - - - P(qa]gu-1) P(01]q1) P(02]g2) - - - P(04])

n

= ZP (q1)P(o1lq) [P(gilgim1) P(oilg:)

i=2
The value of P(¢;|¢;—1) is specified in the state transition matrix, and the value of P(0;|¢;) is
specified by the observation distributions associated with the HMM. We denote the assertion
that the state of the system at time ¢t was ¢; by ¢J; = ¢;. There are efficient algorithms
(Rabiner & Juang 1986) for computing the following quantities:

1. P(o) =34 P(o,q): the probability of an observation sequence.

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 14

2. argmaxq P(0,q): the likeliest hidden state sequence given an observation sequence.
3. argmaxe P(0O]0): the optimal model parameters in the maximum likelihood sense.

4. P(Q; = ¢;|0), Vt,i: the marginal distribution over states at time ¢ given an observation

sequence.

Since the algorithms themselves are well known, we do not present them here, and note

only that the running time is in all cases proportional to n|Q|?.

2.3 Kalman Filters

Kalman filters were developed in the 1960s to address the problem of estimating
the state of a process with continuous hidden state variables. The paradigmatic use of
Kalman filtering is to infer the position of an airplane from a sequence of imperfect radar
measurements. A Kalman filter (Kalman 1960) assumes a stochastic process of the following
kind:

Qi1 = Aq: + 1

o; = Cqy

The state and observation variables, q; and o; are real-valued vectors, while A and C' are
real-valued matrices; A governs the evolution of the state variables, while ' relates the state
variables to the observations. The quantity v4 is assumed to be drawn from a Gaussian
noise source with zero-mean and a fixed variance. There are many variations on the exact
mathematical formulation, e.g. those found in (Goodwin & Sin 1984; Anderson & Moore

1979).

To give the flavor of the matrices associated with Kalman filters, q might consist of
entries for position, velocity, and acceleration; in this case, A would encode the Newtonian
equations relating successive values for these quantities over a small time increment. Kalman
filters have found widespread use in fields as diverse as engineering and economics (Dattellis
& Cortina 1990; Blanchet et al. 1997; Manohar Rao 1987). In contrast to HMMs, Kalman
filters are most relevant when the hidden state is most naturally described by continuous
variables. Kalman filters are also distinctive because they factor the hidden state into a

combination of quantities, as indicated by the vector nature of the hidden state variable.

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 15

Algorithms exist for computing the same quantities that can be computed with a
HMM (Goodwin & Sin 1984; Anderson & Moore 1979). Moreover, the algorithms are highly
efficient with running times proportional to the amount of time required to multiply two d by
d matrices, where d is the larger of the state and observation dimensions. Although it is not
immediately obvious that Kalman filters can be applied to problems with a discrete-state

component, we will see in chapter 5 that such an extension is possible.

2.4 Neural Networks

Over the course of the last decade, neural networks have found widespread use
in time-series modeling (Haykin 1994; Haykin 1996; Hertz et al. 1991). In the following
sections, we will describe three examples. The first two are based on extensions to multi-
layer perceptrons (MLPs) using sigmoidal nonlinearities, while the third is based on the
use of Gaussian radial basis functions. In order to understand the application of MLPs to
temporal processing, we will begin with a brief description of their functioning for problems
of static input-output mappings. For further details of these algorithms, the reader is
referred to the original articles, or to (Haykin 1994), which provides thorough summaries,

and on which the next few sections are based.

2.4.1 Multi-Layer Perceptrons

The basic unit of an MLP is the perceptron. A perceptron can be thought of as
a nonlinear function, or processing unit, taking k real-valued inputs and producing a real-
valued output. We will refer to the inputs by the vector y, and the output as v. The output
of a perceptron is given by v = ¢(w -y), where w is a real-valued “weight” vector, and

¢(z) is a nonlinear function, typically sigmoidal: ¢(z) = where a is a constant

1—|—eac(;)(—x) ’
and often 1. In the case that there are several different perceptrons each receiving the same

input, we will denote them by v; = ¢(wj - y); note that each has its own weight vector.

An MLP consists of several “layers” of perceptrons (see Figure 2.1). Each layer
consists of a collection of perceptrons, and the output of one layer forms the input to the
next. Thus, a single layer can be thought of as a function mapping an input vector y into a
k-dimensional output vector v(y). The function is given by v(y) = (v1(y), v2(y) ..., vx(¥))-

In the case that there are several different layers, we will denote them by v;(y), each of

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 16

Output Layer:
Sigmoidal

J

Hidden Layer:
Sigmoidal

J

Input Layer

Figure 2.1: A MLP with one hidden layer. The nodes are typically fully interconnected
between layers.

which defines a distinct function. A f layer MLP relates its input y to its output z by the
composition of the functions defined by each of its layers: z(y) = vi(vi_1(---(v1(y))))-

The specification of an MLP consists of the number of layers, the number of
perceptrons in each layer, and the weight vectors of each perceptron. Training consists of
adjusting the weight vectors so as to minimize the discrepancy between the network output
and some desired output for a set of training examples. Let 2! be the value of the ith output
perceptron on the eth example, and let ¢ be the target value. There are two commonly

used measures of discrepancy or error F:

1. Least squares: £l = 3 .(2¢ —)%

2. Cross entropy: »_ . > . télog(i—%) + (1 - té)log(l_té). This is appropriate when the

— ot
1-2z%

target values represent a probability distribution.

The standard learning techniques (Haykin 1994; Hertz et al. 1991; Bishop 1995) work by

doing gradient descent in weight space so as to minimize the error.

2.4.2 Finite Impulse Response MLPs

Finite impulse response MLPs, or FIR-MLPs, are a simple generalization of MLPs

in which a standard MLP is presented with a succession of input vectors, and each of the

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 17

Outputs

Input(s)

Step-delayed network values

Figure 2.2: A RTR-NN.

constituent perceptrons is endowed with a memory of its previous input values (Wan 1990;
Haykin 1994). A temporal interpretation of this model results when successive input vectors

correspond to successive instants in time.

More specifically, each perceptron remembers the last p input values presented to
it, so that the input at time ¢ is effectively the concatenation of v, yi—pt1, ... Yi=1, ¥
The weight matrix is correspondingly enlarged. Algorithms for training FIR-MLPs can be
found in (Wan 1990; Haykin 1994).

FIR-MLPs are of interest because they are a general form of temporal modeling
that, in restricted form, has found widespread use in speech recognition. Examples of this
kind of network include the time-delay neural networks of (Lang & Hinton 1988; Waibel
et al. 1989), and the MLPs described in (Bourlard & Morgan 1994). We will discuss these

applications in more detail in Chapter 5.

2.4.3 Recurrent NNs

The second broad class of neural networks for temporal processing are real-time
recurrent neural networks (RTR-NNs) of the type first described in (Williams & Zipser
1989). Restricted versions of this kind of network have also found important application in
speech recognition (Robinson & Fallside 1991). The basic idea of a RTR-NN is to maintain

a single layer of hidden nodes with sigmoidal nonlinearities; some of these nodes represent

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 18

the output of the network, and others are used solely to encode state information. The input
to the hidden layer consists of an input vector concatenated with the values of the hidden
nodes at the previous time step. This scheme is illustrated in Figure 2.2. The method of
(Robinson & Fallside 1991) is the same, except that the output nodes do not feed back into

the network.

RTR-NNs are similar to Kalman filters in that they maintain a real-valued hidden
state vector, whose value at time t is a function both of its previous value and some new input
to the system. RTR-NNs are significantly different, however, because whereas Kalman filters
were developed to model a “dynamic system excited by an independent Gaussian random
process,” (Kalman 1960), the input vector to a RTR-NN is not assumed to be Gaussian
noise, and the state at time ¢ is related in a highly nonlinear way to both its previous value

and the current input vector.

2.4.4 Radial Basis Function Networks

A radial basis function neural network (RBF-NN) works along completely different
lines from the sigmoid-based networks, but can also be used for temporal modeling. The
distinguishing feature of RBF-NNs is that they are based on localized nonlinear functions,
typically Gaussians. The idea is to form a two-layer network (see Figure 2.3) in which the
nodes in the first layer take an input vector and compute Gaussian activations (Moody &

Darken 1989):

Zamep(—(y = 13)?/(207))
Zi ammerp(=(y = 1y)*/(207))

vi(y) =

The values of the nodes in the second layer form the output of the network; each node in

this layer simply computes a linear combination of the values of the first-layer outputs:
zZi(y) =Y Vily)wy,
7
where z;(y) is the jth output and w;; is a scalar weighting factor.

Intuitively, the operation of a RBF-NN is easy to understand. The input space is
partitioned into regions by the Gaussian centers, and stereotypical output values for each
region of the input space are stored by the weights connecting the hidden nodes to the
output nodes. To the extent that more than one Gaussian is activated, the input vector

belongs in more than one region, and the final output is determined by linear interpolation.

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 19

Output Layer:
Linear activations

/

Hidden Layer:
Gaussian activations

VAN

Input Layer

Figure 2.3: A radial basis function neural network. The first layer computes Gaussian
activations while the second layer is linear.

One of the main advantages of RBF-NNs is the ease with which they can be
trained. The means and variances of the Gaussians can be found by EM (Bishop 1995),
and the weights on the second layer can be found by setting up and solving (in the least
squares sense) a system of simultaneous equations that relate the Gaussian activations to

the target outputs for each of the input vectors (Haykin 1994; Bishop 1995).

RBF-NNs can be used for time-series modeling by treating each of the sequences
in the training data as a multiplicity of static training examples. For example, consider the
time-series 1, 29,...,%,, and suppose we want to predict z; from zp_,...25_1. We can
turn this into something amenable to a RBF-NN by creating a distinct training pattern from
each point-in-time: ((2;_p,...,2;-1),2;),n > j > p. The network can be trained to predict
these static patterns, and then used to predict unknown values from unseen segments of
a similar time series. This method has been used by (Moody & Darken 1989) to predict
chaotic time-series, and improved on by (Stokbro et al. 1990).

2.5 Dynamic Bayesian Networks

Before turning to Bayesian networks, we pause to consider the methods for tem-

poral processing discussed so far. While all the methods maintain a hidden state represen-

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 20

tation and operate in the discrete time domain, there are very significant differences and
limitations. It is convenient to consider these along the axes of linearity, interpretability,

factorization, and extensibility.

Linearity. The Kalman filtering technique is fundamentally linear: it assumes
that successive states are related by a linear transform, and that the state and observation
variables are related by a linear transform. Although various schemes have been developed
to model nonlinear systems with Kalman filters (Anderson & Moore 1979), they tend to
be complex and of limited applicability. In contrast, both HMMs and NNs are naturally
suited to model nonlinear processes. In HMMs, this capability derives from the arbitrary
conditional probabilities that can be associated with both the transmission and emission
matrices, or with functional representations thereof. In the case of NNs, it derives from the

use of nonlinear activation functions.

Interpretability. The Kalman filter is probably the most interpretable of the
modeling techniques we have discussed. In many applications, the matrices involved are
designed by hand to reflect known physical laws. The parameters associated with HMMs are
interpretable in so far as they are clearly labeled as “transition” or “emission” probabilities,
but the states of an HMM do not always have a clear interpretation, especially after training.
Neural networks are the least interpretable because often the hidden units are not assigned

any meaning, either before or after training. There are exceptions, however, see e.g. (Towell

& Shavlik 1993).

Factorization. There is wide variation in the degree of factorization imposed by
the different modeling techniques, and the variability is increased by the degree to which
one is willing to modify “plain vanilla” systems. The simplest case to deal with is Kalman
filters, where the vectorized state and observation representation are inherently factored.
To the extent that the matrices are sparse, the factorization also leads to a reduced number

of parameters.

Basic neural networks are factorized in the sense that state is represented in a
distributed fashion by a large number of nodes; but, if there is complete interconnection
between the nodes in successive layers, the number of parameters is quadratic in the number
of states, and scalability is severely limited. (Pruning techniques and weight-decay can be
used to counteract this: see, e.g. (Le Cun et al. 1990; Scalettar & Zee 1988).) A greater

degree of structure can be imposed by breaking a large network into a combination of

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 21

smaller networks. For example, a system to recognize handwritten digits (Le Cun et al.
1989) decomposes the units in the hidden layers into several separate groups, and does not
use a complete interconnection between layers. Moreover, the weights of different groups
are constrained to be the same (i.e. there is parameter tying), further reducing the number
of free parameters. Hierarchical network construction algorithms (Frean 1990; Fahlman &
Lebiere 1990) achieve a factored representation by carefully building a hierarchical structure
in which the nodes in successive layers are carefully added to correct the mistakes of the
previous layer; again, complete interconnection is avoided. The mixture of experts structure
presented in (Jacobs & Jordan 1991; Jacobs et al. 1991) is similar: small neural networks

” and their outputs combined in a principled way to form

can be trained as local “experts,’
the output of the entire system. In (Jordan 1992), this scheme is extended to hierarchically

organized networks of experts.

In the field of speech recognition, factored neural net approaches have been used by
a number of researchers. In (Morgan & Bourlard 1992), a method is presented for factoring

a neural net so that it computes P(A, B|C') as
P(A,B|C) = P(A|C)P(B|A,C).

A separate neural net is used to compute each of the factors, and this scheme reduces
the number of parameters in the output layer, without requiring statistical independence
assumptions. This method is extended and applied to a large-scale speech recognition task in
(Cohen et al. 1992); clearly, a factorization into more than two components is also possible.
The work of (Fritsch 1997) uses a hierarchy of ANNs to represent a probability distribution
in a factored way. These schemes indicate that parameter-reducing factorization techniques

can be applied to neural networks.

In the standard definitions, HMMs are fundamentally unfactored: if the state of
the system consists of a combination of factors, it cannot be represented concisely this in the
methodology. With effort, however, it is again possible to create HMM systems in which the
states implicitly represent the combination of multiple distinct pieces of information. This
is the case in, for example, HMM-decomposition (Varga & Moore 1990) which implicitly
models both a noise source and a speech source, and in the articulatory HMMs of (Deng &
Erler 1992). It should be noted that although these schemes achieve a parameter reduction,

there is no corresponding reduction in computational requirements.

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 22

Extensibility. Neural networks are extremely extensible, and can be proven to
be universal function approximators; a simple explanation for this can be found in (Lapedes
& Farber 1988). Kalman filters are also quite extensible because the state and observation
variables are vectors; thus system complexity can be increased by increasing the dimension-
ality of these vectors. This flexibility is modulated, however, by the underlying assumption
of linearity. Hidden Markov models are somewhat limited in their extensibility by the
fact that the main way of increasing their complexity is simply to increase the number of
states. This can be awkward when the overall state of the system is actually composed of

a combination of separately identifiable factors.

In the following sections, we will see that Bayesian networks, and their tempo-
ral counterparts, dynamic Bayesian networks, combine most of the advantages of HMMs,

Kalman filters, and NNs, while avoiding many of their limitations.

2.5.1 Bayesian Networks

In recent years, probabilistic or Bayesian networks (Pearl 1988) have emerged as
the primary method for representing and manipulating probabilistic information in the Al
community. These networks can be used to represent either static events, such as the co-
occurrence of a set of diseases and symptoms, or to represent temporal processes such as

the motion of an automobile in traffic.

A probabilistic network represents the joint probability distribution of a set of
random variables {Xy,..., X,;}. Denoting the assignment of a specific value to a variable
by a lower-case letter, the probability of a joint assignment of values is specified with
the chain rule and a set of conditional independence assumptions as: P(z1,...,2,) =
[1; P(x;|Parents(X;)). Here Parents(X;) refers to a subset of the variables X;...X;_q;
given values for its parents, X; is assumed to be conditionally independent of all other
lower-indexed variables. The conditional probabilities associated with each variable are
often stored in tables referred to as CPTs. A Bayesian network has a convenient graphical
representation in which the variables appear as nodes, and a variable’s parents are specified

by the arcs leading into it, see Figure 2.4.

As an example of a Bayesian network, consider Figure 2.4. This network relates

asbestos exposure to medical symptoms that can be observed, through two underlying dis-

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 23

Asbestos Exposure

P(Bronchitis | Asbestos) = 0.1
P(Bronchitis | not Asbestos) = 0.01

Short-of-Breath Headaches
(True) (False)

Figure 2.4: A Bayesian network. The shaded nodes represent variables whose values are
observed. Each variable has an associated conditional probability table (or equivalent func-
tional representation) that specifies a distribution over values, conditioned on the values of
the variable’s parents.

eases. The set of variables in this case is: “asbestos exposure,” “lung cancer,” “bronchitis,”
“shortness-of-breath,” and “headaches.” These are all binary variables, though in general
the variables can take many values or be continuous. For referential convenience, the vari-
ables have also been given single-letter abbreviations. The factorization that this network
encodes is:

Pla,b,c,d,e) = P(a)P(bla)P(cla)P(d|b,c)P(e|c).

As with the other techniques we have discussed, there are well-known algorithms
for computing with Bayesian networks (Pearl 1988; Heckerman 1995), and these procedures

will be covered in more detail in Chapter 3.

It is usually the case that knowledge of a variable’s parents does not completely
determine the value of the variable; we refer to such variables as stochastic. There are
important exceptions, however, where a variable’s parents completely determine its value,
and we refer to such variables as deterministic. When this is the case, large gains in efficiency
can result from using a sparse encoding of the conditional probabilities; this will emerge as
an important issue in the application of Bayesian networks to speech recognition in Chapter

6.

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 24

2.5.2 Dynamic Bayesian Networks

In the dynamic case, a probabilistic network models a system as it evolves over
time (Dean & Kanazawa 1988). At each point in time, a set of variables Xy,..., X, are of
interest. For example, to model car-driving, lane-position and speed are relevant. A DBN
uses a set of variables X! to represent the value of the ith quantity at time ¢. DBNs are
also time-invariant so that the topology of the network is a repeating structure, and the
CPTs do not change with time. The joint probability distribution is then represented as
[1;; P(zf|Parents(X{)). In networks with the first-order Markov property, the parents of
a variable in timeslice ¢ must occur in either slice ¢t or ¢ — 1. The conditional distributions
within and between slices are repeated for all ¢ > 0, so that DBNs can be specified simply by
giving two slices and the links between them. When applied to an observation sequence of
a given length, the DBN is “unrolled” to produce a probabilistic network of the appropriate

size to accommodate the observations.

The top of Figure 2.5 illustrates a generic DBN unrolled to show five time steps.
The variables are divided into state variables, whose values are unknown, and observation
variables, whose values are known. The state variables evolve in time according to a model
encoded in their CPTs, which we refer to as the state evolution model. The state variables
are related to the observation variables by the CPTs of the observation nodes. The bottom

of Figure 2.5 shows a more realistic DBN in which the hidden state has been factored.

In this example, the observation stream is conditioned on the hidden state vari-
able(s), and the same model could be expressed implicitly, but with less computational
efficiency, as a factored HMM. It should be noted that this is not always the case; for exam-
ple, with a DBN it is possible to condition the hidden state variables on the observations,

thus resulting in a fundamentally different model.

2.5.3 Strengths of DBNs

Dynamic Bayesian networks are ideally suited for modeling temporal processes. In

terms of the qualities mentioned earlier, DBNs have the following advantages:

1. Nonlinearity. By using a tabular representation of conditional probabilities, it is quite

easy to represent arbitrary nonlinear phenomena; moreover, it is possible to do efficient

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 25

. State evolution model

-,

I —

O H O T\ state sequence

o o O\ © © observation sequence
observation-generation model

0

/ factored state
O O representation
o o o observation sequence

Figure 2.5: Top: A simple DBN, “unrolled” to show five time steps. Bottom: A DBN with
a factored state representation. The factored representation can describe the evolution of
an equal number of total states with exponentially fewer parameters.

computation with DBNs even when the variables are continuous and the conditional

probabilities are represented by Gaussians - see, e.g. (Shachter & Kenley 1989).
2. Interpretability. Each variable represents a specific concept.
3. Factorization. The joint distribution is factorized as much as possible. This leads to:

o Statistical efficiency. Compared to an unfactored HMM with an equal num-
ber of possible states, a DBN with a factored state representation and sparse

connections between variables will require exponentially fewer parameters.

e Computational efficiency. Depending of the exact graph topology, the reduction

in model parameters may be reflected in a reduction in running time.

4. Extensibility. DBNs can handle large numbers of variables, provided the graph struc-

ture is sparse.

Finally, DBNs have a precise and well-understood probabilistic semantics. The combination
of theoretical underpinning, expressiveness, and efficiency bode well for the future of DBNs

in many application areas.

CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 26

2.6 Discussion

This chapter has presented thumbnail sketches of several important techniques
for modeling stochastic processes. For comprehensibility, it is useful to present somewhat
stereotyped descriptions of the different methods, thus exaggerating their differences. It is
also important to realize that the methodologies are neither mutually exclusive, nor com-
pletely distinct. In its simpler forms, the DBN framework merges into the HMM framework;
conversely, as implicit factorization is added to the HMM framework, it blends with the
DBN methodology. Hybrid approaches are also possible, for example one might encode
the conditional probabilities required by a DBN with a small neural network; the resulting
system would then consist of a large number of relatively small neural networks organized
with a coherent large-scale structure, and endowed with a natural probabilistic semantics.
This is similar to the approach proposed in (Fritsch 1997) for phone classification in speech

recognition.

27

Chapter 3

Inference and Learning with

DBNs

In this chapter, we present inference and learning algorithms for DBNs, with spe-
cial attention to the requirements imposed by the speech recognition task. These require-

ments, which will be discussed more fully in Chapter 6 are:

1. that the procedures be extremely efficient in networks that include both stochastic

and deterministic variables, and

2. that variable-length observation sequences are dealt with efficiently.

Although there are well-known procedures for doing inference in Bayesian net-
works, e.g. (Pearl 1988; Lauritzen & Spiegelhalter 1988; Jensen et al. 1990), we present

algorithms in some detail because

e the special requirements of speech recognition have not been dealt with before, and

e the simple dynamic programming formulation we present is more appropriate for

implementation than the usual message-passing formulation.

The algorithm we use for inference in a tree is an improvement on that presented

in (Peot & Shachter 1991). Inference in general graphs is most often done by clustering

i

together groups of variables in the original graph into “cliques.” These cliques are then

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 28

joined together into a tree structure known as a clique tree, and a special set of inference
routines are derived (Lauritzen & Spiegelhalter 1988; Jensen et al. 1990). In this chapter, we
present a novel derivation of the clique tree procedure that retains the simple tree-inference
algorithm, and uses a change of variables to convert an arbitrary Bayesian network into
an equivalent tree-structured one. The derivation proceeds to specific algorithms from an
axiomatic statement of the requirements that must be satisfied for two Bayesian networks

to represent the same probability distribution.

The main points of this chapter are:

1. A simple statement of inference in a tree in terms of dynamic programming. This is

lacking in the literature.
2. A novel derivation of clique tree inference in terms of a change of variables.

3. A novel method for propagating the constraints of deterministic variables through a
clique tree so that inference with deterministic variables is highly efficient. In con-
trast to previous methods, this procedure exploits evidence on a case-by-case basis.

Triangulation routines that enable the procedure are presented.

4. Novel procedures for handling variable length observation sequences are presented.

These procedures are useful for offline inference and learning.

5. A novel method for online inference is presented. This scheme can easily be combined
with beam-search to maintain a small set of highly likely hypotheses in an online

manner.

Where relevant, we present a short comparison with analogous issues in HMMs; this com-
parison brings the issues into sharper relief, and clarifies the differences between the method-

ologies.

3.1 Inference on a Tree

This section presents an inference algorithm for the case where the variables in a

Bayesian network are connected together in a tree-structured graph.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 29

Figure 3.1: A tree of variables. The partitioning of the evidence is shown for X;.

3.1.1 Definitions

0

For each variable X; we define three mutually exclusive sets of assignments: e;, e,

and e;»". e? is the observed value of X; in the case that X; is an evidence variable. e is the
I

set of observed values for the evidence variables in the subtrees rooted in X;’s children. e;
is the set of observed values for all other evidence variables. The partitioning is shown in
Figure 3.1. In the case that e? # (), an assignment X; = j is consistent with the evidence
if it matches the assignment in e, and all other assignments are inconsistent. If e? = O,
we say that all values of X; are consistent with the evidence. We denote the set of values

for X; that are consistent with the evidence by CON(7).

Note that

Ple,X;=j) = P(e),e,ef, X; =)
Plel, X; = j)P(er,ellef, X; = j)

7

= Plel,X;=j)P(e,ed|X; =j)

797

If X; = jis inconsistent with the evidence, i.e. contradicts e?, then P(e;,e?| X; =
j) = 0. In the inference procedure, the following two key quantities will be calculated for

each variable X;:

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 30

A= Per, el X; = j)

7 7

o 7\ = P(ef, X; = j).
It follows from these definitions that

o P(Observations) =3, /\é * F;, V.

Ai 7
P(X; = j|Observations) = iﬂ, Yi.

Py
PR

Hence, once the As and 7s are calculated, we can determine the probability of the

observations, and the marginal posterior probabilities for all of the variables.

3.1.2 Algorithm

The X probabilities will be calculated in a bottom up pass over the tree, and then
the 7 probabilities will be calculated from the As in a top-down pass. The algorithm is

given in Figure 3.2.

The likeliest assignment of values to the variables can be found with a simple
modification to this algorithm. In the bottom-up pass, the As are computed as before,
except that the sum over f is replaced by a maximization over f. The maximizing f value
is stored for each of the children and for each /\; Then the 7s are calculated for the root
as in the first step of the top-down pass. At this point, the likeliest assignment to the root
variable X, can be computed as arg max; A7 + 7. By starting at the root and recursively
looking up the maximizing values for the children, the remainder of the variables can be

assigned values.

There are a couple of things to note. First, in the calculation of the As, the sum
over f can be modified to read sumsecon()- This is because A¢ =0, Vf ¢ CON(c). This
is advantageous since no values need to be stored for the As that are inconsistent with the
evidence. Secondly, ﬂ; needs only be stored for j € CON (i), and can be implicitly assumed
to be 0 otherwise. This will have no effect on any results because 1) in computations
involving X; itself, ﬂ; will be multiplied by /\;, which is 0 for j ¢ CON(4); and, 2) in the
recursive computation of ws for X;’s children, inconsistent values are ignored. Again, a

space savings can result from doing this.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 31

Algorithm Inference()
for each variable X; in postorder
if X; is a leaf
/\é =1, Vj consistent with the evidence;
/\é = 0, otherwise.
else
/\é = Ieechitaren(xy) 225 A5 * P(Xe = fIXi = j), Vi consistent with the evidence;
Ar =0, otherwise.
for each variable X; in preorder
if X; is the root
wh = P(X; = j)

else

let X, be the parent of X;
W; = ZUECON(])) P(X; =j|X, = ”)*Wf*nsesiblmgs(xi) Zf /\ﬁf*P(Xs = fIXy =)

Figure 3.2: Inference in a tree.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 32

O O O O Chain
aphas betas
pis lamdbas
_—= -
State or
Variable > L Grid
Value
Time

Figure 3.3: A chain structured graph. A two-dimensional grid is an adequate data structure
for computing the As and 7s for a chain. In this case, the As are analogous to HMM fs and
the s are analogous to as. The diagonal arrows in the grid show the values that are used
to compute the A and 7 values for a particular cell.

3.1.3 Comparison with HMM Inference

Recall that HMMs deal with a set of states Q@ = | J; ¢; and an observation sequence
01,02,...0,. In HMM inference, the following quantities are computed (Rabiner & Juang
1986):

at(i) = P(017027 <o O, G = Z)
ﬁt(l) = P(0t+170t+27 .. -0n|f]t = l)

These are analogous to the s and As respectively, with the difference that we have as-
sociated the evidence at time ¢ with the A rather than the w; this makes the Bayes net
derivations slightly simpler, and is otherwise irrelevant. The bottom-up computation of the
As is analogous to the backwards f-recursion in HMMs, and the top-down computation of

the ws is analogous to the forwards a-recursion. The analogy becomes precise for chain-

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 33

structured Bayesian networks, when e} corresponds with o1,0,...,0,_1, €, corresponds
with 0s41,0¢42,...0,, and e corresponds with o;. The inference procedures for Bayesian

networks are essentially identical to those for HMMs when the underlying graph is a chain;
when the graph is a real tree, however, and has side-branches emerging from the main back-
bone, the two are substantially different. The analogy between HMM and DBN inference
is illustrated in Figure 3.3.

Viterbi decoding in an HMM is usually done with a modified forward recursion. In
chain-structured DBNs, a similar procedure can be used. In general, however, the modified
backward procedure is necessary. This is because the forward recursion in a tree-structured

graph cannot proceed without already knowing the As. The root cause of this is that
I

for a variable “hanging” off the main backbone of a chain, e includes evidence from all

timeslices. Therefore, the 7s for this variable cannot possibly be computed without looking

into the future. The implications of this are discussed further in Section 3.7.

3.1.4 A Speedup
Let X, denote the parent of X;. If we define ! as
=Y N P(Xi = fIX, = v)
!

we may rewrite A for non-leaf variables as

’\; - H 7

c€children(X;)

and ﬂ; as
Tho= Y P(Xi=jX,=0v)*ah« I S A+PXs=f1X,=v)
veCON(p) s€siblings(X;) f
= Y P(Xi=jlX,=v)« 7D« AD/7)
veCON(p)

Hence if the 7-factors contributing to each A are stored in the bottom up pass, the products

over siblings can be constructed with a division.

In the case that 7 = 0 in the calculation of F;, no update is necessary. This is in
contrast to the original algorithm of (Peot & Shachter 1991) which computes the product
over siblings from scratch in this case. This change makes the code slightly simpler, and

improves the running time when this case occurs.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 34

3.1.5 Proof of Speedup

The proof of correctness is inductive. We begin by noting that a 7 computed by
X; is only used by X; and its children, and therefore only relevant to those variables. We
will show that

1. The only way an error can be made is in the calculation of a child’s = value.

2. Either the child’s ws are correctly calculated, or the affected terms have 7-factors
which themselves are (0. This implies an inductive chain in which 7s can only be
miscalculated for leaf variables. But since errors can only occur in a child’s 7, and a

leaf variable has no children, the calculation is sound.

The proof is given in more detail below.

Theorem 3.1 The omission of terms for which 7 = Y, /\ZJ} * P(X; = fIX, =v)=0is

irrelevant.

Proof

Without loss of generality, consider the calculation of F;:

mi= > P(Xi=jlX,=v)xrbx] DA P(X, = fIX, = 0).

veCON(p) s€siblings(X;) f

Suppose a value of v is encountered for which

Ts _Z/\ + P(X; = flX,=v)=0.

First note that 3~ /\Z * P(X; = f|X, = v) = 0 implies /\Z « P(X; = fIX, =v) =
0, Vf. In particular, \:+ P(X; = j|X, = v) = 0, so either A% = 0 or P(X; = j|X, =v) = 0.
If P(X; =j]X, =v)=0, the product over siblings is irrelevant because it will be

multiplied by 0. Omitting the term does not result in error, and neither values associated

with X, nor its children will be affected.

If /\é = 0 we must consider first the effects of miscomputing ﬂ; on future cal-

culations regarding both X; and its children. There are no effects on future calculations

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 35

regarding X; because whenever ﬂ; is used (e.g. to calculate marginals) it will be multiplied
by Aj.

Thus far we have shown that omitting the term can only affect future calculations
regarding X;’s children, and never calculations regarding X; itself. This implies that if X;
is a leaf, the omission is safe. Furthermore, the children can only be affected when /\é = 0.

C

Now suppose /\é = 0 and consider a child X. computing some 7 value 7¢,.

o= > PXe=uw|X;=v)xrix [D_MNxP(X,=fIXi=v)
veCON (1) s€siblings(X.) f
Since we are considering the results of a miscomputation of F;, the only effect on
the computation of 75, occurs when v = j. If j ¢ CON(3), there is no contribution to the
sum, so a miscomputed ﬂ; is irrelevant. Otherwise, the term involved is

P(Xc=wX;=j)xmix J[DN+ P(X,=fIXi=))
s€siblings(X.) f

= P(X.= w|X; = j)* 7l \s/7¢
= P(X. = w|X; = j)* 7+ N/ (O A5+ P(X. = fIX; = j))
f

Since /\é = 0, we know by its definition that
O A5+ P(X. = fIXi=1j)) * II DN P(X,=flXi=j) = 0
f s€siblings(X.) f
Either one of the factors over siblings is 0 or the parenthesized factor is 0.

If one of the factors over siblings is 0, the miscomputed value of ﬂ; is multiplied
by 0, rendering it inconsequential. In the case that the parenthesized factor is 0, we have
discovered a term in the calculation of w, for which the 7-factor is 0. This term will
be omitted, and we have already shown that omitting it can only affect X.’s children.
This establishes an inductive chain in which harmless omissions are made; the chain must

terminate at a leaf variable, where the omissions are again harmless.

3.2 Inference in General Graphs

The algorithm presented in section 3.1 works only in tree-structured graphs. In

this section, we present a technique for doing inference in graphs with arbitrary topology.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 36

The method of attack is to use a change-of variables. We will define a new tree-structured
network in terms of a new set of variables in such a way that the new network represents
exactly the same joint probability distribution as the old network. We will then be able to

use the simple tree-inference algorithm.

3.2.1 Equivalent Representations of Probability Distributions

Suppose we have two Bayesian networks A/ and A’ over the sets of variables X
and X' respectively. Let x; denote a joint assignment of values to the variables in X, and let
x;» denote a joint assignment of values to the variables in X'. Let £ be the set of all possible
joint assignments of values to the variables in X; i.e. £ = U; x;. Let ¢ be the set of all
possible joint assignments of values to the variables in X’; i.e. ¢ =y x;. Assume without
loss of generality that | & | >= | £ |. Let & denote a subset of ¢ such that | £* | = | £ |. We
will use P to represent probabilities associated with A/, and P’ to represent those associated

with A7,

Theorem 3.2

N represents the same distribution as N if the following conditions are met:

1. There is a one-to-one correspondence between the members of € and the members of

£*. For notational convenience, let x; be associated with x;.
2. For each such pairing, P(x;) = P'(x}).

3. For all joint assignments x? € £\ €=, P'(x¥) = 0.

Proof. These conditions imply that the sum or max over any subset of £ can be

computed by performing the same operation on a well-defined subset of ¢

3.2.2 Inference with Trees of Composite Variables

In this section, we will derive the clique tree inference algorithms (Lauritzen &
Spiegelhalter 1988; Jensen et al. 1990) from the principles set out in section 3.2.1. We will

structure the derivation by satisfying each requirement of Theorem 3.2 in turn.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 37

Correspondence Requirement

The variables in the tree will be defined to represent subsets of the variables in
the original network. Fach composite variable ranges over the Cartesian product of the
variables in the subset associated with it. This creates the one-to-one mapping from each

joint assignment in the original network to a joint assignment in the tree.

Equal Probability Requirement

We will now add a further stipulation that each variable in the original network
must occur together with its parents in at least one of the composite variables. We may
thus “assign” each variable in the original network to a composite variable C; in which it
occurs with its parents. Let F; represent the variables in the original network that are
assigned to C;. Let (', and €. denote two composite variables in a parent-child relationship
in the tree. Define P/(C. = i|C) = j) to be [[x, cF, P(ag|Parents(Xy)), with zp and
Parents(Xy) implied by 7. In the case of a composite variable €, with no parents, define
P(C, = t)in to be [1x, ¢F, P(xx|Parents(X},)), with 2 and Parents(Xy) implied by i. In
the case that F; =), the conditional probabilities are defined to be 1, unless ¢ and j imply
inconsistent values for shared variables, in which case the conditional probability is 0 (see
below). These definitions ensure equality between the individual factors used to compute
the probability of a joint assignment in the two representations, and thus guarantee that
P'(x}¥) = P(x;) for all x; € £. Operationally the required condition can be ensured by the

process conventionally known as “moralization”.

Zero Probability Requirement

There are more possible joint assignments to the composite variables than to the
original variables. However, each of the assignments to the composite variables for which
there is no analog in the original network must imply the simultaneous assignment of in-
consistent values to at least one of the original variables. (This follows from the one-to-one
mapping in which there occurs a x} for every possible x;. Thus any excess assignments in

¢ must correspond to invalid assignments in the original network.)

To satisfy the final requirement, we will impose two further stipulations.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 38

1. We will define P(C. = i|C, = j) = 0if i and j imply inconsistent values for shared

variables.

2. We will require that the members of the composite variables satisfy the running in-
tersection property: if two variables from the original network occur in any pair of
composite variables, they also occur in every composite variable along the path con-

necting the two.
To see that this is sufficient, it suffices to realize that all inconsistencies must involve either:

1. two occurrences of an original variable in composite variables that are in a parent-child

relationship, or

2. two occurrences of an original variable in composite variables that are separated by

other composite variables.

The first requirement ensures that all inconsistencies of the first variety receive zero prob-
ability; the second requirement ensures that all inconsistencies of the second type imply
an inconsistency of the first kind, and therefore receive zero probability. Operationally,

the running intersection requirement can be satisfied by the process of triangulation (Rose

1970).

3.2.3 Summary of Inference in a Clique Tree

The variables in a clique tree represent subsets of the original variables. Algorith-
mically, the most natural way to view these subsets is as new variables. Each new clique-
variable can take a distinct value for every possible assignment of values to its members.
Each variable in the original network is assigned to a single clique in which it occurs with
its parents (when there are several such cliques, and an arbitrary choice may be made). The
inference procedure outlined in Section 3.1 works on clique trees with the following change

of variables:

o e is the set of observed values for the evidence variables assigned to clique C;.

e e; is the set of observed values for the evidence variables assigned to cliques in the

subtrees rooted in C;’s children.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 39

|

e e is the set of observed values for all other evidence variables.

) /\é = Ple;|Ci =7)

o i = P(ef

70

oL,

Ci = 7).
o F, is the set of variables assigned to C}.

e P(C. = 1Cp, = j) = 0if i and j imply inconsistent values for shared variables.

Otherwise, if F; # 0,

— P(C. =14|C, = j) = [lx,eF, P(zr|Parents(Xy)), with x; and Parents(Xg)
implied by 7.

— P(C, = 1) = [Ix, eF, P(xx|Parents(X})), with), and Parents(Xy) implied by

0.

e Otherwise, (F; = 0), any remaining conditional probability is defined to be 1.

Separators

In an implementation, it is also beneficial to introduce separator variables between
each pair of parent-child cliques. These separator variables represent the variables in {C), N
C.}. The value of a separator’s parent uniquely defines the separator’s value, and the
conditional probability of a separator taking its one allowed value given its parent’s value
is always 1. The inference algorithm remains unchanged; the separators simply represent
extra variables which have the same status as any other variables. This view of separator
cliques is quite different from that taken in (Lauritzen & Spiegelhalter 1988; Jensen et al.

1990) where separators play a fundamental role in representing the probability distribution.

The use of separators can have a dramatic effect on running time since the work
done for each clique is proportional to the number of values it can take multiplied by the
number of values its parent can take, subject to the consistency constraints imposed by
shared variables. For example, suppose there is a network consisting of variables A, B,
and D, which take a, b, ¢ and d values respectively. In a clique tree consisting of the cliques
{A,B,C} and {B,C, D}, the introduction of a separator-variable representing { B, ('} re-

duces the work from a*xb*xc+dtoa+xbxc + bxc*d.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 40

3.3 Fast Inference with Deterministic Variables

3.3.1 Motivation

We will see that modeling word pronunciations with a Bayesian network requires
the extensive use of deterministic variables. In contrast to regular stochastic variables,
deterministic ones impose significant constraints, and in order to achieve efficient inference,

these must be addressed.

There will be a further complication in that the deterministic relationships will
change on a word-by-word basis. Essentially, the same network structure will be “repro-
grammed” on a word-by-word basis to do the dynamic programming that is appropriate
for that word model. Thus, it is not possible to determine the repercussions of the deter-
ministic relationships just once in a network-compilation stage, as is done typically, e.g. in
the HUGIN system (A/S 1995). The HUGIN approach also suffers from the serious flaw
that it first tabulates and stores every possible clique value, and then throws away the ones
that can be proven to have zero probability. The space required for this approach can be

prohibitive in networks with a large number of deterministic relationships.

A final point is that the possible clique values will in general vary depending on the
pattern of evidence observed. Thus any static compilation scheme is bound to miss some
efficiencies that a dynamic scheme will be able to identify and exploit on a case-by-case
basis. Therefore, our approach is to structure the network so that the possible clique values

can be swiftly enumerated on demand.

3.3.2 Approach

The basic approach is to do a preorder traversal of the tree and recursively identify
the values that are legal for a child clique, given the just-computed legal values of the parent.
Since neighboring cliques typically share variables, it is usually the case that knowing the
possible values of the parent clique significantly reduces the set of possible values for a child

clique.

Examination of the inference procedures shows that all the loops are of the form
“for each value of a parent clique and for each value of a child clique, do a handful of

multiplications and additions.” Thus, once the legal values of a child are identified for each

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 41

of the possible parent values, the inference loops can be made considerably more efficient
by iteration just over the subset of values that are possible, given the known facts and

deterministic relationships.

Deterministic variables impose a constraint on the feasibility of this approach:
in order to resolve the legal values in a single pass, it is necessary that the first time
a deterministic variable appears in a clique, its parents also be present. Without this
constraint, the (unique) value of a deterministic variable cannot necessarily be resolved
when it is first encountered. This property is a fundamental requirement, and we restate it

as follows:

Immediate Resolution Property IRP: In a preorder traversal of a clique tree, each deter-
ministic variable first appears in a clique with all its parents. This is equivalent to the
Strong Clique Tree property of (Jensen et al. 1994) for influence diagrams with decision

variables.

In Section 3.4 we will present a method for constructing trees with this property.
First, however, we will describe how the property can be used to efficiently enumerate the

possible clique values.

3.3.3 Enumerating the Legal Clique Values

Once a clique tree satisfying IRP is set up, there is a simple procedure for iden-

tifying the legal values of each clique. High-level pseudocode for the procedure is given in

Figure 3.4.

The IRP property guarantees that if a deterministic variable is present in C, its

value can be immediately determined.

3.3.4 Discussion of Time and Space Requirements
Enumerating Possible Clique Values

Consider two cliques (', and C. in a parent-child relationship. The legal values
of C,. can be found by recursively instantiating the variables in {C, \ C}}, for each of the
legal values of €, in a depth-first manner. Clearly, the space required is proportional to

the number of values which are finally stored (and some negligible stack overhead). In the

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 42

Algorithm Enumerate_Legal Values()
for each clique C; in preorder
if C; is the root (',
Enumerate all the values j for which P(C, = j) # 0.
else
let €', be C;’s parent
if C; is a separator
For each legal value k of €', which represents a distinct instantiation
of the variables in {C; N C,}, store a legal value j for C,.
Note that each parent value & maps onto a distinct child value
J = mapping(k), and P(C; = mapping(k)|C, = k) = 1.
else
for each legal value k of C,
for each combination of assignments to the variables in {C; \ C,},
Generate a candidate value j corresponding to the now complete
assignment of values to C;’s members.

Store a legal value if P(C; = j|Cp, = k) # 0.

Figure 3.4: Enumerating the legal values of each clique.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 43

worst case, the running time is proportional to the total number of possible assignments to

the variables in C..

In general, however, the actual number of values enumerated will be smaller be-
cause the legal values discovered for (', will be a subset of the total possible values. Fur-
thermore, if we instantiate the variables in {C,\ C},} in topological order, the enumeration
procedure can be pruned as soon as there is some variable X; € {C,\ C,} for which

P(z;|Parents(X;)) = 0.

Clique Tree Inference

Let d¢, denote the degree of clique ¢; i.e. the total number of edges incident
on (5 including both incoming and outgoing edges. Let sc, denote the total number of
possible values C; can take. Once the possible clique values are enumerated, an examination
of the inference loops reveals that the running time of the actual inference procedure is
O3, eNon—sSeparators dcisc;). This work is about evenly distributed between A and 7

calculations.

This time bound is slightly more precise than, but in the worst case the same as, the
the bound presented in (Lauritzen & Spiegelhalter 1988). This bound cannot be improved

on by any procedure in which each clique transmits information to all its neighbors.

3.4 A Tree-Building Procedure

In our previous discussion, we have required clique trees to have the following

properties:

1) Running Intersection Property RIP: If any two cliques share a variable, all the cliques

along the path joining them must also contain the variable.

2) Moralization MORAL: Each variable in the original graph must occur in at least one

clique with its parents.

3) Immediate Resolution Property IRP: In a preorder traversal of the tree, every deter-

ministic variable is first encountered in a clique in which its parents are also present.

To keep the number of cliques to a minimum consistent with RIP, it is also useful

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 44

Algorithm Triangulate(graph, order)
For each variable X in decreasing order

Eliminate X: add edges between all the pairs of X’s lower-numbered neighbors.

Figure 3.5: The triangulation algorithm.

to enforce one further requirement:

4) Maximal Clique Property MAC: The cliques in the clique tree correspond to the maximal

cliques in a triangulation of the moralized Bayesian network.

The tree-construction routines described in, for example, (Pearl 1988; Lauritzen
& Spiegelhalter 1988; Jensen et al. 1990) guarantee RIP, MORAL, and MAC, but not
IRP. In the following section we present an algorithm for constructing a clique tree that
satisfies all four properties. We will first construct a tree satisfying RIP, MORAL, and
IRP, and then systematically transform it until it satisfies MAC.

The key to our algorithm is to produce a triangulated graph (Rose 1970; Pearl
1988) by using an elimination sequence in which each deterministic variable is eliminated
before any of its parents. To ensure that variable length sequences can be efficiently pro-
cessed, we will also require that all the variables from time-slice 7 be eliminated before any
from slice # — 1. This produces a clique tree that is segmented into time-slices. The trian-
gulation routine is itself from (Pearl 1988). In the following, a variable’s “neighbors” are
the variables connected to it by any edge, including those introduced in the triangulation

process.

3.4.1 Moralization

Form an undirected version of the Bayesian network in which edges are added

between each variable’s parents, if they are not already present (Pearl 1988).

3.4.2 Triangulation

The triangulation algorithm is shown in Figure 3.5. It is from (Pearl 1988) and
builds on original work by (Rose 1970).

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 45

Algorithm Clique_Tree(triangulated-graph)
1. Form a clique for each variable and its lower-numbered neighbors.

2. Order the cliques Cq,C5,...,C}, in increasing order according to the highest num-

bered vertex in each clique.
3. For each clique Y in increasing order

e Identify the subset of its constituent variables that have occurred in lower-
numbered cliques.

e Find a lower-numbered clique X that contains this subset.

e Make X the parent of Y.

Figure 3.6: Clique tree formation.

3.4.3 Tree Formation

The triangulation step is followed by a tree building procedure which is a combi-
nation of those described in (Pearl 1988) and (Lauritzen & Spiegelhalter 1988). However,
unlike the latter, we do not insist on working with maximal cliques. Instead, a clique is
formed for every vertex in the original graph. This ensures that the resulting tree will have
RIP. ! In contrast to (Lauritzen & Spiegelhalter 1988), the object of this procedure is to

generate a tree with directed edges. The procedure is shown in Figure 3.6.

As we prove in section 3.4.6, the tree produced so far has RIP, MORAL, and
IRP. The following procedure repeatedly modifies the tree in such a way that RIP and
IRP are maintained at each step, and MAC is guaranteed on termination. (Once the

graph is triangulated, the MORAL property cannot be lost.)

3.4.4 Tree Reduction

The simplest possible algorithm for producing MAC is shown in Figure 3.7. A
linear-time recursive version of Condense() is shown in Figure 3.8. When called with the

root as the argument, it produces a fully transformed tree.

!The example in the following section shows that if maximal cliques are used, RIP may be violated.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 46

Algorithm Condense()
repeat
Identify a child that is a superset of its parent.
Contract the edge between the two and replace the parent by the child.

until no child is a superset of its parent.

Figure 3.7: Non-deterministic tree condensation.

Algorithm Condense(Clique C)
Initialize a queue with C"”s children.
while the queue is not empty
Remove a child C;.
if C; is a superset of C'
Replace (s members with C';’s members.
Remove C; from (s list of children.
Add C;’s children to the queue and to (s list of children.
for each child C; of C
Condense(C}).

Figure 3.8: A linear time algorithm for producing MAC.

3.4.5 An Example

Figure 3.13 shows a Bayesian network, a clique tree for this network, and several
intermediate stages in the tree-construction process. The original network is shown in the
upper-left corner. The variables are numbered for use in the elimination sequence. The
triangulated graph after elimination in reverse order is shown in the upper-right corner.

The cliques corresponding to the elimination of each vertex are:

{13,{2,11,{3,2,1}, {4,3,2,1},{5,4,3,1},{6,2,1},{7,4,3,2,1}.

The tree produced by the initial construction procedure is shown in the lower-left corner.

When Condense executes, the edge to {2,1} is contracted first, followed by the edge to

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 47

N
~

O

O

5

Ca3210
Ceaz1> (6210 (asaD

7
Y
G

J
E

Figure 3.9: A Bayesian network and its clique tree.

{3,2,1} and the one to {4, 3,2, 1}. This produces the intermediate tree shown. Finally, the
edge to {7,4,3,2,1} is contracted, producing the output tree.

Note that the tree construction process will not work if the maximal cliques
{57 47 37 1}7 {67 27 1}7 {77 47 37 27 1}

are used directly as its input: the addition of the last clique will violate RIP. Hence it is
necessary to construct a full initial tree, and then condense it. This issue has apparently
been overlooked in the literature, e.g. (Pearl 1988; Lauritzen & Spiegelhalter 1988), perhaps
because a maximum cardinality search is intended to be used to renumber the vertices
after triangulation. In other cases, e.g. (Jensen et al. 1994), there is no renumbering. The
maximum spanning tree algorithm presented in (Jensen & Jensen 1994) for generating a
clique tree from a collection of cliques does not have this problem, but is difficult to extend

to trees with IRP.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 48

3.4.6 Correctness of the Tree-Building Procedure

We have established that clique trees which satisfy RIP, MORAL, and MAC
are acceptable representations of the underlying Bayesian network. We show the correctness
of our algorithms by establishing that the output trees have these properties. First we note
that the moralization and elimination processes will produce a triangulated graph in which
MORAL is satisfied. We then show that the tree building procedure satisfies RIP and
furthermore that IRP is satisfied. We end by showing that the condensation procedure
ensures M AC without violating RIP or IRP.

Moralization and Triangulation

It is proven in (Rose 1970) that an arbitrary elimination ordering will produce a
valid triangulation. Furthermore, since moralization induces a clique on each family, the
whole family is guaranteed to occur together in the clique that is generated when the first

of its members is eliminated.

Proof of RIP

Lemma 3.1 After step 2 of Clique_Tree, all the variables in a clique C' which have oc-

curred in earlier numbered cliques can be found together in a single clique other than C'.

Proof. Consider the subset of variables U that has occurred earlier. Since U induces a
subgraph on a clique (', the vertices of U themselves form a clique. Consider the highest
numbered vertex in U, X. The previously processed clique resulting from X'’s elimination

will contain all the other members of U.
Theorem 3.3 Algorithm Clique_Tree produces a tree with RIP.

Proof. The proof is inductive. Consider an arbitrary variable X;. The base case is when
the first clique containing X; is added to the tree. Clearly the property holds at this point.
Now consider the addition of a new clique C; containing X; to the tree. By Lemma 3.1,
we know that C; can be added, and by construction it will be joined to a clique that also

contains X;. Hence RIP is maintained at each step.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 49

Proof of IRP

Theorem 3.4 Algorithm Clique_Tree produces a tree with IRP.

Proof. The elimination of a variable X generates a clique €' in which X is the highest
numbered variable. Therefore when the cliques are ordered by their highest numbered
member, the first clique in which X occurs is the one it generated when it was eliminated.
When X is a deterministic variable, the restriction on the elimination ordering ensures that
this clique contains X’s parents. An earlier-occurring clique will be selected as (s parent.
Since all further cliques containing X must be descendants of C' (in order to have as a parent
a clique in which all previously seen vertices occur), C' will be the first clique encountered

in a preorder traversal.

Proof of Condense()

Lemma 3.2 When Clique_Tree terminates, all the supersets of a clique C; will be de-

scendants of C;.

Proof. Let C; be a superset of C;. Consider X, the highest numbered variable in {C;\ C;}.
In order for X; not to be present in C’;, X; must be higher numbered than any member of

C;. Hence C; will occur after C; in the clique ordering and be added as a descendant.

Lemma 3.3 If a superset of clique C; exists, then C; has an immediate descendant that is

a superset.

Proof. Suppose there is a clique C; that is a superset of C;, and that C; is a descendant
of C;, but not an immediate descendant. (By Lemma 3.2, it must be a descendant of some
sort.) Let Cj be the first clique encountered on the path from C; to C;. If C is not a
superset of (;, then there exists some member of C; which is present in C; and C; but not

('y. This violates RIP, which was established in theorem 2.

Theorem 3.5 Condense() guarantees a tree with RIP, IRP, and MAC.

Proof. The proof of correctness for Algorithm Condense proceeds as follows:

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 50

1. We show that after each step RIP holds.
2. We show that after each step IRP holds.

3. We show that upon termination M AC holds.

Proof of Part 1: At each step of the algorithm, a child clique C. replaces a parent clique,

C'p. Consider a path between two cliques €, and . There are four cases:

1. The path goes through neither €. nor €. In this case the contraction is irrelevant.

2. The path goes through C. only. In this case the contraction is acceptable because C.

is unchanged.

3. The path goes through €', only. In this case the contraction is acceptable because C,

is replaced by a superset.

4. The path goes through both €, and C,. In this case the contraction is acceptable

because any variable that was previously present in both €. and €, will still be present

in C..

Proof of Part 2: Let (), be replaced by C.. Consider a clique C; in which variable X;

first appears. There are three cases:

1. C;is Cp. Here . will replace (', as the first clique with X;, but since (. is a superset
of C,, it will still have X;’s parents.

2. C;is C.. This is acceptable because . remains the first clique encountered with X;.

3. C; is neither C; nor €. Since all the other cliques with X; are rooted in C;, the

preorder relationship is unaltered.

Proof of Part 3: Suppose that on termination of Condense there exists a clique C; that
is a superset of clique ;. By Lemma 3.3, C; must have an immediate descendant that is a

superset, thus violating Condense’s termination condition.

The linear-time recursive version of Condense is correct because each step in the
while loop is a legal contraction. Furthermore, when the while loop terminates none of
(’s descendants can be a superset of €' without violating either the termination condition

or RIP.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 51

3.5 Comparison with Other Approaches

We pause here to briefly describe other approaches to inference in Bayesian net-
works and their relationship the scheme presented here. Historically, there have been two
main approaches to doing inference: exact algorithms, and stochastic simulation algorithms.
The exact algorithms all attempt to make the required summations tractable through the
use of dynamic programming. Stochastic simulation algorithms produce approximate an-
swers by sampling a representative subset of the terms. The problem of inference in Bayesian
networks is NP-hard (Cooper 1990), and recently it has been shown that even producing
answers that are accurate to within a fixed fraction is equally difficult (Dagum & Luby
1993). This suggests that the choice of an inference algorithm should not be made once-
and-for-all, but should be done with the particular characteristics of a specific network and

task in mind.

Exact Inference

The simplest algorithms for exact inference, and the only ones whose running times
are linear in the size of the underlying graph, work with graphs that induce an undirected
tree. Algorithms for this kind of graph can be found in (Pearl 1988) and (Peot & Shachter
1991), and the basic algorithm of 3.1 is an expression of this explicitly in terms of dynamic
programming. When loops are present in the underlying graph, the inference problem is
fundamentally more difficult. As we have seen, loops are typically handled by transforming

the input graph in some way so that an inference procedure for trees can be used.

The simplest method of dealing with graphs that contain loops is known as cutset
conditioning (Pearl 1988). In this approach, cycles in the underlying graph are broken by
assuming a known value for one of the variables in the cycle. A set of variables such that
every (undirected) cycle has at least one variable in the set is known as a cutset. The tree
algorithm is run once for every possible assignment of values to the variables in the cutset,
and the results are combined. Obviously, a small cutset is necessary for this approach to

be feasible.

A second method, and the most widely used, is to somehow agglomerate the
underlying variables into mega-variables in such a way that the mega-variables form a tree.

The join-tree algorithms (Lauritzen & Spiegelhalter 1988; Jensen et al. 1990) are the most

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 52

widely used of this sort. The agglomeration is done through the process of moralization
and triangulation. Although the subsequent calculations boil down to essentially the ones

we presented in Section 3.2, the terminology and intermediate derivations differ.

Stochastic Simulation

Stochastic simulation schemes approximate a sum such as P(o) =) ¢ P(o,s) by
summing over a small subset of the terms. The simplest of these schemes, logic sampling
(Henrion 1988), generates full instantiations of the network by assigning values to the vari-
ables in topological order, each according to the distribution specified by the assignment
to its parents. Statistics conditioned on certain events are computed by computing the
desired frequencies in the samples conforming to the conditions. This scheme has the severe
disadvantage that many simulations may be required before one is generated that matches

the specified conditions or evidence.

Likelihood weighting (Shachter & Peot 1989) is a more refined version of logic
sampling, in which evidence nodes are always instantiated to their observed values. By
weighting each simulation by an appropriate quantity, unbiased statistics can be computed.
Likelihood weighting is the workhorse of simulation schemes, and is described in detail by

(Dagum & Luby 1997).

There are several approximation algorithms based on sampling a Markov chain in
which the states represent joint instantiations of the variables (Chavez & Cooper 1990b;
Chavez & Cooper 1990a; Pearl 1988). Although bounds can sometimes be provided for
these and the other simulation schemes, there are always cases in which they are bound to
fail. Unfortunately, the bounds break down when extreme probabilities, i.e. probabilities
arbitrarily close to 0 and 1, are present in the network (Dagum & Luby 1997). These
are exactly the kind of probabilities needed to express pronunciation models in speech

recognition (see Chapter 5).

Another problem with simulation algorithms arises with DBNs spanning many
time-slices. Intuitively, as one instantiates the network in a forward manner, it is possi-
ble to generate samples all of which, though they seen reasonable at the current time, are
rendered implausible by future evidence. In general (Dagum & Luby 1997), the number

of simulation runs required to achieve a fixed degree of accuracy is inversely proportional

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 53

to the probability of the observations. Thus the number increases exponentially with the
number of time-slices in the network. For example, the probability of a one-second utter-
ance might be 1071 in a trained DBN. Note that the efficiency of exact inference is not
affected by the probability of the evidence. Two promising approaches to ameliorating this
problem are arc reversal, in which arcs leading into evidence variables are reversed and
the necessary conditional probabilities recalculated, and “survival-of-the-fittest” sampling
in which samples having a low probability are replaced by likelier samples at each time-step

in the simulation (Kanazawa et al. 1995).

3.6 Variable Length Observation Sequences

3.6.1 Motivation

In order to compute the statistics necessary to learn parameter values, both As
and ws are required (see Section 3.8). Therefore, inference and learning must be done with a
Bayesian network that is as long as the observation sequence. Unfortunately, the utterances
vary in length across a wide range of values; there are two obvious ways of dealing with

this:

1. On demand, unroll the network to the appropriate length for an utterance, moralize

it, triangulate it, and form a clique tree.

2. Precompute and store a clique tree for every reasonable utterance length.

The first solution is inefficient in terms of computing time, and the second solution hopeless

on the grounds of excessive memory requirements.

In this section, we present an alternative in which a single clique tree of the max-
imum possible length is precomputed, and spliced down to the appropriate length for any
particular utterance. The operations involved boil down to some pointer-swapping, and a
sweep over the tree in which the numbering of the constituent variables of the cliques is
adjusted. Note that this is not simply a question of truncating the tree. The cliques corre-
sponding to the initial and final few slices of a fixed length Bayesian network are typically

different than the cliques corresponding to intermediate slices.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 54

Final cliques
First redirectable arc Target of all redirection \

First repe:;;> Last repeating slice

Initial cliques

Y

Y

Smallest constructable network

Figure 3.10: Splicing a clique tree. The triangles represent non-repeating initial and fi-
nal portions of the clique tree. The rectangles represent repeating segments. Splicing is
accomplished by redirecting arcs connecting repeating segments.

The procedure is based on the observation that, despite the fact that the initial
and final segments of a clique tree may have an arbitrary structure, when ties are broken in
a consistent manner, the clique tree creation algorithms will produce a tree with a repeating
intermediate structure. By identifying the beginning and ending of each of the repeated
segments, it will be possible to efficiently remove segments on demand. The basic idea
can be gleaned from Figure 3.10. An alternative approach to dealing with variable length

sequences that focuses on generality, rather than efficiency, can be found in (Kjaerulff 1992).

Finally, we note that this section assumes that an entire utterance is available at
the start of the inference procedures. That makes the technique suitable for offline learning,
and the recognition of isolated words. The subject of online recognition for continuous

speech is dealt with in Section 3.7.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 55

Head Repeating Segments LT
seg. W-j seg. w-1 seg. w
ol r
" 1 k1 K
Cliquesfrom: (W-j,w-j+1) (w-1, w) (w,w+l) (w+l..)

Figure 3.11: Splicing terms defined.

3.6.2 Definitions and the Splicing Algorithm

In order to reason about the clique trees that are used in conjunction with DBNs,
it is useful to associate each clique in the tree with a specific time-slice in the underly-
ing Bayesian network. We will associate each clique with earliest time-slice of any of its
constituent variables, and say that a clique is “from” the time-slice of this variable. For
example, a clique containing variables from time-slices 2 and 3 will be said to be “from”
time-slice 2. We refer to the set of cliques from time-slice ¢ as a “segment,” and say that

the segment is from time-slice 1.

Let the original Bayesian network have N slices. We will refer to the number of
variables in a time-slice of the underlying network as S. We shall see that in the correspond-
ing clique tree, any path from the root, which is from slice 1, to a clique with a member
from slice NV, will be uniquely defined through segment N — 2. We refer to this unique path
as the backbone of the tree. Denote the repeating units by r,...7r;. We will assume that
the cliques in the last repeating segment 7 are from time slice w. The repeating segments
are denoted by rectangles in Figure 3.11. We will refer to the unique arc along the backbone
leaving r; as the “exit” from r;. The clique in segment r;41 that is connected to the exit
from r; is referred to as the entry clique for r; 1. We will refer to the cliques that occur in
the part of the tree rooted in ry’s exit as the “tail.” The tail is denoted by the rightmost
triangle in Figure 3.11. We will choose r; so that it is from slice N — 2 or earlier, thus
ensuring that the exit arcs are uniquely defined. Cliques that do not lie in a repeating unit
or the tail are referred to collectively as the “head.” These are represented by the leftmost

triangle in Figure 3.11.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 56

Algorithm Splice(j: number of slices to remove)
e Redirect the exit of r;_; to point to the exit of 7.

e Renumber the variables occurring in the tail cliques by lowering their indices by

7% 5.

e Recalculate the conditional probabilities for all the cliques.

Figure 3.12: The splicing algorithm.

The repeating segments have the following properties by definition:

1. Segment r; contains exactly the cliques from a fixed time slice.
2. Each clique Cy from r;,7 = 2,...%k has an analog A, in segment r;_y:

e The variables associated with A, are the same as those associated with C, except

that their indices are less by S.

e The parent of Cy is analogous to the parent of A,, except possibly for the entry
clique into ro. The restriction can be relaxed in this case because the entry arc

into rq is never redirected to a later segment.

e The indices of the variables in ¥4, are the same as those associated with F¢,

except that their indices are less by S.

We will take the occurrence of a repeating structure for granted, subject to runtime
verification. (Verification is necessary because a repeating structure is not guaranteed to

exist, e.g. if ties are broken randomly in the tree-creation process.)

Algorithm

The splicing algorithm to remove j time slices is shown in Figure 3.12.

3.6.3 Proof of Splicing Algorithm

We will show the correctness of the splicing algorithm by showing that the clique

tree produced is well-defined, and represents the same probability distribution as the short-

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 57

ened Bayesian network. The proof will proceed in several stages:

o First we will show that the arcs connecting the segments are unambiguously defined.

e Then we will show that the requirements of section 3.2.1 are satisfied.

Proof of Uniqueness of Splicing Arcs

The proof will proceed in several steps. First we will establish some general prop-
erties of clique trees. Then we will show that there is a path connecting the head to the
tail, that it goes through a monotonically increasing sequence of segments, and finally that

there is only one path.

Lemma 3.4 Fach pair of variables A, B that are connected by an arc in the underlying

Bayesian network will appear together in a clique.

Proof. One of the variables, say A, must be higher-indexed than the other. When A is

eliminated, B will be a lower-indexed neighbor, and will be added to A’s clique.

Definition 3.1 A Bayesian network has the property of time-slice contiguousness when for
every pair of variables in time-slice k there is an (undirected) path connecting them that only
goes through other variables from time-slice k. A clique tree has the property of time-slice
contiguousness when for every pair of cliques with any variables from time slice k, all the

cliques along the path connecting them contain at least one variable from time-slice k.

Theorem 3.6 Time-slice contiguousness in the underlying Bayesian network implies time-

slice contiguousness in the resulting clique tree.

Proof. Consider an arbitrary pair of cliques F and &, and let the first one contain variable
A from slice k and the second one contain variable B from slice k. If A and B are the
same, the theorem is proved by RIP. Suppose A and B differ. Let A and B be linked in
the underlying Bayesian network by the path A — X1, X1 — Xo,...., X,, — B where all the
variables in the path are in slice k. Locate the clique that contains the pair A — Xy. By
Lemma 3.4, the clique must exist. Proceed from F to this clique; by RIP, all the cliques on

this path must contain A and therefore a variable from slice k. Locate the clique with the

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 58

pair X7 — Xo. Again, Lemma 3.4 ensures that it exists, and RIP ensures that it is connected
to the last clique by a path along which Xy (which is from slice k) occurs in every clique.
Continue in this manner until the clique with X,, — B is reached. Now proceed to ¢G. This
process has visited all the clique along the path connecting F to G, and they all had a

variable from k.

Assumption 3.1 The underlying Bayesian network is time-slice contiguous.

Assumption 3.2 All variables in time-slice ¢ + 1 are higher indexed (in the elimination
sequence) than any variable in slice i. Since we are free to use any elimination sequence,

this can be achieved.

Assumption 3.3 The underlying Bayesian network has the Markov property, i.e. all the

parents of a variable from time-slice v are either in slice 1 or i — 1.

Definition 3.2 The length of an edge between two variables in a Bayesian network is the
difference in the time-slice indexes of the variables. For example, the length of an edge
between two variables in slice ¢ is 0, and the length of an edge between a variable in slice i

and a variable in slice 1 + 1 is 1.

Theorem 3.7 No clique contains variables from time-slices that differ by more than 1.

Proof. In the triangulated graph, a clique containing variables from more than two time-
slices must have an edge of length 2 or more. We will show that this is impossible. Consider
the process of moralization and triangulation. Originally all edges have length 0 or 1, be-
cause of the Markov property. Adding edges between parents in the process of moralization
can only introduce edges of length 1, again because of the Markov property. Now consider
eliminating a variable from a graph whose edges are length 1 at most. Let the variable lie
in slice ¢. It can be connected to variables in slices ¢ — 1, 7, and ¢ + 1. But by assumption
3.2 and the triangulation algorithm, edges will only be introduced between variables from
slices ¢ and 7 — 1. Hence only edges of length at most 1 are added, and a graph whose edges
are at most length 1 results from the operation. This holds at each step, so a clique with

variables spanning more than 2 time-slices cannot occur.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 59

~O @

~O ~O
A o

backbone fromN-2 fromN-1 fromN

Figure 3.13: The backbone of a clique tree.

Assumption 3.4 The underlying Bayesian network is connected. By RIP and Lemma

3.4, this implies that the intersection between neighboring cliques is nonempty.

Lemma 3.5 Two adjacent cliques are always from the same slice or from slices that differ

by at most 1.

Proof. Let the cliques share a variable from time-slice . The biggest the minimum member
could be is 7. The smallest the minimum member could be is ¢ — 1 by Theorem 3.7. Thus

the greatest the difference can be is 1.

Lemma 3.6 There is a directed path (the backbone) from the root of the clique tree, which
s from time-slice 1 by the tree-construction process, to any clique with a member from slice

N, and this terminating clique is from no earlier than slice N — 1.

Proof. A variable from slice N must occur in some clique, and by Theorem 3.7, no other
constituent variable can be from a slice earlier than N — 1. Since there is a directed path

from the root to every other clique, the path in question exists.
Lemma 3.7 The backbone contains cliques from all the time-slices 1,2,..., N — 1.

Proof. The path must proceed from a clique from slice 1 to one from slice at least N — 1,

and by Lemma 3.5 it can only do so by steps of 1.

Lemma 3.8 The minimum node in each clique along the backbone increases monotonically.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 60

Proof. Consider the first violation along a path where this is not the case. By Lemma 3.5,
the decrease must be by 1. The minimum variables encountered in the cliques along this
path must proceed in the sequence 4, (¢+ 1)*,¢. This leads to a contradiction: by Theorem
3.6, all the cliques in this part of the path would have to have variables from time-slice i,

so a variable from 7 + 1 could not be the minimum.

Lemma 3.9 The backbone is uniquely defined up to the last clique encountered from N —2.

Proof. The cliques with variables from slice N form a connected component by Theorem
3.6. The same holds for cliques with variables from slices 1,..., N — 2. These components
have no intersection by Theorem 3.7. The backbone is one path connecting the root, which
is in one component, to the cliques in the other component. The existence of a second path

from the root to the variables from slice N would imply a cycle.

Theorem 3.8 The edge along the backbone connecting a clique from slice © to one from

slice i1 + 1, 1 < N — 2 defines a unique point in the tree.

Proof. The backbone is unique up to this point by Lemma 3.9, and the minimum nodes

in the cliques along this path increase monotonically by Lemma 3.8.

We now turn to the question of whether the new clique tree represents the correct

probability distribution.

Proof of Representation

We assume here that j > 1 slices are removed from the Bayesian network. Al-
though it is not actually necessary to renumber the variables in the cliques from ry, this is

conceptually useful, and we imagine doing it in the proofs.

Theorem 3.9 The correspondence requirement and MORAL are satisfied, i.e. each vari-
able in the underlying Bayesian network from slice 1..N — j occurs in the new tree, and

moreover they all occur at least once with their families.

Proof. We will show that

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 61

1. All the variables from slices 1,...,w—j occur with their families in the cliques present

in the head through segment r;_;.

2. All the nodes from slices w—j+1,..., N —j occur with their families in the renumbered

tail cliques and the renumbered r; cliques.

Since 74’s cliques have the same members and F sets after renumbering as ri_; (by the
definition of analogous cliques), all the variables and their families are present in the spliced

tree. The proofs of these two parts follow:

1. All the variables from 1,...,w — j must occur no later than ry_;, by the segment
definition and monotonicity (see also Figure 3.11). And they must occur with their

families by MORAL in the original tree.

2. All the variables from slices w + 1,..., N occur, necessarily somewhere with their
families, in the cliques in ry through the tail. After renumbering, the cliques in ry
through the tail will contain all the variables from time-slices w—j+1,...N — 7 and
their families, by definition of analogous cliques. Since the renumbered ry has cliques
with the same variables and families as r;_;, the new tree, which has both r;_; and

the tail, will have all the variables in time slices w—j7+1,..., N — 7 and their families.
Theorem 3.10 RIP is satisfied in the new tree.

Proof. RIP holds in head, ..., r,_; because this is a connected component of the original
tree. RIP holds in the renumbered segments rg,...tail by RIP in the original tree com-
bined with a uniform offset in numbering. RIP holds in the connection between r;_; and
the tail because the exit from r;_; has the same variables as the exit from the renumbered

7, and RIP holds between the exit of the renumbered r; and the renumbered tail.
Theorem 3.11 IRP is satisfied in the new tree.

Proof. IRP holds in the original tree, and the splicing operation retains the relative

ordering of all the remaining cliques.

Theorem 3.12 The equal and zero probability requirements hold between the new underly-

ing Bayesian network and the new clique tree.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 62

Proof. The required probabilities are recalculated. Since each variable’s family is present,
equality can be achieved. Since the new tree has RIP, the zero-probability requirement
can be satisfied. IRP ensures that deterministic variables can be handled as efficiently as

before.

3.6.4 Comparison with HMMS

Variable length observation sequences are not an issue with HMMs. This is because
computation is done on a homogeneous two-dimensional grid; every column of the grid is
identical. Therefore it is trivial to allocate a grid suitable for the longest possible utterance,
and only use the portion that is needed for any particular utterance. The comparison

between DBNs and HMMs for online inference is presented in the following section.

3.7 Online Inference

In many applications, it is desirable to process a continuing stream of data in an
online fashion. For example, in speech recognition it is necessary to recognize words in real
time, before a person has finished speaking. In these types of applications, it is not possible
to construct a complete clique tree to represent the utterance, because the total number of
frames is unknown and too long a delay would be imposed by waiting until the end. Under

these circumstances, it is useful to do a Viterbi decoding in an online fashion.

Under some circumstances, there is an additional constraint: the number of pos-
sible clique values may be too large to handle in real time, or with the available memory.
In speech recognition, this occurs when a Bayesian network is used to encode an entire
language model, and tens of thousands of words are possible at any point in time. Under
these circumstances, it is necessary to prune the set of hypotheses, and keep track only of
ones that are reasonably likely. Typically a beam search is used, and this is straightforward

to incorporate into the forward pass of HMM inference (see, e.g. (Jelinek 1997)).

With DBNs, however, the situation is more tricky. Recall that the likeliest assign-
ment of values to the variables is computed with a bottom-up pass over the tree. Since the
root of the tree must be at time 0 in order to handle deterministic variables, this creates

a problem: the bottom of the tree is extended as each new frame becomes available. This

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 63

Figure 3.14: Two slices of a complex DBN; when reduced to a chain-structured tree, the
computational requirements are significantly lower than if a cross-product of the state values
were used in a an HMM.

means that the Viterbi decoding must be recomputed from scratch for the entire utterance

after each frame. Clearly, this is prohibitive.

There are two obvious ways around this, neither of which works:

1. Compute the likeliest assignment of values in a top-down manner, rather than bottom-
up. This does not work because the ws must be computed with reference to the As,

which are not available until the bottom-up pass is complete.

2. Modify the tree-building procedure so that the bottom of the tree - rather than the
root - is at time 0. This has the flaw that it becomes extremely cumbersome to
keep track of the clique values that are possible, given the constraints of deterministic

variables. Recall that this was done in a top-down manner, starting at the root.

We now present two methods for online decoding.

3.7.1 Chain Decoding

The first method comes from realizing that with chain-structured DBNs, it is
possible to compute the likeliest values with a forward sweep. When the Bayesian network

is a chain, the computation of ﬂ; (for variable ¢ with parent p) reduces to:
mi=Y 7P(X; = j|X, =).
v

Since there is no reference to anything that must be computed in a bottom-up pass (specifi-

cally to any As), this quantity can be computed online in a top-down fashion. By maximizing

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 64

over v, rather than summing, and keeping track of the best » for each F;, the likeliest as-
signment of values can also be recovered online. This is exactly analogous to online Viterbi
decoding with HMMs (Rabiner & Juang 1993; Jelinek 1997). Finally, beam search can
be implemented by pruning away the least likely F;S after each new frame. Since this is
a top-down procedure and the root of the tree is still at time 0, it is straightforward to

combine with the procedure for propagating deterministic constraints.

It is important to realize that in terms of computational requirements, a chain-
structured DBN may be significantly more efficient than an HMM in which the state space
represents the cross-product of all the variables in a timeslice (even though both can be
represented by chain structures). This is because it is possible to “spread” the variables
from a single slice across many cliques in the chain. Figure 3.14 shows an example of this.

A valid chain of cliques - that satisfies all the requirements of the previous sections - is:

ABCD
BCD
BCDE
BCD
BCDFG
CDFG
CDFGH
DFGH
DFGHI
GHI
GHIJ

Assuming that each of the hidden variables has f values, the compute time is
proportional to f°. This compares favorably to the f® requirement of a cross-product
HMM, which results from the necessity of considering a transition from any of f* states at
time t to any of f* states at time ¢ 4+ 1. In general, if there are k hidden variables in the
middle layer, the compute time is f5+2 as opposed to f25+2. Finally, we note that this is
not a question of parameter tying; it is an unavoidable consequence of computing with a

cross-product representation.

The tree-building procedures presented in Section 3.4 generate trees, not necessar-
ily chains. There are, however, simple ways of creating chain-structured “trees.” A simple
and effective technique known as the frontier algorithm is presented in (Zweig 1996), along

with specialized inference routines.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 65

3.7.2 Backbone Decoding
The second method for online decoding stems from two observations:

1. The likeliest assignment of values can be recovered from a combination of A and =

values.

2. The side chains hanging off the main backbone of the clique tree cannot extend more

than one timeslice into the future. 2

This suggests the following process for extending the backbone of the clique tree, one clique

at a time:

1. Add the next clique along the backbone, and all the side-chains rooted in it. Since
a side-chain can have variables from up to two timeslices, it may be necessary to

maintain a buffer of one frame in order to be able to assign values to all its members.

2. Find the set of possible clique values by propagating forward the deterministic con-

straints.

3. Compute As for the side-chain cliques:
=] maxAj + P(Xe = fIXi = j).
c€children(X;)

Store the maximizing f value.

4. Compute 7s for the new backbone clique. These require only As that are already

available:

ﬂ; =max P(X; = j|X, =v)x 7l « H max A%+ P(X; = f|X, = v)
N s€siblings(X;) !

Store both the maximizing f and v values.

Since the side chains are short compared to the entire tree, it makes sense simply to compute

all the As. Beam search can be done with the ws by retaining a subset. The likeliest

2Suppose there is a backbone clique A from slice i, and a clique B from slice i + 2 on a side-chain rooted
in A. Now consider a clique C on the backbone that is from ¢+ 2. A and B are connected via the side chain,
and A and C are connected by the backbone. By timeslice contiguousness, B and C must be connected by
a chain of cliques with variables from ¢ + 2, but Theorem 3.7 excludes a path through A. Therefore, there
must be yet another path from B to C, and a cycle is implied.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 66

assignment for the cliques on the backbone can be recovered by starting with the most
likely value for the last clique on the backbone, and recursively looking up the maximizing
values of its parent and siblings. The likeliest values for the side-chains can be recovered by
proceeding top-down from the backbone and using the As. This procedure has the drawback
of being significantly more complicated than chain decoding. However, it is theoretically
more efficient since it does not impose any constraints on the tree structure. Since online

inference is not explored further in this thesis, we do not reproduce the algorithm.

3.8 Learning

There are two basic issues involved with learning Bayesian networks. The first con-
cerns learning the structure of the network, and the second concerns learning the required
conditional probabilities once the network structure has been selected (Heckerman 1995;
Buntine 1994). Traditionally, these have been viewed as separate problems; early work on
structure learning (Cooper & Herskovits 1992) performed a greedy search over model struc-
tures, and evaluated each candidate structure by learning optimal parameters for it. More
recent work, (Friedman 1997), combines the two processes and changes the network struc-
ture dynamically as the conditional probabilities are learned. In our work, the candidate

structures were generated manually to address specific issues.

There are also two main approaches to learning the conditional probabilities ©. In
both cases, parameter adjustment is done according to the maximum likelihood principle
to maximize the probability of a collection of observed data, i.e. argmaxe P(0|®). The
first method is that of gradient descent (Binder et al. 1997), and is applicable whenever the
derivative of the data likelihood with respect to ® can be computed. The second method
is the EM algorithm (Dempster et al. 1977), and is applicable when the conditional prob-
abilities are represented by distributions in the exponential family. (The definition of the
exponential family is complex (Buntine 1994), but it includes many common distributions
such as the Gaussian, Chi-squared, and Gamma distributions). The gradient descent tech-
niques have the advantage of greater generality, while the EM algorithm has the advantages
of simplicity and robustness. In the following sections, we will provide an overview of both
approaches; in our implementation, we adopted the EM approach. One key similarity be-

tween the two is that the information they require is computed with the inference routines.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 67

Thus inference is a crucial step in parameter adjustment. Another similarity is that in

general, both are guaranteed to find only a local optimum in the parameter space.

3.8.1 Gradient Descent Techniques

An excellent review of gradient descent techniques applied to Bayesian networks
can be found in (Binder et al. 1997). Gradient descent can be thought of as moving a
point corresponding to the parameter values through parameter space so as to maximize

the likelihood function. The basic questions that must be answered are:

e What direction to move?

e How far to move?

This is complicated by the fact that in many cases there are restrictions on the parameter
values. For example, if conditional probability tables are used, all the entries must lie
between zero and one. Furthermore, all the entries in a distribution must add to one.
These constraints define a feasible region in parameter space in which ® must lie. Thus,

the problem is one of constrained optimization.

Gradient descent techniques move either in the direction of the gradient, or, in
the case of conjugate gradient techniques (Price 1992), in a conjugate direction. In (Binder
et al. 1997), a derivation is given that shows the gradient to be a simple function of N;;, the
number of times that variable X; has value k& and its parents are found in the jth possible
configuration. Again, this issue is complicated, because the current parameter setting may
lie on the boundary of the feasible region with the gradient pointing out of the region.
This can be dealt with either by projecting the gradient onto the constraint surface, or
re-parameterizing the conditional probabilities so the unconstrained optimization can be

performed on the new parameters (Binder et al. 1997).

The simplest strategy for deciding how far to move is to move a fixed amount.
More sophisticated techniques perform line search to maximize the likelihood along the
direction chosen. Once more, the question of constraints complicated both approaches. For
example, if the likelihood is optimal and increasing at the point where the line intersects
the feasible region, a decision must be made whether to recalculate the gradient at that

point, or continue the line search along a projected direction.

CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 68

3.8.2 EM

The questions of what direction, and how much to move are answered simultane-
ously by the EM algorithm. In the case of discrete CPTs, the crux of the EM algorithm is

extremely simple: estimate N;;i, and then estimate 8;;;, the probability that X; = k given

that its parents have instantiation j, as ZN’]J\? (Lauritzen 1991; Heckerman 1995). When
kiVegk

both a variable and its parents have observed values, N;; is obtained simply by counting.

More commonly, there are some unknown values in which case inference is necessary. The

calculations can be summarized as follows.

Let C; be the clique containing z; and its parents. Because of the MORAL
property, we know such a clique exists. Let V;k be the set of C;’s clique values corresponding
to underlying variable assignments that include X; = j, Parents(X;) = k. Recall that
2w Aty ¥ T

Now, N;;i can be found by summing over the appropriate clique values:

P(C; = w|Observations) =

Nk = Z P(C; = w|Observations)
weV,
Estimating N;;; from a collection of examples simply requires summing the individual
estimates for each example. By maintaining the appropriate data structures, the counts for
every family can be computed in a single sweep over the cliques. EM has much to recommend
it. The problem of constrained parameter values is nonexistent, and line searches are

unnecessary. Where applicable, it is usually the method of choice.

3.8.3 Comparison with HMMs

In general, the learning techniques for Bayesian networks are analogous to the
learning techniques for HMMs. In both cases, EM is the everyday workhorse. Under some
circumstances, however, gradient descent is required. For example, if a functional repre-
sentation of conditional probabilities is used in a Bayesian network, it may not be possible
to derive EM update equations. Similarly, when optimization criteria other than maxi-
mum likelihood are used in HMMs (such as minimum discrimination information (Ephraim
et al. 1989) or maximum mutual information (Bahl et al. 1986)), it is necessary to resort to

gradient descent techniques.

69

Chapter 4

DBNs and HMMs on Artificial

Problems

4.1 Overview

This chapter presents a set of experiments demonstrating the advantages of a
factored state representation. The experiments were done by generating data from a process
that consists of multiple loosely interacting state and observation variables, and learning
models with both factored and unfactored representations. HMMs are used to encode the
unfactored representations, and DBNs are used to encode the factored representations. As
expected, using a factored representation provides a significant advantage that increases
as the number of underlying variables increases. In practice, the state representation in a
model will never exactly match reality; therefore, experimental results are also presented
that study the effect of learning with models that are either overly-simple or overly-complex.

This data is adapted from (Zweig 1996), and further experiments can be found there.

4.2 Converting DBNs to HMMs

There is a simple procedure for constructing an HMM from a DBN. Recall that a
discrete HMM is characterized by five quantities:

1. The number of states.

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 70

2. The number of observation symbols.
3. Transition probabilities between states.
4. Emission probabilities for observation symbols.

5. A probability distribution on the initial states.
Given a DBN, these quantities can be derived for an equivalent HMM as follows:

1. The number of HMM states is equal to the the number of ways the DBN state nodes
can be instantiated. For example, if there are k binary DBN state nodes, there are 2%

HMM states.

2. The number of HMM observation symbols is equal to the the number of ways the

DBN observation nodes can be instantiated.

3. To calculate the HMM transition probability from state ¢ to state j, instantiate the
DBN state nodes in a time slice ¢ in the configuration that corresponds to HMM state
. Instantiate the state nodes in slice ¢t + 1 in the configuration that corresponds to j.
Compute the product of the probabilities of the state nodes in slice ¢t + 1, given their
parents. This is the transition probability.

4. Emission probabilities are calculated similarly, except that the state and observation

nodes in a single time slice are instantiated.

5. To calculate the probability of being in state ¢ initially, instantiate the DBN state
nodes in time slice 1 in the configuration that corresponds to HMM state ¢. Compute
the product of the probabilities of the state nodes in time slice 1, given their parents

(if any). This is the desired prior.

Note that this is a one-way transformation. There is no known way of taking
an HMM and constructing the minimal equivalent DBN. It is straightforward to create an
equivalent DBN in which there is a single hidden variable in each timeslice, with as many
possible values as there are HMM states. However, this representation is not necessarily
minimal in terms of the number of parameters or computational requirements. There may

be a much better equivalent factored representation.

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 71

%/Q—%@@

,,,

Figure 4.1: A 3 — 3 DBN and an equivalent HMM. Both have been unrolled four time
steps. The observation variables are boxed. The variables in the HMM can take on many
more values than those in the DBN: each state variable must have a distinct value for each
way the DBN’s cluster of state variables can be instantiated. The same is true for the
observation nodes.

4.3 Performance on a Family of Regular Graphs

In this section we compare the performance of DBNs and HMMs on a class of
regular graphs. Each of these graphs has k state nodes and k observation nodes; we refer to
such graphs as k—k graphs. The state nodes within a time slice are connected in what would
be a cycle, except that one of the arcs is reversed. The observation nodes in a time slice are
connected to each other similarly. Fach state node is also connected to the corresponding
observation node in its time slice, and to the corresponding state node in the next time

slice. A 3 — 3 network is illustrated in Figure 4.1.

The results were obtained by using a & — & DBN to generate training and test
data. A topologically correct DBN was used to learn the distribution, and an unfactored
HMM was constructed and trained with the same examples. All the variables were trinary,

and the networks are initialized with random CPTs; the representations were initialized to

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 72

T T T T
1-1.logprob.ratio” —
1.2 2-2.logprob.ratio" ----- E
"3-3.logprob.ratio” -----
4-4.logprob.ratio” -
1
=
=
<
Z E -
o . .
=) 0.8 1
2
=
g
o 0.6 [1
o .
[=2]
o
-
k]
o) 04 E
T
[hd
0.2 - 1
. s \ . .
20 40 80 160 320 640

Training Examples

Figure 4.2: Solution quality as a function of the number of training examples. The horizontal
axis is logscale. Large values represent good HMM performance.

equivalent starting points. The results reported are averages of 5 problem instances. Test
cases that had 0 probability (because a particular combination of observations was never
observed in the training data) were assigned the arbitrarily low log-likelihood of —1000.
Note that for a 1 — 1 network, there is a one-to-one correspondence between parameters in

the HMM and the DBN, so identical performance is expected, and observed.

Figure 4.2 compares the test-set log-likelihood as a function of the number of
training examples. The ratio of the HMM’s score to the DBN’s score is plotted. Since
log-likelihoods are negative, low ratios indicate bad performance on the part of the HMM.
These results clearly indicate the superiority of the DBN representation on k — k graphs.
The factored representation requires fewer parameters to represent the same distribution,
and these results indicate that the factorization translates into better likelihood scores on

the test data. As expected, this advantage increases rapidly with k.

Figure 4.3 compares the number of EM iterations required by the two algorithms.
When few training examples are available, the DBN converges more rapidly, and to superior

solutions.

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 73

1-1.dbn.iterations" ——
"2-2.dbn.iterations" -----
3-3.dbn.iterations" -----
"4-4.dbn.iterations" -
"1-1.hmm.iterations" ---
\ "2-2.hmm.iterations" -----
20 "3-3.hmm.iterations" ------
\ "4-4.hmm.iterations" ------

25 |-

15 | i

10F i

Number of DBN and HMM lterations

O 1 1 1 1
20 40 80 160 320 640
Training Examples

Figure 4.3: Absolute number of EM iterations required as a function of the number of
training examples. The average number of iterations is about 3 except for the HMM on a
2—2,3—3, and 4 — 4 network, which require many more.

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 74

T T T
"dbntimes" ——
"hmmtimes" -----
l - -
=
o 0.8 |- /A
£ '
c
ie]
©
2 /
@ 0.6 |- |
= /
1S
IS
X
]
@ /
o /
0 04 / i
=} /
c ’
o
Q
Q
%]
0.2 |
0 —
1 2 3 4 5

Number of State and Observation Nodes

Figure 4.4: Time to process one example through one EM iteration. Times are shown for
a DBN and analogous HMM. The horizontal axis shows k in a k — k network.

Figure 4.4 shows the absolute amount of time required to process a single training
example through one iteration of EM. The total running time is linear in the number of
training examples and the number of iterations. Note that unlike the data on the number

of iterations required, this data is implementation dependent.

For a 1—1 network topology, the DBN and HMM are equivalent. Exactly the same
results are generated. Since the DBN is a more general model, however, there is additional
overhead, and the running time per example-iteration is about ten times greater. For a4 —4
network, the running times are comparable, and the DBN is significantly faster on a 5 — 5
network. This graph shows that the factored representation used by the DBN results in a
significant decrease in the computational load, compared to an unfactored representation.
As discussed in Section 3.7, this is not a question of parameter tying, and cannot be avoided

with a simple modification to the HMM inference procedures.

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 75

T T T T
"1-4.logprob.ratio” —
1.2 "2-4.logprob.ratio” ---- E
"4-4.logprob.ratio" -----

Ratio of Log Probabilities: DBN/HMM

O - 1 1 1 1

20 40 80 160 320 640
Training Examples

Figure 4.5: Solution quality as a function of the number of state nodes in the learned
network. Note that the lines for the simpler models lie to the left of the line generated when
the correct network is used. This indicates a faster increase in the HMM’s performance.

4.3.1 Learning with an Incorrect Model

This section examines the effects of using an incorrect number of states in the
learned model. The results show that an HMM benefits (in a relative sense) when too

simple a model is used, and is harmed when too complex a model is used.

Another important issue is how the DBN’s performance changes relative to that
of the generating model. This can be determined by calculating the test-set log-probability
with the model that generated the instances, and comparing this performance with that of
the trained network. Here we find that when there are either too many or too few state

nodes, performance is degraded.

Learning with too few States

Figure 4.5 shows relative solution quality as a function of training examples when
too simple a training model is used. The data were generated with a 4 — 4 network, and

learned with 1 —4 and 2 — 4 networks. In the 1 — 4 network, the single state node in a time

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 76

T T T T
"1-4.logprob.ratio” —
12 "2-4.logprob.ratio” ----- i
"4-4.logprob.ratio" -----

11| i

B
1F [i

a i
3 7
w B
g
s 09 |
”
Q2
5 0.8 | i
Qo
<l
o
g /
= 07 |~ i
5 ,
o]
T
14

0.6 - 4

0.5 L L I I

20 40 80 160 320 640

Training Examples

Figure 4.6: Log probability of the learned DBN model vs. log probability of the training
model. The DBN’s learning performance is degraded as the number of states in the learned
model decreases.

slice was connected to all the observation nodes in that slice. In the 2 — 4 network, each of
the state nodes was connected to two observation nodes. The inter-state arcs were as in a
2 — 2 network. The HMM had an equal number of states, and was started with the same

transition, emission, and initial-state probabilities as the DBN.

Figure 4.5 shows that HMM performance increases more rapidly relative to DBN
performance when too few states are available in the learned model. Figure 4.6 focuses on
the DBN alone, and shows that learning requires more examples with too simple a network.
Surprisingly, both a 1 — 4 and 2 — 4 network can closely approximate a 4 — 4 network - but
an examination of the tails of the distributions shows that their performance is never quite

as good.

Learning with too many States

Figure 4.7 shows relative solution quality as a function of training examples when

too complex a training model is used. Training data was generated with 1 — 4 and 2 — 4

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 77

4-4.logprob.ratio" —
.4-4 logprob.ratio” ----- E
1-4
2-4

12

Jlogprob.ratio" -
Jlogprob.ratio” -

Ratio of Log Probabilities: DBN/HMM

0 | L L L

20 40 80 160 320 640
Training Examples

Figure 4.7: Solution quality as a function of the number of state nodes in the learned
network. Note that the lines for the correct models lie to the left of the lines generated
when the over-complex network is used. This indicates a slower increase in the HMM’s
performance.

networks, and learned with a 4 — 4 network and its HMM analog. The performance impact
in this case is the opposite of when too simple a model is used: the HMM takes longer to

achieve equal performance.

Figure 4.8 compares the performance of the learned network with that of the
generating network. Once again, an incorrect state model hampers performance. However, a
close examination of the tail of the distribution shows that when sufficient training examples
are available, the performance of the over-complex model equals or exceeds that of the

correct model.

4.4 Discussion

These experiments demonstrate that when a system consists of several state and
observation variables, a factored representation and the DBN inference procedures consti-

tute a better modeling tool than an unfactored HMM. Although a factored HMM represen-

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 78

1-4.4-4.logprob.ratio" —
tar 2-4.4-4 |logprob.ratio" ----- i
1-4.1-4.logprob.ratio" -----
2-4.2-4.logprob.ratio” -
11 |

Ratio of Log Probabilities: MODEL/DBN

05 1 1 1 1
20 40 80 160 320 640
Training Examples

Figure 4.8: Log probability of the learned DBN model vs. log probability of the training
model. Learning performance is degraded when the learned model has too many states and
only a small number of training examples are available.

CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 79

tation can be used to reduce the number of model parameters, inference with a cross-product
representation is significantly more expensive than with DBN techniques, which are spe-
cially designed for factored representations. In our experimental results, the differences
between HMMs and DBNs are most apparent when a small number of training examples
are used. There is a range in which a trained DBN will produce good log-likelihood scores
with respect to the generating model, but a trained HMM will do poorly. Remarkably, the

HMM will also require many more EM iterations to converge.

In practice, models will have various kinds of inaccuracies, and it is important to
study their effects on performance. We found that when there is too little state, an HMMs
performance improves relative to a DBNs. When too many states are in the model, an
HMM is harmed. In the networks we studied, both kinds of model were able to do well in

either case - with a sufficient number of training examples.

80

Chapter 5

Speech Recognition

This chapter provides background material on automatic speech recognition (ASR).
We begin with an overview of the problem and the general approaches that have been used
to solve it. We then show in more detail how the techniques introduced in Chapter 2 can

be applied to ASR. Finally, we describe some of the outstanding problems.

5.1 Overview

5.1.1 The Problem

Simply put, the problem of automatic speech recognition (ASR) is to program a
computer to take digitized speech samples and print on the screen the words that a human
would recognize when listening to the same sound. Over the course of the last fifty years,
innumerable approaches to solving this problem have been developed, but despite their
variety, it is possible to analyze them in terms of some common themes. There are several

fundamental problems that must be overcome in any speech recognition system:

1. Acoustic representation. How will the information in the acoustic signal be repre-

sented?

2. Word representation. How will words be represented? Words are linguistic units, and
as such could represent the atomic units in a recognition system. But words are also

composed of syllables and phonemes, and these can also be used as the atomic units.

CHAPTER 5. SPEECH RECOGNITION 81

When a word can be pronounced in multiple ways, how will this be represented?

3. Linkage. In order to do recognition, we must link the acoustic representation of the

signal to the word representations that derive from prior linguistic knowledge.

4. Training. It is generally agreed that a human cannot program a computer to recog-
nize speech without giving the computer access to a large number of speech samples
representing known utterances. Instead, the linkage between acoustic and word rep-
resentations must be made by examining many examples for which the association is

known. How exactly should this be done?

5. Recognition. Once the recognizer is trained, how exactly can it be used to do recog-

nition?

In the following sections, issues are discussed in more detail.

Acoustic Representation

As a first step in ASR, the acoustic signal is processed to extract features that
are higher-level than the raw sound wave itself. Although much early work was influenced
by computational limitations, and therefore restricted to very simple mathematical models
such as linear predictive coding (Makhoul 1975), more recently there has been an emphasis
on models that are motivated by an understanding of the human auditory system (Davis
& Mermelstein 1980; Ghitza 1991; Hermansky & Morgan 1994; Morgan et al. 1994). Since
technical details are abundant in other work, e.g. (Rabiner & Juang 1993; Deller et al.

1993), and not central to our own, we will present only the basic ideas.

Essentially all speech representations begin by breaking the signal up into short
time-frames, and computing a spectral representation of each of the frames. These frames
are typically 25-30ms long, and overlap by 50-75%. The length of the analysis window is
chosen to be long enough that good spectral estimates can be obtained, but at time same

time short enough that each frame represents a stationary portion of the speech signal.

In practice, the spectral representation is considerably massaged before it is used.
Cepstral representations are particularly useful. The simplest form of cepstral representa-
tion results from taking the cosine transform of the log of the original power spectrum. The

resulting representation has many desirable properties (Noll 1964), including the fact that

CHAPTER 5. SPEECH RECOGNITION 82

Weight

Frequency

Figure 5.1: Overlapping, triangular, nonlinear MFCC-style filterbank. The peaks have a
constant spacing on the mel-frequency scale. The output of each filter is a weighted sum of
the sound energy in its frequency range.

the low-order coefficients tend to be correlated with the overall shape of the vocal tract,
while the high-order coeflicients are correlated with the presence of voicing. Additionally,
by subtracting the mean value from each cepstral coefficient, it is possible to remove the
effect of many telephone transmission characteristics (Mammone et al. 1996). Frequently,
derivative features are computed from the basic cepstral representation. For example, the
rate of change of the different cepstral coefficients might be computed, or even the second

derivative.

There are two basic approaches to representing the spectral information extracted
in this first stage of processing. In the first and most common approach, the spectral features
are simply concatenated together into one long acoustic feature vector for each frame. Other
systems use the method of vector-quantization instead (Linde et al. 1980). The basic idea
of vector quantization is to find a relatively small number (e.g. 256-1024) of stereotypical
spectra or cepstra. The spectrum of a frame can then be concisely represented by the index
of the stereotype it is closest to, rather than by a whole vector of real-values numbers. This

typically results in a factor of 40 reduction in the amount of space required to represent

CHAPTER 5. SPEECH RECOGNITION 83

a speech frame, and has the benefit of considerably simplifying all future computation by
allowing for a completely discrete acoustic representation. It has the disadvantage that
representation by a stereotype is inherently less precise than a full characterization. When
vector-quantization is used, it is common to quantize the different spectral features (e.g.
the cepstrum and its derivative) separately, and then to represent a speech frame by a

combination of several vector indices (Lee 1989).

In many recent approaches to acoustic processing, an effort is made to mimic the
processing of the human auditory system. Mel-frequency spectral warping (Davis & Mer-
melstein 1980) is illustrative. Mel-frequency cepstral coefficients (MFCCs) are computed
in much the same way as ordinary cepstral coefficients, except that the power in different
frequency ranges is added together to generate a “warped” spectral representation (see Fig-
ure 5.1). Approximately 20 overlapping frequency bins are used, and they are nonlinearly
spaced. For example, the first frequency band might extend from 100 to 200Hz, while the
last might extend from 3200 to 3600Hz (for telephone-quality speech). This nonlinear spac-
ing emphasizes the high frequency range in a manner that is similar to the human auditory
system. MFCCs have proven quite effective, and are now one of the most widely used

spectral representations (Young 1996; Makhoul & Schwartz 1995).

Word Representation

The simplest way to represent words is atomically. If this is possible, the acoustics
of a particular utterance are directly related to the words in the vocabulary; in essence,
the system maintains an explicit model of how every word should sound. These types of
systems have the advantage that they are explicit and direct, and can easily model any word-
specific phenomena. However, they have the fatal disadvantages that in large vocabulary
systems the parameters of the word models cannot be reliably estimated from the small
number of examples that are commonly available. Therefore, their use is restricted mainly
to small-vocabulary “command-and-control” applications such as navigating and automated
help-systems. More sophisticated systems must use sub-word units as their atomic building

blocks.

The simplest subword units that can be used are syllables. Syllables are relatively

intuitive units that are often defined as consisting of a vowel and optional surrounding con-

CHAPTER 5. SPEECH RECOGNITION 84

sonants. (There is no completely agreed on precise definition, however: see, e.g. (Ladefoged
1993).) Unfortunately, there are still approximately 10,000 syllables in English (Rabiner &
Juang 1993), so they suffer from some of the same drawbacks as whole word models. De-
spite the fact that syllable-based units are relatively rare in English-language ASR, recent
work (Wu et al. 1997; Wu et al. 1998) indicates that they can be used effectively both on

their own, and in combination with other schemes.

The next most atomic linguistic unit is the phoneme. Loosely speaking, a phoneme
represents a maximal group of sounds that are similar enough to be used interchangeably.
Languages can typically be described in terms of 40-100 phonemes, and taken together,
the phonemes of a language cover the entire range of speech sounds. One can think of
the set of phonemes as partitioning acoustic space into as few regions as possible such
that the following rule is satisfied (Ladefoged 1993): every two sounds that can be used
to differentiate between any pair of words are in different phonemic categories Thus, for
example, /p/ and /t/ are distinct in English because the sounds distinguish “pie” from
“tie.” However, the /p/ at the beginning of “pop” is not sufficiently different from the /p/
at the end of “pop” that the two can differentiate between any English words. Another
way of viewing the definition of phonemes in terms of “minimal word pairs.” A minimal
word pair is a pair of words with the same number of phonemes, and that differ only in
one sound in one location, yet nevertheless have distinct meanings. An example is the pair
“fine” and “vine” (Akmajian et al. 1995). They differ only in the initial sound, but have
different meanings. The fact that the sounds /f/ and /v/ form the basis of a minimal word

pair is proof that the sounds must be placed in separate phonemic categories in English.

The sounds that are grouped together in a phonemic category may have enough
intra-group variation that they can be further subdivided into groups of allophones. Al-
lophones are distinct enough that they can be distinguished from one another, yet not so
distinct that they can form the basis of a minimal word pair. Allophones are atomic in the
sense that linguists do not find further subdivisions, and these basic sounds are also referred
to as phones (Akmajian et al. 1995). Table 5.1.1 lists one set of phones that is commonly
used to represent the English language, adapted from (Deller et al. 1993).

Phonetic units based on phonemes or their allophones are attractive for use in
ASR because a relatively small number of them can be combined to form all the possible

words. In any reasonably sized dataset, each phoneme will occur many times, so accurate

CHAPTER 5. SPEECH RECOGNITION 85
‘ Phone ‘ Example H Phone ‘ Example H Phone ‘ Example H Phone ‘ Example ‘
Y heed A% vice H hid TH thing

EY hayed DH then EH head S 80

AE had 7 zebra, AA hod SH show

AO hawed yAil measure || OW hoed HH help

UH hood M mom UW who’d N noon

ER heard NX sing AX ago L love

AH mud EL cattle AY hide EM some

AW how’d EN son oy boy DX batter

IX roses F five P pea W want

B bat Y yard T tea R race

D deep CH church K kick JH just

G go WH when

Table 5.1: The ARPAbet. This phonetic alphabet was adopted for use by ARPA, and is
representative of phonetic alphabets.

models can be learned.

There are a variety of ways in which subword units can be combined to represent
actual words. In the simplest schemes, a word model is represented by a single linear string
of phones. For examples “dog” might be represented /D AO G/; cat might be represented
JK AE T/, and so forth. At the next level of sophistication, alternative pronunciations
can be represented simply by maintaining multiple linear sequences; for example, “tomato”

might be represented by the word model
{/TAHMEY TOW/,/T AHM AA T OW/ }.

Although simple, this method of word representation involves considerable redundancy, and
in general word models are represented by directed graphs; see Figure 5.2. This represen-
tation has the advantage that it is easy to represent multiple words with concatenation: to
link word A to word B, it suffices to take the two graphs, and add arcs from the terminal
node of A to the initial nodes of B. This sort of representation is the standard in speech

recognition.

Phoneme based units have the advantage of being few in number, but they have
the significant disadvantage that the actual acoustic realization of a phoneme-based unit
is highly variable, and moreover it varies in a somewhat predictable way depending on the
nature of the surrounding phonemes. This effect is known as coarticulation, and is is a

consequence of the way in which speech is generated.

CHAPTER 5. SPEECH RECOGNITION 86

O e @ é T ow @)

Figure 5.2: Word model for “tomato” showing two possible pronunciations.

One way of understanding speech production is as an acoustic filtering operation
(Deller et al. 1993). In this model, a sound source forces air through the vocal tract, and
the combination of the shape of the vocal tract and the type of sound source determines
the sound that is produced. Fundamentally, the sound source is exhalation by the lungs,
but there is an important distinction between a voiced and an unvoiced source. In voiced
speech (e.g., when a vowel is uttered), periodic constriction of the vocal folds produces
sharp, periodic changes in air pressure. In unvoiced speech, the vocal folds remain open,
and the sound source is more chaotic in nature. The shape of the vocal tract is determined
by the tongue, lips, jaw, and velum, and modulates the spectrum of the sound source.
Together, the organs involved in producing and modulating speech sounds are known as

the speech articulators.

It is possible to classify the different phonemes according to characteristic articu-
lator positions and modes of excitation; see, e.g. (Ladefoged 1993; Browman & Goldstein
1992). However, the articulators are constantly in motion, and it is important to realize that
they can move asynchronously and independently. It is in this context that coarticulation

can be understood as occurring for at least two reasons:

1. The vocal apparatus is in a certain state after enunciating the immediately preceding

unit, and cannot reach “target” positions, and

2. one or more of the articulators undergoes a modified motion in anticipation of an

upcoming sound.

To address coarticulatory effects, speech recognition systems often use context-

dependent phonetic alphabets, in which there are one or more units for each phoneme in

CHAPTER 5. SPEECH RECOGNITION 87

the context of surrounding phonemes. Several of the more common schemes are:

1. Biphones. This scheme comes in two flavors. In a left-context biphone alphabet,
there is a phonetic unit for each phoneme in the context of every possible preceding
phoneme. In a right-context biphone alphabet, there is a unit for each phoneme in

the context of every possible following phoneme.

2. Diphones. In contrast to biphones, diphones do not represent entire phonemes.
Rather, they represent the end of one and the beginning of another, and are thus

transitional in nature (Schwartz et al. 1980).

3. Triphones. Each phoneme is represented in the context of every possible pair of

surrounding phonemes.

In practice, not all combinations of phonemes are modeled in any of these schemes; only the
frequently occurring ones. Also, it can be profitable to merge similar contexts, e.g. /b/ and
/p/ into equivalence classes to reduce the number of possible contexts. This can be done
either by hand, or through various automated clustering techniques (Lee 1989). Finally,
hybrid schemes are common in which explicit word models for commonly occurring function

i

words, e.g. “and,” “of,” “to,” and “the” are used in combination with phone-based models

for less frequent words.

Training and Recognition

The training task consists of taking a collection of utterances with associated word-
level labels, and learning an association between the specified word models and the observed
acoustics. Since it is impossible to be specific except with reference to a particular modeling
approach, we defer a detailed discussion to the following sections, and simply point out the

main difficulties:

e When the database consists of continuous speech, the word boundaries are not usually
identified in the training data. Therefore, the program must either guess the word
boundaries, consider all possible word boundaries, or consider some sort of weighted

combination of the possible segmentations.

CHAPTER 5. SPEECH RECOGNITION 88

e Even when the database has only isolated words, the boundaries of the subword
units are not usually available. Hence there is a problem analogous the missing word

boundaries.

A large part of the training task consists of figuring out, implicitly or explicitly, which word

model and which subword model to apply to each frame of an utterance.

In the recognition phase, the unknown utterance is compared to the various word
models, and segmented in such a way that each part becomes associated with the most likely
atomic speech unit. Again, one of the main problems will be to determine which word model

and which subword unit to associate with each frame of the unknown utterance.

5.1.2 Approaches

We turn now to a brief description of two of the most commonly used techniques

for associating word models to observed acoustic features.

Templates

The template-based approach to pattern recognition is highly intuitive: the basic
idea is to store several examples of each word, and then to do recognition by comparing
an unknown utterance to all the templates, and picking the one it most closely matches.
In a template-based system, training can consist of simply storing all previously heard
utterances. In a more sophisticated setting, one can cluster the examples of each word, and
store only a small number of stereotypical examples, in a procedure analogous to vector-

quantization.

In order to adopt the template approach, one need simply define a precise method
for measuring the similarity of two utterances. Typically, this is done by defining the
“distance” between the acoustic features associated with two frames of speech, aligning the
two utterances, and adding the frame-wise distances. There are many possible ways of
defining the distance between two speech frames (see, e.g. (Rabiner & Juang 1993)), but
for concreteness, we may think of computing the Fuclidean distance between two cepstral

vectors.

The task of aligning a template pattern to a specific utterance requires some care.

CHAPTER 5. SPEECH RECOGNITION 89

B6 ?

BS

B4

B3 o

B2

Bl

Al A2 A3 A4 A5 A6 A7 A8 A9

Figure 5.3: Utterance A is time-aligned to utterance B.

If the utterance and the template have the same number of frames, it is easy to pair them
off and add the pairwise-distances. However, because of variations in speaking rate, this
may not be the best thing to do, and because of the wide variability in the length of
utterances, it is usually not possible at all. A more subtle solution stems from the use
of dynamic programming (Bellman 1957), which makes it possible to quickly find the best

possible alignment, even if the two utterances have different numbers of frames.

The method of dynamic programming, as applied to template matching, makes

use of two simple data structures:

1. a two-dimensional array C' in which entry ¢; ; holds the cost of pairing the ¢th frame

of the reference pattern with the jth frame of the actual utterance, and

2. a two-dimensional array A in which entry a; ; holds the total cost of the best possible

alignment that ends with the pairing of frames ¢ and j.
Furthermore, there are two pieces of a-priori information that are used:

1. the first frame of the utterance must be paired with the first frame of the template,

CHAPTER 5. SPEECH RECOGNITION 90

and

2. the last frame of the utterance must be paired with the last frame of the template.

We will assume that the template has m frames, and the utterance n frames. The process of
dynamic programming consists of starting with the first of these facts, and then methodically
figuring out for each array position a; ; the least cost path from array position a;; to a; ;.
We state the procedure below, with the assumption that cpo = 0,¢0; = 00,7 > 0,¢;0 =

00, > 0; ties may be broken arbitrarily.
i j = ¢ij + min(@i-1j, @ij-1, @Gi—1,j-1) ¢ >0,57>0

Once the a;; have been computed in this fashion, the cost of the best possible alignment
is stored in a,, ,. Recognition simply consists of computing the cost of the best alignment
of the utterance to each of the reference patterns, and keeping track of the best. If desired,
the actual path can be reconstructed by storing a small amount of extra information as the
algorithm proceeds. The alignment of an utterance to a template is illustrated in Figure
5.3. The use of template-based systems for continuous word recognition is somewhat more

complicated, but proceeds along basically the same lines (Ney 1984).

Template-based recognizers formed the basis of many early speech recognition sys-
tems, but suffer from the problem that it is not possible to decompose a training utterance
into sub-utterance level units. Note that this deficiency is apparent only in the training
phase, when no sub-utterance level templates are available to begin with. For example,
given a string of connected words as its input, a template-based system that does not al-
ready have word models is unable to segment the utterance into its component words. This
means that the words in the training phase must be spoken in isolation, and connected word
models derived by concatenating isolated word templates; this results in a poor model of
inter-word coarticulatory effects. Again, this difficulty occurs only during training; once a
set of atomic templates is available, long utterances can be segmented into these atomic units
in an optimal way (Ney 1984). An additional problem arises when there are several qualita-
tively different acoustic features associated with each frame, and a single distance measure
must be defined that weights them all appropriately. These problems make template-based
recognizers attractive only for simple isolated-word command-and-control type applications;

for example, they are currently used in many speaker-dependent voice-dialing systems.

CHAPTER 5. SPEECH RECOGNITION 91

Statistical Pattern Recognition

Statistically-based ASR systems are based on the notion that an utterance is repre-
sented by some sequence of acoustic features a that derives from some underlying sequence
of words w, and that the two can be probabilistically related. More specifically, the goal of
a statistically based ASR system is to find

arg max P(wl|a).

It is often beneficial to rewrite this using Bayes’ rule as

P(w)P(alw)
P(a)

arg max = argmax P(w)P(alw).

The reason for doing this is that it breaks the problem into two subproblems, each of
which can be tackled independently. The first is the problem of computing the probability
of a sequence of words, P(w); this can be done by constructing a language model that
specifies the probability of strings of words in a language. Examples of language models
include stochastic context free grammars, and bigram and trigram models (Allen 1995). The
second problem consists of computing the probability of an observed sequence of acoustic
features, given an assumed word sequence: P(a|lw). This can be done with a generative
model that explains how acoustics are generated for a given word sequence. Although
this decomposition is fairly standard, it it by no means the only way of constructing a
probabilistic model; as we will see, neural-net based systems decompose the problem in a
somewhat different way. In the following sections, we will examine several important ASR
methodologies in more detail; since they are all based on probabilistic modeling, we defer

the specifics of training and recognition to those sections.

5.2 Standard Techniques

In the following sections, we describe in more detail how the temporal modeling
techniques introduced in Chapter 2 can be applied to the speech recognition task. Since
the generalization to connected word recognition is in all cases straightforward, we focus,

for simplicity, on isolated word recognition.

CHAPTER 5. SPEECH RECOGNITION 92

Pronunciation Model of

| | "Because”
Transition Probabilities | l
Emission Probabilities l
Probability Acoustic Model for
JAH/

Acoustic Emission

Figure 5.4: An HMM for the word “because.” The transition matrix is defined graphically
by the solid arcs; if there is no arc between two states, the transition probability is 0. The
small shaded nodes represent artificial initial and final states.

5.2.1 Hidden Markov Models

In this section, we elaborate the use of hidden Markov models in ASR. As we
have seen, an HMM consists of a set of states with associated transition and emission
probabilities. HMMs are easily applied to ASR by associating the states with sub-word

phonetic states, and associating the emissions with sounds. This is illustrated in Figure 5.4.

Since P(w) is computed with a language model outside the scope of the HMM, we
need only worry about computing P(aJw). (And since we are considering isolated words,

we may replace w by w.) From Section 2.2, this corresponds to:
Plalw) =) P(q,alw)
q

= > P(qlw)P(alq, w)
q

n

~ > Pla|w)P(ailg, w) [P(glgi-1, w)P(ailgi. w).
q

=2
In words, this corresponds to the sum over all the paths through the HMM of the probability
of the path multiplied by the probability of the acoustics given the path.

In the training phase, the required transition and emission probabilities are deter-

mined, and in the recognition phase, each possible word hypothesis is evaluated.

CHAPTER 5. SPEECH RECOGNITION 93

5.2.2 Neural Networks

Neural-net based systems also relate the acoustics to subword phonetic units col-
lected together in graphical word models, but they are distinctive because they use a com-
pletely different factorization of P(w|a) (Bourlard & Morgan 1994; Hennebert et al. 1997).

The factorization is as follows:
P(wla) =) P(q,wla)
q
= Y P(qla)P(w|q,a)
q
> P(qla)P(w|q)
q

4

The main novelty is that the state sequence is conditioned on the observation sequence
rather than vice-versa; furthermore, a NN-based system estimates P(q|a) with a neural
net. We will discuss this in more detail in the following two sections, and pause here only

to note that the evaluation of P(w]|q) is somewhat tricky.

The factor P(w|q) is more complicated than anything that occurred in the HMM
specification, because it must carry the load of a language model, and is additionally con-
ditioned on a state sequence. One way of dealing with this is through Bayes rule:

P(w)P(q|w)
P(q)

This reduces the problem to computing the probability of the word sequence with a lan-

P(wlq) =

guage model as before, and computing the probability of the state sequence given the word
sequence as before, and computing a prior for the state sequence. This can be approximated
by P(q) =[I; P(¢), with P(g¢;) estimated from Viterbi decodings of the training data. The
final specification of the scheme is (Hennebert et al. 1997):

Plglw)
Plwla) = ZP Plala) I P(a)

Note that if it is assumed that there are no homonyms, then for isolated words with equal

priors, we have:

P(w|a) x ZP qla).

CHAPTER 5. SPEECH RECOGNITION 94

MLPs

One way of estimating P(qla) is with an MLP. The most common assumption

that is made (Hennebert et al. 1997) is that
P(qla) = HP(qi|ai_k..ai+k).

The probability of a state sequence is the product of factors, each of which is conditioned
on a small amount of acoustic context. Typically, k might be 4, so that the probability of
a phonetic state at time ¢ is a function of about 9 frames of surrounding speech. The task

is thus to estimate a distribution over phones from a small number of speech frames.

This can be done with an MLP in which the output layer has a node to represent
each phonetic unit. Since sigmoidal activation functions naturally lie in the range [0 ...1],
the output of unit 7 can be taken to be the probability of phone 7. In a properly trained
network, it will also be the case that the output activations sum to 1 (Bourlard & Morgan

1994).
In order to train an MLP-based system, there must be a set of training patterns

consisting of

1. the input frames of speech and

2. a desired output distribution over phones.
Such a training set can be obtained in the following way:

1. For each training utterance, compute the marginal distribution over phones for each
frame, using the current network parameters. This requires the use of a procedure

analogous to the forward-backward algorithm in HMMs (Hennebert et al. 1997).

2. Create a training examples from each frame so labeled.

The complete procedure for training an HMM-based system consists of alternating between
creating labeled training examples with the current network parameters, and re-training

the MLP with the new (self-generated) examples.

Since the training procedure for MLP-based systems is somewhat more compli-
cated than that of HMMs, one might wonder why they should be used. There are three

compelling reasons:

CHAPTER 5. SPEECH RECOGNITION 95

1. The probability of a phone can be conditioned on a large amount of acoustic context.
This potentially gives neural-net based systems an edge in modeling coarticulatory

effects.

2. The training procedure directly maximizes P(wla) in a discriminative way. This
is in contrast to maximum likelihood based methods which maximize P(ajw) as a

surrogate.

3. No assumptions of conditional independence between different acoustic features are

required.

Recurrent NNs

RTR-NNs provide another way of estimating P(q|a). Again, the main potential
benefit is in modeling acoustic and articulatory context. Here, however, it is not necessary to
provide the context explicitly with each frame. Since the network has a long-term memory
of its own, it can implicitly keep track of important previously seen features. Descriptions
of these types of systems can be found in (Robinson & Fallside 1991; Robinson & Fallside
1988).

5.2.3 Kalman Filters

As we have seen, Kalman filters are ideally suited to tracking the motion of an
object in a multidimensional space. To adapt the methodology to speech recognition, one
can simply treat the acoustic feature-vector as an object, and track its trajectory through
acoustic-feature space. In order to model subword phonetic units, the idea is to create a
separate Kalman filter for each unit, and tune it so that trajectories that are typical of the

phone receive a high probability according to the model.

If hand-segmented utterances are available, then the procedure is relatively simple:
each phone model can be trained on acoustic trajectories known to be associated with
it. Otherwise, a two-stage procedure is necessary in which the current phone models are
used to generate a segmentation, and then the model parameters are retrained using this
partitioning. Note the similarity to the procedures used for neural nets; the only difference

is that phone probabilities are estimated using a Kalman filter rather than a neural net.

CHAPTER 5. SPEECH RECOGNITION 96

Acoustics
Kaman Filter o -
for Phone 1 P(Phone 1 | Acoustics)
Normalizing Information
Kaman Filter _
for Phone 2 P(Phone 2 | Acoustics)
Kaman Filter _
for PhoneN P(Phone N | Acoustics)

Figure 5.5: A Kalman filtering approach to ASR, loosely adapted from Anderson and Moore,
1979. The probability of a phone ¢; at time ¢ is recursively calculated from the acoustic
Ploekn L) Plade) - g ghe

N — —
Z]=1 P(at|a§ 17‘1J)P(q]|a§ 1)

input a;, and all prior acoustic input, a!™* by P(g|a}) =

required quantities are readily available.

Figure 5.5 illustrates the way that phone probabilities are computed from the acoustic input.

Somewhat different schemes have actually been tested. In (Digalakis et al. 1993),
a procedure for normalizing segment lengths is used in conjunction with Kalman filtering
to model phonemes from pre-segmented data; the authors report good results. In (Kenny
et al. 1990), an approach is used in which the hidden state is related to the observation
vector by the identity matrix, and several frames of the past are used to predict the present.
The authors applied their scheme to connected word recognition, and report that their best

results came from a more conventional HMM.

CHAPTER 5. SPEECH RECOGNITION 97

5.3 Outstanding Problems

In the preceding sections, we have reviewed several standard techniques for ASR.
Although they all perform well in many circumstances, there are some generally accepted
problems (Rabiner & Juang 1993; Deller et al. 1993; Young 1996; Makhoul & Schwartz
1995):

e Coarticulation. This can be handled with biphones, triphones, diphones, syllables, or

word-dependent phone models, but there are associated problems:

1. None of these methods pays attention to the specifics of an actual utterance. In
other words, they all embody a-priori information that can be stated without ref-
erence to any specific acoustic observations. Hence, they miss utterance-specific

cues.

2. There is a large increase in the number of parameters, and complex estimation

techniques must be used.

e Sensitivity to speaking style. The expected pronunciations and acoustics of words are
affected both by dynamic factors as speaking rate, and static factors such as gender,

age, and accent.

e Sensitivity to the acoustic environment. Current systems can be catastrophically
affected by even mildly noisy conditions, for example soft background music or room

reverberation.

Much current research in ASR focuses on ways of overcoming these problems, and the

following chapter will address the issues with DBNs.

98

Chapter 6

Speech Recognition with DBNs

This chapter describes the use of dynamic Bayesian networks in speech recognition,
and shows how they can be structured to address the outstanding problems outlined in the
previous chapter. Although many papers, e.g. (Smyth et al. 1996; Ghahramani & Jordan
1995) have mentioned the possibility, the details of implementing a working system have
not been previously addressed. In order to apply DBNs to ASR, it is necessary to develop
a technique for combining subword phonetic models into whole word and multiple-word
models, and the chapter begins by describing the process of model composition with DBNs.
This is done in such a way as to allow for parameter tying between multiple occurrences of
the same phone model, efficient computation, and the generality of word models structured
like arbitrary directed graphs. After describing the basic technology required for ASR with

DBNs, the chapter continues with a description of several important DBN structures.

6.1 Model Composition with DBNs

6.1.1 Motivation

We have seen that standard approaches to speech recognition concatenate smaller
models into larger ones: sub-phonemic units into phonemes, phonemes into words, and
words into sentence structures. This procedure is by no means exclusive to speech recogni-
tion; many other temporal processes evolve through a series of distinct stages, each of which

is best represented by a separate model. For example, the process of writing a word can

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 99

be decomposed into the sequential formation of its letters. Television broadcasting can be
decomposed into programming and advertising segments, and driving can be decomposed
into sequences of lane-changing, accelerating, braking, and similar maneuvers. When mod-
eling these processes, it is convenient to create submodels for each stage, and to model the
entire process as a composition of these atomic parts. By factoring a complex model into a
combination of simpler ones, composition achieves a combinatorial reduction in the number

of models that need to be learned.

Model composition raises two crucial but independent issues. The first is the spec-
ification of legal submodel sequences. In this chapter, we consider the use of stochastic
finite-state automata (SFSAs) to describe a probability distribution over possible submodel
sequences. This is a fairly standard choice in areas such as speech and handwriting recog-
nition. The second issue is submodel representation, for which we use Bayesian networks to

specify the behavior of each submodel.

6.1.2 Encoding an SFSA with a DBN
Why Model Composition with DBNs is Difficult

The difficulty in concatenating DBN models is best illustrated with an example.
Suppose the word “no” is uttered, and there are separate models for the phonemes /n/
and /ow/. The top of Figure 6.1 shows the simplest possible such submodels. There is
a hidden state variable representing articulator positions, and a variable representing the
sound observed at each point in time. The state CPTs specify articulator dynamics, and
the observation CPTs link the articulator positions to the sounds made. Each submodel

can be duplicated for an arbitrary number of timesteps.

Now consider constructing a composite model for a specific fixed-length utterance
of the word “no.” This is shown at the bottom of Figure 6.1. A naive concatenation
of the two models would have to explicitly partition the model into a fixed-length /n/
prefix followed by a fixed-length /ow/ suffix. In practice, however, such segmentations are
unavailable. Therefore, when doing inference or learning, all reasonable partitionings of
an observation sequence between the models must be considered, and possibly weighted
according to some distribution. Since the number of partitionings grows exponentially with

the number of submodels, this is a demanding task that must be solved in an efficient way.

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 100

articulator motion for /n/ articulator motion for /ow/
= =
I—H% articulator state
\ \ acoustic observations
acoustic emission model acoustic emission model

/ which articulator model ?

articulator state
Complete ‘no’ model

acoustic observations

Figure 6.1: Concatenating submodels. Naive submodel concatenation requires specifying
which state-evolution model to use at each point in time.

In the following sections we show how to construct a DBN that represents the distribution

over partitionings specified by an arbitrary SFSA.

Encoding an SFSA

This work was first presented in (Zweig & Russell 1997). Consider the SFSA
shown at the top of Figure 6.2. The nodes in this diagram represent states, and there are
transition probabilities associated with the arcs. The initial and final states are shaded. We
interpret the initial state to represent the history of the system prior to the first point in
time that has an observation associated with it. The final state represents the future of the
system after the last point for which there is an observation. The states in the automaton
of relevance to the observation sequence are the unshaded nodes in Figure 6.2. We refer
to the initial state as sy, to the final state as sp, and to an arbitrary state ¢ as s;. The

probability of a transition from state s, to state sy is denoted by P; s, .

The probability of a length k path sysy...s; through the automaton is given
by Ps, s, Psys, - - ‘PSk—lsk P, s... The DBN at the bottom of Figure 6.2 represents paths of
length k& through this structure in a somewhat different way. Each state variable in the
DBN represents the position in the SFSA at a specific time. The DBN state variables
M?' ... MP* have a distinct value for each state in the automaton, and there is a one-to-one

mapping between paths of length k£ through the automaton and assignments of values to the

variables in the DBN. So, for example, the path 1,3,4,4,7 through the SFSA corresponds

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 101

(13 6
initil state g \/55 pEg \Q Final state
2 7
EOCS

End-of-sequence observation
Stochastic transition variables

{J @),) Deterministic state variables

ML M2 MK

Figure 6.2: An SFSA and a DBN network representation for fixed-length observation se-
quences. Note that in the automaton the arcs represent transition probabilities while in
the Bayesian network they represent conditional independence relations. The initial and
final states of the SFSA are shaded. The shaded node in the DBN represents an artificial
observation; the CPT of this variable will encode the length of the observation sequence.

to the assignments M' =1, M? =3, M> =4, M* =4, M> = 7.

The DBN transition variable encodes which arc is taken out of the SFSA state
at any particular time. The number of values the transition variable can take is equal to
the maximum outdegree of any of the states in the SFSA. The probability distribution over
transition values is determined by the state value at that point in time, and will be used
to encode the appropriate transition probabilities. For all the time slices after the first,
the probability distribution over states at time ¢ + 1 is simply a deterministic function of
the state and transition variable values at time ¢; it encodes the fact that if we know the
SFSA state at time ¢, and the SFSA arc taken at that time, then we know the SFSA state
at time ¢t + 1. The probability distribution over state values in the first time-slice is non-
deterministic, and reflects the distribution over successors to the SFSA initial state. The
shaded DBN node represents a binary-valued variable whose value is always observed to be
1. The CPT of this “end-of-sequence observation” will encode the fact that the observation

sequence is k steps long.

The transition probabilities associated with the arcs in the automaton are reflected
in the CPTs associated with the transition variables in the DBN. Denote the transition

variable at time ¢ by T°. We will denote the index of the arc leading from state s, to state

S

sp by air, e.g. if the second arc out of s, leads to s, then agh = 2. If the probability of

Sg7

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 102

transitioning from state s, to state s, in the automaton is Pss,, then P(T! = a§Z|Mt =
54) = Py, in the CPT associated with T!. Note that this relation does not depend on ¢,

and therefore a single CPT can be shared by all instances of the transition variable. The
same is true for state variables from M? on. Assignments to transition variables that do
not correspond to any arc, i.e. those whose value exceeds the state’s outdegree, receive 0
probability.

All paths through the SFSA must start in one of the successors of the initial
state sy, and end with a transition to the final state sp. Suppose the SFSA states are
numbered 1...n, exclusive of the initial and final states. By setting the prior distribution
on M' to P(M' = s;) = Py, the constraint on initial states is satisfied. By setting the
conditional probability on the end-of-sequence observation EOS to P(EOS = 1|M* = 84 €
predecessors(sp), T* = a;7) = 1, and P(EOS = |M* = s, ¢ predecessors(sp)) = 0,
we ensure that any assignment of values to the variables which does not terminate with a
transition to the final state is assigned a probability of 0. Note that sy has a selfloop; we
define predecessors(sg) to exclude sg itself. This will ensure that 0 probability is assigned
to DBN variable assignments that end by cycling in sp. We summarize with the following

Theorem.

Theorem 6.1 Fvery assignment of values to the variables in the DBN either:

1. corresponds to a legal path through the SFSA and is assigned a probability equal to the
probability of the path in the SFSA, or

2. corresponds to an illegal path in the SFSA and is assigned a probability of 0.

Proof. Let the DBN consist of k& time-slices. First assume the assignment corresponds to

an illegal path. It must be illegal because one or more of the following are true:

L. M =s,, s, ¢ successors(sy).

2. There is an assignment M*® = s,, M*t! = s, for which there is no transition arc in

the SFSA.

3. M* =s,, s, ¢ predecessors(sp).

4. M* = s,, s, € predecessors(sp), T # azt.

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 103

These cases will be assigned 0 probability because by construction
1. P(M"' = s, ¢ successors(sr)) = 0.
2. P(T' = k|M' = s,) =0, k > outdegree(s,).

3. P(EOS = 1|M* = s, ¢ predecessors(sp)) = 0.

4. P(EOS = 1|MF = s, T" # a3F') = 0.

Now assume the assignment of values corresponds to a legal path. Let the path
be s159...5,_15;. The assignment to the Bayesian network variables is:

MY = s, T' = a®

51°

2 k-1 k-1 k k
M* =5y, ..., M" " =spq, T"7" =af_ M"=s;,T" = agl.

The probability assigned by the DBN has the factors:
]3(]\41 = 51) =]351517 P(T1 = agﬂMl = 81) = P5152,. R
P(Tk—l = a§2_1|Mk_1 = Sk—l) =Py sy P(Tk = ang|Mk = Sk) = Pysp

and all other factors are 1. The probability assigned by the SFSA is the product of exactly

the same factors, and is therefore identical.

Although it is possible to encode the same information without using transition
variables - in CPTs associated with stochastic state variables - the use of an explicit transi-
tion variable is usually much more efficient. This is because not all transitions are possible
in the SFSA. and the combination of explicit transition variables with deterministic state
variables compactly encodes the possibilities. This is particularly true when the maximum

outdegree is small compared to the number of states.

Model Composition

Figure 6.3 illustrates the most general way in which model composition is achieved.
The submodel-index variable specifies which submodel to use at each point in time. There
is also a transition variable, as in the previous section; together we call these variables the
control layer. The constraints on legal sequences of submodels are encoded in the CPTs of
this layer, as described previously. The submodel state layer represents the hidden variables
in the DBN submodels. By conditioning the submodel state variables on the submodel-index

variable in the control layer, the desired switching behavior between models is achieved.

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 104

end-of-sequence observation

control layer:
Q @ @, @ submodel -index variable
\Q/ \O% \Qf \@% transition variable
O O O O O submodel state layer

@) @) @) @) @) observation layer

Figure 6.3: A DBN structured for model composition. The submodel-index variable specifies
which submodel to use at each point in time.

This result can be stated somewhat more precisely as follows. Let y! denote an
assignment of values to the submodel observation and state variables at time ¢, and let m®
denote an assignment of a value to the submodel index variable at time ¢. The combination
of a SFSA together with a set of DBN submodels specifies a probability distribution over
sequences of y values: the probability of a particular sequence of y values is given by the
weighted sum over all possible submodel sequences of the probability that each submodel

sequence generates the given sequence of y values:

mi...MmMg

By the Markov property of both the SFSA and the DBN submodels, we then have

P(y'...yF) = > P! .mF)Py mhP(yllyt,m?) - Py ly" T mb)

mi...MmMg

The first factor in each term corresponds to the probability of a particular path
through the SFSA and is determined by the CPTs of the control layer. The remaining
factors correspond to the probability of the specified behavior of the submodel variables,
conditioned on the submodel sequence. These factors are determined by the CPTs of the

submodel state and observation layers.

Parameter Tying

In many situations, it is convenient to require that the transition behavior of two

different states be the same, but for some reason the two states are not identical, and

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 105

1 +2) 3 State variable
@ Transition variable
Transition equivalence-set

Figure 6.4: Mapping states into equivalence sets with respect to transition probabilities.
The variables are labeled with one possible assignment of values. States 1 and 3 both map
into the same transition equivalence set.

State variable
/ \ /@/& Transition variable

Acoustic equival ence-set Transm on equival ence-set

Figure 6.5: Mapping states into multiple equivalence classes. There is a transition equiva-
lence class, and an acoustic one. The states behave differently with respect to the two.

must be distinguished. Essentially, we wish to group the states into equivalence sets based
on their transition behavior, and tie the transition parameters of all the members of an
equivalence set. It is straightforward to deal with this requirement in a DBN by adding
another variable that represents the equivalence class to which a particular state belongs.
The approach is illustrated in Figure 6.4. The value of the state variable maps into a
particular equivalence set, and this is explicitly represented by the value of the equivalence
set variable. The probability distribution over actual transition values is conditioned on the

value of this equivalence set, rather than on the value of the state directly.

This approach can be extended to situations in which there are several important
qualities associated with each state, and each state maps into a separate equivalence set with
respect to each of these properties. For example, in speech recognition we wish to associate
a durational distribution with a state, which is a function of its transition probabilities, and
a distribution over acoustic emissions. A structure that allows for arbitrary parameter tying

with respect to these two qualities is shown in Figure 6.5. In the remainder of our work,

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 106

1 S 2) 3 State variable

@ Transition variable

Equivalence-set
(Phone)

Figure 6.6: The control structure used in this work. A state maps into a phone label, and
this value will determine both durational and acoustic properties.

however, we will assume that states belong to the same equivalence sets with respect to both
acoustic and durational qualities. More specifically, the states correspond to phones, and we
assume that all the occurrences of a particular phone behave the same with respect to both
durational and acoustic qualities. This leads to the control structure used in subsequent

experiments, which is shown in Figure 6.6.

This approach to parameter tying is significantly different from that used in HM Ms.
Parameter tying in an HMM system occurs somewhere in the implementation, in an imper-
ative manner. In the DBN framework, it is achieved by manipulating the same represen-
tational units (variables and conditional probabilities) that are used to express every other

concept.

Null States and Language Models

The SFSAs we have been dealing with have dummy initial and final states; the
most straightforward way of concatenating SFSA models is to connect the final state of one
to the initial states of its possible successors. This is useful in speech recognition when the
SFSAs represent pronunciation models for individual words, and a multi-word utterance
must be processed. A simple bigram language model results from connecting the final state
of each word to the initial state of every other word, and setting the transition probability

to the fraction of the time the second word follows the first.

Note that no observations are associated with SFSA initial and final states. When
modeling concatenated SFSA models with DBNSs, it is necessary to “skip over” the dummy

states. This can be done with a DBN structured as in Figure 6.7. Dummy state skipping is

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 107

O TR

S1 \@ @ 1 () State Variables

@ @ @ 3 Transition Variables

Rest of Network

Figure 6.7: Modeling null states with a DBN. At the top is a portion of two concatenated
SFSAs, showing the final state of one connected to the initial state of the next. At the
bottom is a DBN with two auxiliary state and transition variables per timeslice. These
allow the null states to be skipped. The state and transition variables from a single timeslice
are boxed with the dashed line.

accomplished by associating three state and transition variables with each frame ¢. (Denote
these by S}, 52, 92, TH T2 T?.) Only the first state variable is linked to the observations.
T} indicates the arc out of S}, and the combination of these variables determines S? as
before. If S? is a normal state, T takes the arbitrary value 1, and S? copies 5%. Otherwise,
5% is a null state, and T? assumes a value according to the distribution over arcs out of that
state (which reflects the bigram probabilities), and S? is determined stochastically. The

process repeats again with 57 and T to determine the value of S}, .

A more complicated SFSA structured to represent a trigram language model is
shown in Figure 6.8. In this case, the DBN scheme must be extended to accommodate

three dummy states in a row.

A Complete Speech Model

Figure 6.9 illustrates an example of a DBN that is structured for model composition
in speech recognition in such a way as to be equivalent to a standard HMM. For clarity,
we explicitly distinguish between CPTs that encode deterministic relationships and those
which encode stochastic relationships. Table 6.1 summarizes the properties of each of the

variables.

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 108

Last 2 Current Word
Words

' Deterministic Transitions

@ > Full Word Models

Null-State

Figure 6.8: SFSA structure structured to reflect a trigram language model. The shaded
circles represent dummy states; there is one for each pair of words. The rectangles represent
whole word models (each with its own initial and final state). The total number of boxes
is equal to the cube of the vocabulary size: there is a box for each word preceded by
every possible two-word combination. Since the combination of the last two words with the
current word uniquely determines the two-word context for the next word, the arcs leading
out of the word models have transition probabilities of 1. The trigram probabilities are
associated with the arcs from the dummy states into the word models. To avoid clutter, a
only subset of the possible arcs are drawn.

CHAPTER 6. SPEECH RECOGNITION WITH DBNS

109

End-of-Word Observation

l/@g/@’%@g/@’%@ |

Position
Transition

Phone

Observation

Figure 6.9: A DBN representation of a simple HMM. Nodes with fixed CPTs are fixed on

a per-example basis.

Node Type Deterministic CPTs | Example-Specific CPTs | Learned CPTs
Transition N N Y
Position Y Y N
Phoneme Y Y N
Acoustic Obs. N N Y

Table 6.1: The properties of the different variables. In this work, we use a chain-structured
pronunciation model, so the value of the initial state is uniquely determined. This allows

all occurrences of the index variable to be deterministic.

are adjusted on an utterance-by-utterance basis.

The CPTs that are not learned

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 110

6.1.3 Discussion: Write Networks not Code?

Essentially, what we have done in this chapter is to encode a dynamic program-
ming algorithm into a network structure and its associated conditional probabilities. In the
process of executing the standard procedures for probabilistic inference, the Bayesian net-
work implicitly executes the desired program. This is extremely different from conventional
approaches, where special purpose code is written for every occasion. It also sheds light on
the importance of efficiently processing deterministic relationships between variables: since
we are encoding a deterministic program, it is not surprising that deterministic variables

play a central role.

Since a one-to-one correspondence could theoretically be made between the vari-
ables in a DBN and the circuits in a computer, there is apparently no limit on the kinds
of behaviors that can be induced. Although expressive obscurity and computational ineffi-
ciency make it undesirable to exercise this capability, it can be extremely useful for limited

tasks.

6.2 Model Structures for ASR

We now turn to the specific network structures required to address the problems
mentioned in Chapter 5. Because DBNs can track arbitrary sets of variables, they are an

ideal tool for creating precise models of the various phenomena.

6.2.1 Articulatory Modeling

Figure 6.10 illustrates a DBN structure that can explicitly model articulatory
motion. It is the same as that in Figure 6.9, except that the connection from phone to
observation is mediated by articulatory variables. The CPTs associated with the articulator
variables describe both linguistic knowledge about the target positions of the articulators for
the various phonetic units, and additionally the basic physics of the vocal apparatus; these
CPTs explicitly model the way in which the constraints imposed by this physical model
(e.g. inertia) modulate the target positions. The CPTs associated with the observation
variables describe the sounds generated by particular physical configurations of the vocal

apparatus. The precise topology and initial parameter estimates for these connections

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 111

Position

Transition
Phone

Articulators. Tongue, Lips

Acoustic Observation

Figure 6.10: An articulatory DBN structured for speech recognition. The tongue moves
from the alveolar ridge to the back of the mouth; the lips move from an unrounded to a
rounded configuration. The properties of each node are shown to the right.

embody a phonological theory.

Enforcing Model Semantics

It is one thing to define a model that has the capability to track articulatory mo-
tion, and another to ensure that after “training” the variables will actually have the desired

meaning. There are several ways that the correct model semantics can be encouraged:

1. Train with data in which articulatory positions are available from actual measure-
ments. These sorts of measurements can be made using magnetic coils (Hogden et al.

1996), X-rays (Papcun et al. 1992), or radar (Holzrichter et al. 1996).

2. Initialize the network parameters to reflect prior linguistic knowledge. For example,

Figure 6.11 relates the position of the tongue to the different vowel sounds.

3. Use Dirichlet priors to encode prior linguistic knowledge. This is discussed more fully

below.

Ideally, articulatory models should be trained with known articulator positions;
this is the only way of guaranteeing that the trained model will accurately reflect the artic-
ulators. Note that even if articulatory data is only available during training, and not during

testing, a benefit can still be expected, because of more accurate parameter estimation. In

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 112

High
Iy ER uw
IH AX UH
EY
AH ow
EH
AO
AE AA
Low
Front Back

Figure 6.11: Tongue position for different vowels, adapted from Deller et al., 1993.

practice, the standard speech recognition databases do not have this information, and the

use of Dirichlet priors (Heckerman 1995) is probably the next best approach.

Recall from Section 3.8.2 that parameter estimation is done is by counting the
number of times an event of interest occurs, and estimating the count if necessary. For
example, the conditional probability of a voicing variable having the value 1 (true) given
that the speaker is in the state of pronouncing /ER/ would be estimated by counting the
number of speech frames in which both assertions are true, and dividing by the total number
of frames labeled /ER/. The concept of Dirichlet priors is simply to augment the actual
counts with fictitious counts. So, for example, to reflect the prior knowledge that /ER/ is
voiced, the tally of speech frames that are simultaneously labeled /ER/ and “voiced” might
be initialized to 10,000 rather than 0. The magnitude of the fictitious counts (in relation to

the actual counts) determines the confidence with which the prior information is expressed.

Articulatory HMMs: A Comparison

There has been significant previous work incorporating articulatory models into
HMMs (Deng & Erler 1992; Erler & Deng 1993; Deng & Sun 1994; Erler & Freeman 1996;
Deng 1996), and a comparison with the DBN approach highlights many of the advantages
of DBNs. Starting in the early 1990s, Deng and Erler have explored HMM extensions

that explicitly model articulator motion. The basic approach is simple to explain. First,

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 113

a deterministic mapping between phonetic units and articulator positions is established.
Typically, the positions of five articulators are used. Each articulator is assumed to be in
one of a discrete number of positions. The overall state of the system is thus defined by
the cross-product of values assigned to the articulators. An HMM-state space is defined in

which there is a distinct state for each possible articulatory configuration.

When a training word is presented (or a recognition word-hypothesis evaluated)
the phonetic transcription of the word is mapped into a sequence of articulatory targets, one
for each phoneme in the transcription. This defines a set of legal paths through the HMM
grid. Then a series of phonological rules is applied to expand the set of legal paths through
the grid. This expansion can express coarticulatory effects by modifying the expected target
positions in a context-dependent way. Once the final set of legal paths is identified, training

or recognition can proceed with standard techniques.

The DBN approach differs in the following important ways:

1. It is a particular instantiation of a general-purpose tool. Hence it is easy to modify

to address other phenomena.

2. There is a stochastic - not deterministic - mapping between phonetic units and artic-

ulator targets.
3. This mapping can be learned, and need not be hand-coded.

4. The rules governing acceptable articulator motion are stochastic rather than deter-
ministic.

5. The conditional probabilities governing articulator motion can be learned.

6. Prior knowledge is expressed with statistical priors, rather than rules.

7. The system represents a uniform application of statistical pattern recognition, rather

than a combination of hand-coded rules with probabilistic inference.

6.2.2 Modeling Speaking Style

Speaker-Type

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 114

<) Position

Transition

Phone
~(s) s

@ Type of Speaker
\& &uther}eﬁ\&

Acoustic Observations

Figure 6.12: A DBN structured to model speaker-type.

Figure 6.12 illustrates the way in which a DBN can be structured to model speaker
characteristics. It is the same as the basic HMM-DBN, except that there is now an auxiliary
variable representing speaker-type in each timeslice. This variable might represent, for
example, whether the speaker is male or female, or the speaker’s accent. Since there are
more than one important characteristics, it may be beneficial to use more than one auxiliary

variable.

The characteristics of a speaker do not change over time, and this fact can be
encoded in the auxiliary variable by making the first occurrence of this variable stochastic,
and all subsequent occurrences deterministic. The variable in the first timeslice encodes
a prior over types of speaker, and the later occurrences simply “copy” the value. This is
analogous to having multiple HMMs and choosing between them according to some prior,

except that there is only one DBN.

A network such as that of Figure 6.12 can be trained in either a supervised or
unsupervised manner. Supervised training consists of training the network using utterances
labeled with the speaker’s type; in this case, the auxiliary variable is an observation variable
for the purposes of training, and hidden during testing. Supervised training ensures that
the auxiliary variable has a well-defined meaning. In unsupervised training, the auxiliary
variable is hidden during both training and testing; in this case, the network learns to group
utterances together into clusters automatically. The utterances in a particular cluster will
tend to have commonalities that are based on more than one concept, for example a mixture

of gender and accent. Results for unsupervised training are presented in section 7.8.

Speaking-Rate

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 115

Position

Transition

Phone

Rate of speech
Fast

Acoustic Observations

Figure 6.13: A DBN structured to model speaking-rate.

Figure 6.13 illustrates a simple way in which speaking rate can be modeled with
a DBN. The auxiliary variable in this case represents the speaker’s speaking rate, and the
transition variables are conditioned on it. The intention is that when the speaker is talking
quickly, transitions will be more likely. In recent work, (Morgan & Fosler-Lussier 1998),
reliable procedures for estimating speaking rate directly from acoustic observations have
been developed. If these measures are available, they can be incorporated into the network

as shown in Figure 6.14.

It is also known that rate-of-speech has a more complex effect than simply chang-
ing transition probabilities. In (Fosler-Lussier & Morgan 1998), it is shown that, for a
given word, the expected sequence of phonemes changes with speaking rate. Moreover,
(Mirghafori et al. 1995; Siegler & Stern 1995) shows that the expected acoustics of a given
phoneme vary with speaking rate. The first of these effects can be handled by representing
word pronunciations with a more elaborate SFSA in which the possible insertions, dele-
tions, and substitutions are explicitly represented. By conditioning the transition variable
on the rate-of-speech estimator, the probability of these modifications can be appropriately
adjusted. The second of these effects can be addressed by conditioning the observations on

the rate variable.

6.2.3 Noise Modeling

Explicit noise models can be constructed with DBNs, in a manner similar to that
presented in (Varga & Moore 1990; Gales & Young 1992) in the context of HMMS. This is

illustrated in Figure 6.15. In its original formulation, scheme consists of three basic parts:

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 116

Position

Transition

Phone

Rate of speech

Acoustic Observations

Figure 6.14: A DBN structured to model speaking-rate, with observations that are highly
correlated with rate.

1. An HMM to model speech.
2. An HMM to model noise.

3. A model of how speech and noise sounds combine into the sound that is actually

heard.

In (Varga & Moore 1990; Gales & Young 1992), the two HMM models are trained sepa-
rately on examples of pure speech and pure noise, and the model for sound combination is
analytical. The DBN model shown in Figure 6.15 can be used in the same way, or it can

be trained on a single noisy observation stream.

6.2.4 Perceptual and Combined Models

As a final example of the versatility of the DBN approach, Figure 6.16 shows a
model that combines generative and perceptual aspects. The distinguishing feature of this
model is that it maintains a representation of both the speaker’s intention and the listener’s
perception, and encourages them to coincide. For clarity, the index, transition, and phone
variables for both the speaker and the listener are combined into a single state variable
for each person. The generative part of the model consists of the speaker’s phonetic state
affecting his articulators and causing sound production. The perceptual part of the model
consists of the sound affecting the listener’s perceptual apparatus and causing a sequence
of phones to be recognized. The speaker’s intention and the listener’s perception are linked

through a consistency observation which has a constant value and is used to encode the

CHAPTER 6. SPEECH RECOGNITION WITH DBNS

117

~

Position
Transition

Phone

Pure Utterance

Actual Observation

Pure Noise

Noise Model

Figure 6.15: A DBN structured to model speech in a noisy environment.

@)

O——0O0—=0

O——0O0—=0

O——0O0—=0

@)

O\

i

OO

® ®
e e

N
N

T
[

Hearer’'s Phonetic State

Hearer’'s Perceptual State

Acoustic Observations

Consistency Observation

Speaker’'s Phonetic State
Hearer’'s Phonetic State

Perceptua Apparatus
Generative Apparatus

Acoustic Observations

Figure 6.16: A perceptually-structured DBN (top), and a combined perceptual-generative
model. For clarity, the index, transition, and phone variables are simply represented by a
“phonetic state” variable.

CHAPTER 6. SPEECH RECOGNITION WITH DBNS 118

fact that intention and perception ought to be identical. This can be done in a rigid way
by setting the conditional probability of the observed consistency value given its two inputs
to 0 in the case of inconsistency. A more flexible model of mistakes can also be encoded
by using a less extreme probability distribution for readily confusable phones. Finally, it is

worth noting that a consistency model can also be learned, rather than hard-coded.

6.3 Discussion

In the preceding sections, we have seen that DBNs can be adapted to address the
requirements of automatic speech recognition, and that they can model many of the impor-
tant factors affecting the speech recognition process. We conclude with a brief summary of

the advantages:

e Arbitrary sets of variables can be associated with each timeslice. This enables a highly

expressive representational framework.

e There are efficient, general-purpose algorithms for doing inference, and no special-
purpose algorithms need be derived for handling extensions to HMMs such as articu-

lator models.

e Sharing variables between submodels leads to a natural way of describing transitional

behavior, which is important for modeling coarticulation.

e Statistical efficiency. DBNs are factored representations of a probability distribution,
and may have exponentially fewer parameters than unfactored representations such
as standard HMMs. Hence these parameters can be estimated more accurately with

a fixed amount of data (Zweig 1996).

e Computational efficiency. Gains in statistical efficiency are often mirrored computa-

tionally.

119

Chapter 7

Speech Recognition Experiments

This chapter presents experimental results for a fully implemented speech recog-
nition system based on DBNs. Early on, computational limitations forced a choice between
experimenting on a fairly small database of digits or alphabet-letters, with the ability to
test relatively complex network structures, or experimenting on a more challenging database
with simpler network structures. In order to get more meaningful results, we chose the lat-
ter, and selected a large-vocabulary multi-speaker database of isolated words to use as a
testbed. The database is challenging enough that results are significant (unlike databases
of digits or a few command words), yet because it has isolated words, it avoids many issues
that complicate any continuous-speech ASR system. In short, the database is just complex
enough to test some basic issues relating to the use of factored state representations in ASR.

Some of the results presented in this chapter appeared in (Zweig & Russell 1998).

7.1 Database

This chapter presents results for the Phonebook database (Pitrelli et al. 1995).
Despite its name, the database does not contain entries from a phonebook; instead, it
consists of a collection of words chosen to exhibit all the coarticulatory effects found in the
English language. Researchers at NYNEX compiled the list of words, and then contracted
with an outside organization to obtain actual utterances. These were collected over the
telephone, and thus contain a variety of transmission distortions. The database is divided

into subsets, and the words in one of these subsets are reproduced in Table 7.1.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 120
achieved apex arsenic ashtray ashwell
awe barleycorn beeswax belgium biff
bloodletting boyish breathes broadview cashways
chadwick cheesecloth colorfast compromise | confession
cowling craigs disrespectful | echoes egghead
exhaustion festival formalization | grisly handlooms
haymarket highman humdinger humphreys | immobilizing
impolite indictments inscribe instincts ivy
lavender lawmakers majorities masks mckane
mutually mysteriously | nonstandard | noose nothingness
overambitious | penguins perm plowing porch
postmark rustle salesmen sluggishness | soggy
sorceress spokeswoman | staying subgroups sulfuric
swordcraft theory undeterred unleashes unnatural
vulgarity watchful windowless windshield | youngman

Table 7.1: Typical words in the Phonebook database.

Word utterances were collected from a group of American speakers who were “bal-
anced for gender, and demographically representative of geographic location, ..., income, age
(over 18 years), education, and socio-economic status.” (Pitrelli et al. 1995) Each speaker
was asked to read 75 or 76 words, and the utterances were then screened for acceptable

pronunciation; therefore, there are somewhat fewer than 75 words per speaker on average.

7.2 Acoustic Processing

The utterances were processed with relatively conventional acoustic processing
along the lines presented in Section 5.1.1. Initial and final silence was removed using the
endpoints provided with the database. Then the utterances were divided into 25ms windows

and MFCCs were calculated. The analysis windows overlapped by 2/3.

Smoothed MFCC derivatives (Rabiner & Juang 1993) were computed, and three
data streams were created: one for the MFCCs, one for the derivatives, and one for the
combination of Cy and delta-Cy (which were omitted from the first two streams). Mean
cepstral-subtraction (Mammone et al. 1996) was performed for cepstral coefficients C1—Cho,
and speaker normalization (Lee 1989) was done for Cy. The first process removes the effects

of telephone transmission characteristics, and the second subtracts the maximum Cy value

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 121

in an utterance from each frame, in order to make the values comparable across speakers.

The data streams were vector-quantized to eight bits (256 values). The MFCCs
and delta-MFCCs were quantized in separate codebooks. (g and delta-Cy were quantized

to four bits each, and then concatenated to form a single eight-bit stream.

7.3 Phonetic Alphabets

Results are presented for DBN models using both context-independent and context-
dependent phonetic units. The Phonebook database provides phoneme-level transcriptions,
and these formed the basis of both kinds of alphabet. To keep the number of parameters
reasonable, and in common with other work (Dupont et al. 1997), we did not use the 3-way
stress distinction for vowels. Additionally, occurrences of /N/, were replaced by /n/; /N/
occurs only 24 times in the database, and is not on the official list of phonemes (Pitrelli
et al. 1995). The phoneme /L/ is on the official list, but never occurs in the data. The size
of the basic phoneme alphabet was thus 41. Two additional phonetic units were used to

represent initial and final silence.

7.3.1 Context Independent Alphabet

In the case of context-independent units, i.e. simple phonemes, each phoneme was
replaced by a k-state left-to-right phone model. Most of the experiments report results
for 4-state phone models; these have an initial and final state, and two interior states.
Experimentation shows this to be a good number. In all cases, one-state models were used

to represent silence.

7.3.2 Context Dependent Alphabet

To create a context-dependent alphabet, we used a variation on diphones (Schwartz
et al. 1980). The basic idea is to create two new units for each phoneme in a transcription:
one for the initial part of the phoneme in the left-context of the preceding phoneme, and
one for the final part of the phoneme in the right-context of the following phoneme. Thus,

for example, /k ae t/ becomes

(sil k)(k ae)(k ae)(ae t)(ae t)(t sil).

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 122

This scheme has the advantage of addressing both left and right contexts, like triphones,

while only squaring - rather than cubing - the number of potential phonetic units.

To prevent overtraining, a context-dependent unit was used only if it occurred
a threshold number of times in the training data. Units that did not meet this criterion
were replaced with context-independent units. We used thresholds of 250 and 125, which
resulted in alphabets with sizes of 336 and 666 respectively, including a full set of context-

independent units.

We found it beneficial to double the occurrence of each of the units in a context
dependent transcription. Thus, the total number of phones is four times the original number
of phonemes, the same number that results from four-state context-independent phoneme
models. Repeating phonetic units has the effect of changing the minimum and expected

state durations.

It is important to realize that context as expressed in a context-dependent alphabet
is significantly different from that represented by a hidden context variable in a DBN.
Context of the kind expressed in a context-dependent alphabet is based on an idealized and
invariant pronunciation template; a word model based on context-dependent phones can be
written down before ever seeing a sound wave, and therefore represents a-priori knowledge.

The context-variable represents context as manifested in a specific utterance.

7.4 Experimental Procedure

7.4.1 Training, Tuning, and Testing

The database was divided into separate portions for training, tuning, and testing.
All decisions concerning network structures and alphabets were made by training a system
on the training data, and testing it on the tuning data. Decisions were not made on the

basis of performance on the actual test data.

The training data consisted of the utterances found in the *a, *h, *m, *q, and
*t subdirectories of the Phonebook distribution; the tuning utterances were from the *o
and *y directories, and the test utterances from the *d and *r directories. This is the same
partitioning used in (Dupont et al. 1997). This resulted in 19,421 training utterances, 7,291

tuning utterances and 6, 598 test utterances, with no overlap between the speakers or words

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 123

Phone

Or- Or- Context

Observations
Articulator Chain

Phone

Context

Observations

PD-Correlation Correlation

Figure 7.1: The acoustic models for four of the network topologies tested. The index and
transition variables are omitted. The dotted lines indicate conditioning on the previous

frame.

in any of the partitions.

The words in the Phonebook vocabulary are divided into 75 and 76-word groups,
and the recognition task consists of identifying each test word from among the other words

in its subset. Hence, random guessing would result in a recognition rate of under 2%.

7.4.2 Models Tested

A baseline DBN was constructed to emulate an unfactored HMM. DBNs with one

or more auxiliary state variables were then designed to answer the following questions:

1. What is the effect of modeling correlations between observations within a single times-

lice? Specifically,

(a) What is the effect of modeling these correlations in a phone-independent way?
This question was addressed with the “Correlation” network of Figure 7.1. This
network is only capable of modeling intra-frame observation correlations in the

most basic way.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 124

(b) What is the effect of modeling these correlations in a phone-dependent way? This
question was addressed with the phone-dependent “PD-Correlation” network
of Figure 7.1. This network can directly model phone-dependent intra-frame

correlations among the acoustic features.
2. What is the effect of modeling temporal continuity? Specifically,

(a) What is the effect of modeling temporal continuity in the auxiliary chain in a
phone-independent way? This question was addressed with the “Chain” net-
work of Figure 7.1. This network results from the addition of temporal links
to the context variable of the correlation network, and can directly represent
phone-independent temporal correlations. The network was initialized to reflect

continuity in the value of the context variable.

(b) What is the effect of modeling temporal continuity in the auxiliary chain in a
phone-dependent way? This was addressed with the “articulator” network of
Figure 7.1. In this network, the context variable depends on both the phonetic
state and its own past value. This can directly represent phone-dependent artic-
ulatory target positions and inertial constraints. The network was initialized to

reflect voicing.

3. How does the use of a context-dependent alphabet compare to context-modeling with
an auxiliary variable? This was addressed by using a context-dependent alphabet in
a network with no auxiliary variable. Additionally, we tested the combination of a

context-dependent alphabet with a context variable.

4. What is the effect of increasing the number of values in the auxiliary chain, and how
does increasing this number compare to increasing the number of context variables?

This question was answered by making the proposed changes to the chain-network.

5. What is the effect of using an unfactored state representation to represent the same
process? To answer this question, a DBN was used to emulate an HMM with an

unfactored representation.

6. What is the effect of doing unsupervised clustering? This question was answered by

testing the network shown in Figure 6.12.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 125

‘ Network ‘ Parameters ‘ Error Rate ‘
Baseline-HMM | 127k 4.8%
Correlation 254k 3.7%
PD-Correlation | 254k 4.2%

Chain 254k 3.6%
Articulator 255k 3.4%

Table 7.2: Test set word error rate for systems using the basic phoneme alphabet. All the
systems had slightly different numbers of parameters. The standard error is approximately
0.25%. Results from Zweig & Russell, 1998.

7.5 Results with a Single Auxiliary Variable

Answers to the first three questions are presented in this section. Table 7.2 shows
the word-error rates with the basic phoneme alphabet, for the network structures shown in
Figure 7.1. The results for the DBNs with a context variable are consistently better than
without a context variable. A large improvement results simply from modeling within-frame
correlations, but for both the Correlation and the PD-Correlation networks, a further im-
provement results from the addition of temporal-continuity links. The Articulator network

provided the best performance.

In terms of absolute error-rates, these results compare favorably with those re-
ported in (Dupont et al. 1997). That paper reports an error rate of 4.1% for an ANN-HMM
hybrid using the Phonebook transcriptions, and the same training and test sets. Worse
results are reported for a conventional Gaussian-mixture HMM system. However, with
phonetic transcriptions based on the CMU dictionary, (Dupont et al. 1997) achieved signif-
icantly improved results. Comparison with this work provides a useful check on the overall
recognition rate, but it should be remembered that a vector-quantized system is being

compared with a continuous-observation system. Thus differences are difficult to interpret.

7.5.1 Context Dependent Alphabet

Error rates with the context-dependent alphabets are reported in Table 7.3. These
results improve significantly on the context-independent results, and (as expected) confirm
the benefits of using a context-dependent alphabet. As discussed previously, context as

represented in an alphabet is different from context as represented in a DBN with a context

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 126

‘ Network ‘ Parameters ‘ Error Rate ‘
CDA-HMM 257k 3.2%
CDA-Articulator | 515k 2.7%
CDA-HMM 510k 3.1%

Table 7.3: Test set word error rates for systems using context dependent alphabets. The
first two results use an alphabet with 336 units, and the last result uses an alphabet with
666 units. The standard error is approximately 0.20%. Results from Zweig & Russell, 1998.

Phone
,
N >_ - Context
7N
N Context
Observations

Figure 7.2: Network with two context variables.

variable. Therefore it makes sense to combine the two strategies, and this in fact produced
the best overall results. Adding an extra context variable doubled the number of parameters,
but as the last line in Table 7.3 indicates, doubling this number by using a bigger alphabet

is not as effective.

7.6 Results With Two Auxiliary Variables

In order to evaluate the use of multiple context chains, the network shown in Table
7.2 was tested. Both of the context variables were binary. For comparison, a network with
a single context variable with 3 and 4 values was tested. To cut down on memory usage
and running time, and to save on the amount of disk-space needed to store conditional
probabilities, 3-state phones were used in this set of experiments. The results are shown in

Table 7.4.

These results indicate that increasing the amount of context state improves recog-
nition performance. In addition, factoring the context state is beneficial. The results are
somewhat worse than with the four-state phone models, which indicates that the combina-

tion of greater precision and longer minimum durations afforded by the four-state models

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 127

‘ Network ‘ Parameters ‘ Error Rate ‘
Binary-Chain 191k 4.1%
Trinary-Chain 287k 4.0%
Quaternary-Chain | 383k 3.8%
Double-Chain 383k 3.6%

Table 7.4: Test results with multi-valued and multi-chain context variables; the standard
error is approximately 0.25%. The double-chain network used binary variables, and thus
had a total of 4 possible context values.

W
.
N\

0N

Y
L
N\

@9

e @ HMM

VRV R

Multiple e < > —0 HMM
In|t|al < with
— @ Context
oD

Figure 7.3: Top: a four-state HMM phone model. Bottom: the same model with a binary

context distinction. There are now two states for each of the previous states, corresponding
to the different combinations of phonetic and contextual state.

is important.

7.7 Cross-Product HMM

In the conventional HMM framework, the effect of a context variable can by sim-
ulated by using a more complex finite state automaton. Figure 7.3 illustrates this strategy
for a binary context distinction. The idea is to create a distinct state for every possible
combination of state and context. As shown at the bottom of Figure 7.3, the transition
structure must be made significantly more complex, and the number of transition param-
eters is increased much more than in a DBN with a context variable. For example, the
number of independent context and transition parameters in the articulatory DBN is three
times the number of phones. In a cross-product HMM, it is six times the number of phones.

This difference increases rapidly as the number of context variables and values increases. A

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 128

‘ States per Phone ‘ Context Values ‘ Parameters ‘ Initialization ‘ Error Rate ‘

4 2 255 Continuity 3.5
4 2 255 Voicing 3.2
3 4 386 Continuity 3.3

Table 7.5: Results for cross-product HMMs. Due to computational limitations, three states
per phone were used in combination with the four-valued context distinction.

second fact to keep in mind is that the cross-product representation requires multiple initial
and final states — one for each context value. This is because the context value must be
retained across phonetic boundaries when the individual phone models are concatenated to
form word models. Standard HMM packages, e.g. (Young et al. 1997), do not have this
ability.

Results for a cross-product HMM with two different kinds of initialization are
presented in Table 7.5. (More precisely, the results were generated with a DBN structured
to be equivalent to a cross-product HMM.) The first kind of initialization was similar to
that used in the Chain-DBN, and reflected continuity in the context variable value. The
second kind reflected voicing, and is analogous to that used in the Articulator-DBN. For
comparison with the double-chain network, we also tested a cross-product HMM with four
possible context values; this network is an unfactored representation of the double-chain
structure shown in Figure 7.2. The results for the cross-product HMM are actually slightly
better than for the unfactored representation; the EM training procedure was able to make

effective use of the extra parameters.

These results suggest that small amounts of acoustic and articulatory context can
be modeled effectively with a cross-product HMM. From an engineering standpoint, this is
an attractive, since it requires comparatively minor changes to the phone-models of existing
HMM systems. Nevertheless, there are significant drawbacks to this approach; the most
important of these is that it does not scale well: the number of transition parameters grows
like the square of the number of context values. It is also inflexible, and would be diffi-
cult to modify to address different sets of variables and different conditional independence

assumptions.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 129

7.8 Clustering Results

This section presents results for a network doing unsupervised clustering. The
network structure is presented in Figure 6.12. A binary-valued context variable was used,
with the restriction that its value not change over the course of an utterance. This was
enforced by using a stochastic context variable in the first timeslice, and then using a
deterministic context variable from the second timeslice on to copy the value determined
in the first frame. The network was trained as usual, and then during testing the likeliest

value for the cluster variable was determined.

There are at least two dimensions along which one might expect clustering to
occur: the type of speaker (e.g. male vs. female, adult vs. child), and the type of word
(e.g. consonant-initial vs. vowel initial). * The degree to which such clustering occurs can
be measured by looking at the degree to which utterances with a particular characteristic
are classified together in a single cluster. Figures 7.4 and 7.5 show that both speaker and
word clustering are observed. Since there are more cross-validation utterances than test

utterances, the histograms are based on that subset (no tuning was involved).

Figure 7.4 shows the consistency with which utterances from a single speaker
were classified together, and what would be expected at random. Clearly, utterances from

individual speakers are being grouped together with high frequency.

Figure 7.5 shows the same information for particular words. The fact that the
occurrences of a single word tend to be clustered together indicates that word characteristics,

as well as speaker characteristics, are being modeled by the auxiliary variable.

In terms of overall error-rate, the clustering technique did not do as well as the
other augmented networks; the test-set error rate of 4.5% was midway between the 4.8%
rate of the baseline network and the 3.6% score for the chain network. This is expected,
since the cluster-network has more state, and therefore modeling power, than the baseline
network, but not as much expressiveness as the chain-network, where the context variable

can “flip-flop” between values.

It is possible to make sense of the value assigned to the cluster variable, both in
terms of speaker-type and word-type. The mutual information between the cluster variable

and the gender of the speaker is 0.24 bits, indicating a strong correlation between cluster and

!Thanks to Jeff Bilmes for pointing out the duality between speakers and words.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 130

70 T T T T T T T T T

"cluster" ——
"random"” -----

60 E

50 | —

Number of Speakers

e [L

fffffffffff

O 1 1 1 Il 1 1 1 1 1

50 55 60 65 70 75 80 85 90 95 100
Percent Cluster Consistency for a Speaker

Figure 7.4: The frequency with which utterances from a single speaker were assigned to the
same cluster. For example, about 15 speakers has their utterances clustered together with
85% consistency. On average, there are 68 utterances per speaker.

gender. To determine the word-characteristics associated with the two clusters, we examined
the words that were very consistently assigned to a particular cluster. These are shown in
Figure 7.6. One of the clusters is characterized by words beginning in liquid consonants,
while the other is characterized by words ending in liquid consonants. The cluster with
words beginning in liquid consonants also happens to be associated with female speakers;
the cluster with terminal liquid consonants is associated with male speakers. Note, however,
that since each word was spoken by approximately as many men as women, word-clustering

comes at the expense of gender-clustering.

7.9 Discussion

7.9.1 Improvements

In every case that an auxiliary variable was used, there was a performance increase.

Moreover, increasing the modeling power of the network by increasing the amount of context

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 131

400 T T T T T T T T T

"word_cluster" —
*************** "word_random" -----

350 1

300 B

250 - y

200 - y

Number of Words

150 -

0 ! L - ! L P S - .

50 55 60 65 70 75 80 85 90 95 100
Percent Cluster Consistency for a Word
Figure 7.5: The frequency with which utterances of a single word were assigned to the same
cluster. The area of the histogram representing a random distribution is greater than the
area of the observed histogram because of of a binning artifact. On average, there are 12
occurrences of each word; the first bin represents 6 or 7 being classified together; the next
8, then 9, and so on. Due to the small number of bins, the widths are large.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS

‘ Cluster 1 H Cluster 2
aboveboard | elsewhere incapable bathing irving
mainville melrose oval landberg laundromat
store unapproachable | ungovernable lifeboat livelihood
visual whipples arrivals citizend floodgates
gospels salesroom scarsdale increasingly | motown
forced starched summerall negligently | plaintiff
astronomical | bakeware bridgeforth redness spacelink
fairchilds geographical gulps implicitly mchee
mistrustful pinwheel quails engagingly | heaves
torso unforgivable unusual honda nape
walflles carlson pathological eighths included
unborn untraveled westwall lancelet nat
strolls totals allies peanut lindsey
beagle cashdrawer dialed cupcakes woodlawn
reels seldom silverstone
squirreled tranquil unethical
isabell spoilt unquestionable
foghorn bale unawares
dimsdale heartfelt sparkled
pebbles seafowl bulls
baffled dolphin squabble
westworld

132

Table 7.6: The words that occurred in a particular cluster more than 90% of the time.
About half the words in the first cluster end in liquid consonants (/l/ or /r/), even more
if terminal /s/ is allowed. For example, “unapproachable” and “astronomical.” None of
the words in the second cluster end in liquid consonants. Instead, about a quarter of them
begin with liquid consonants, e.g. “lifeboat” and “laundromat.” Only one of the words in
the first cluster, “reels,” begins with a liquid consonant.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 133

state produced further improvements. This indicates that context modeling with auxiliary

state information is an effective way of decreasing speech-recognition error rates.

The context variable was able to capture several different phenomena, ranging
from simple correlations between the observations within a single frame to gender and
word-specific characteristics. In general, networks in which the context variables were linked
across time did better than corresponding networks without temporal links. This is unsur-
prising because neither acoustic nor articulatory properties are expected to change rapidly
over time; this is expected for the articulators because of physical inertia, and for acous-
tics both because they are generated by articulators, and because the acoustic features are

generated from overlapping frames of speech.

A context-sensitive alphabet was an effective way of improving performance, but
here too an auxiliary variable was beneficial. This makes sense because context-dependent
alphabets encode prior knowledge about coarticulatory effects, but do not pay attention to
the particulars of any specific utterance. An auxiliary variable has the ability to encode

information on a case-by-case basis.

7.9.2 What Does it Mean?

In order to understand the meaning of the context variable, we examined its cor-
relation with the different acoustic features, and found that it is highly correlated with the
combined Cy and delta-Cy observation stream. This relation is graphed for four different
network structures in Figure 7.6. Roughly speaking, (g is indicative of the overall energy
in an acoustic frame. The maximum value in an utterance is subtracted, so the value is
never greater than 0. Assuming that each frequency bin contributed an equal amount of

energy, the Cy range corresponds to an energy range of 50db.

This figure shows that despite similar word-error rates, the different network struc-

tures worked by learning different kinds of patterns in the data. 2

A second important pattern that emerges is that in the networks with time-
continuity arcs, the context variable is characterized by a high degree of continuity. To
demonstrate that the networks will tend to learn continuity, an experiment was made in

which the articulator network was initialized to reflect voicing in a very extreme way: the

*Figure revised 7/98.

134

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS

Chain

Articulator

— 10 O

o
(T=1%aW00)d

et
D

- 10 o

o
(T=1%8W00)d

-20

o
D

Correlation

Phone—-Correlation

-250

—-200

- 10 o

o
(T=1xau02)d

re!
D

— 1 o

o
(T=1xau02)d

-20

o
D

=50 c

0

40

Delta C0

Figure 7.6: Probability that the context variable has the value 1 as a function of Cy and

delta-Cly.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 135

probability of a context value of 1 was set almost to 1 (regardless of its previous value) for
voiced phones, and almost to 0 for unvoiced phones. The EM procedure was then applied,
and in the learned parameters, the striking characteristic is that the context value is almost
always unlikely to change. This is consistent with a physical model of a slowly changing
inertial process. The initial and learned parameters are shown in Figures 7.7 and 7.8. For
the results presented in previous sections, the context variable was initialized with less
extreme values; this decreased the number of training iterations, and gave slightly better

performance.

Although Figures 7.7 and 7.8 demonstrate that the context variable displays the
continuity which is expected from something that models a physical object, we have been un-
able to associate it with any specific articulator. In particular, the figures illustrate that the
conditional probabilities after training show no clear correlation with the voiced/unvoiced
distinction between phones. The EM training procedure has apparently taken advantage
of all the degrees of freedom available to it to maximize the data-probability, resulting in
parameters that reflect a combination of many underlying factors. Training with data in
which the articulator positions are known will likely lead to simpler interpretations of the

learned parameters.

From the previous discussion of the context variable’s acoustic correlates, it is clear
that the different networks learned different patterns in the data. One way of measuring
this is to see how similar the errors made by the different networks are. This is shown
for several of the networks in Table 7.7. This indicates that the Correlation and PD-
Correlation networks are relatively similar, as are the Chain and Articulator networks. The
biggest difference is between networks using a basic phoneme alphabet and those using a

context-dependent alphabet.

7.9.3 Perspective

An important tradeoff which is often discussed in the speech recognition literature
is between error-rates and the number of parameters used; this is shown in Figure 7.9 for
the networks studied in this chapter. The correlation between the number of parameters
used and the error rate is striking, and in this context, the use of Bayesian networks can be

understood as a directed and intelligent way of increasing the number of model parameters.

136

160

140

120

100

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS

80
Phone

60
This graph shows shows that a context value of 1 also

40

20

O = + .
= O K o =
+ O =
82 52
s E 8 ¥E
— o Y .35
-5 3.2 5
aAEE EC
< + ﬂa
e o3 5
n =
e ———— ° Otv =R R =Y i
| T — - £ g i 7 e
T © 9 £ 42 e =
e =< R
=1 S = 22 = - S
EE < 1o 2P o o |l 2& S
£ R 3 i = R 5] £f ———
- sEid =3
+ <5} Sz
SR 27 = B
1g Sh= o © -5 | ==
S 0 & 23 = e
H e 5 H
- bl e} = = . L =
- C W o Q0 @ e ITIIIIIIIIIzzooossmsssseeeee
<. =] N =g IR
19 <= T o O 3 e
nuym - n O g = h“uuuuuu\wﬁy\‘y\\\“h\lw
T g & - & mszgpmmmooii S
B E 25827 <
Mmummmmyuyuyu‘uuuuunuuunu uuuu 7 %% hs < Chbu — w0 B MWM.MMMM\MHHHMHHHHMH\‘
llhmmwu,u o< 8 8 e
a,.ummwwuw.hww.uu ““““““ — % 20 =7 “.mv i
w— . S5 3%% &
T g == -3 & - £
B v .5 ¥ w0 <
e — =88 -9 i
- “§5gg
[e 12 - - sl
I et 5
e E = o < S
P e 5 = = 0 = ==
e = 8 0 ® © &
\HHHHH \\\\\\\\ Q = V f < ,\v
\\\\\\ “TTozzeeae 1 & + % 20 o] B k-
e Ex= =7 ==
S SRR
= = s g 3
 SSITIIIITTTY ! ! 1 o m.o o m = m e L ! :
- @ © < N o = Y= = - @ © < N
=] =1 =] =} ot — »n g =] =1 =] =}
2 9= =2 F
< -~] =
o = % .2
0 Bulureway 1xa1u09 Jo "qoid — rm w m © T Buiureway 1Xa1u0D 40 "qoid
.. v o =
NS 8
g -
=2 .2
s o2 g
= = g
R 3= =
e =55
=~ e > O

Figure 7.8: Learning continuity.

shows continuity.

CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS

Network | Corr. | PD-Corr. | Chain | Art. | CDA-257 | CDA-Art | CDA-510
Base 65 69 49 50 35 32 29
Corr. 68 55 55 37 34 32
PD-Corr. 51 50 38 34 32
Chain 56 44 38 32
Art. 41 38 33
CDA-257 53 32
CDA-Art 44

137

Table 7.7: Percent similarity in the errors made by pairs of recognizers. If A and B are the

|[AnB]|

sets of words the systems respectively got wrong, similarity is defined as 100 [A0B|"

55

4.5

Word Error Rate
5

35

2.5

"rates" ro—i

]

100 150

200 250

300

350 400

Number of Parameters

450 500

550

Figure 7.9: Error rate as a function of the number of network parameters. The errorbars
represent one standard deviation in either direction.

138

Chapter 8

Conclusion and Future Work

8.1 A Roadmap for the Future

This thesis has demonstrated that Bayesian network based ASR systems can be
built and expected to give good performance; the following sections point out some promis-
ing directions for future work. The discussion is divided into two parts: first a section on

purely technological issues, and then a section on what the technology might be used for.

8.1.1 Technological Enhancements
Continuous Valued Observations

Most current ASR systems use real valued acoustic feature vectors, and they typ-
ically model the distribution over observations with a mixture of Gaussians. It is relatively
easy to incorporate real-valued variables into a Bayesian network, provided that the vari-
ables are always observed and have only discrete parents. This is the case, for example, in
a DBN set up to emulate an HMM: the discrete phonetic state variable is the parent of the

observation variable.

In this case, it suffices to model the likelihood of an observation with a single Gaus-
sian: the effect of mixtures can be obtained by adding an extra discrete “mixture” variable
as one of the observation’s parents. Depending on the value of this mixture variable, one

of several Gaussians will be selected. Under these circumstances, the programming modi-

CHAPTER 8. CONCLUSION AND FUTURE WORK 139

fications simply require using a Gaussian to compute the likelihood of an observation, and
compiling sufficient statistics to reestimate the Gaussian mean and covariances. The cases
where the real valued variables are hidden, or have real-valued parents, or are themselves the
parents of discrete variables are more difficult; see (Murphy 1998) for a review of inference

and learning with continuous variables.

Atemporal Variables

Several of the schemes we have discussed have used variables whose value does not
change over time. For example, speaker accent and gender do not change during the course
of a conversation. The structures proposed to model such phenomena deal with the problem
by repeating a variable through every timeslice in the network, and then use deterministic
constraints to ensure that it does not change its value. This is somewhat awkward, and
could be better dealt with by introducing the concept of an atemporal variable into the

representational framework.

Continuous Speech

This thesis has dealt only with isolated word recognition, and clearly continuous
recognition is an important extension. As discussed in section 3.7, this is most easily
done by using chain-structured clique trees, which are nevertheless more computationally
efficient than a cross-product HMM. The next step in applying DBNs to continuous speech
recognition would be to construct such a system. The frontier algorithm of (Zweig 1996)
might form the basis for this work. Alternatively, the more complex backbone decoding

procedure could be used.

8.1.2 Modeling Strategies

Many of the modeling techniques described in Section 6 have not yet been tried,
and should be explored in the future. Rather than repeating them, however, this section

will focus on a few areas that have either gone unstressed or undiscussed.

CHAPTER 8. CONCLUSION AND FUTURE WORK 140

Use Articulatory Data

Clearly the most important step in constructing realistic articulatory models will
be to train the models using the actual positions, as determined by X-rays, NMR, ultra-
sound, magnetic coils, radar, or some other imaging technique. This is not an easy step
however, and even assuming that data is available, several important issues must be re-

solved:

e Should the data be discretized? If so, how? If not, it will be necessary to work
with a hybrid Bayesian network, and the problems of mixing continuous and discrete

variables must be resolved.
e What features are relevant? Positions? Velocities? Accelerations?

e Given a set of articulatory features or positions, how should the distribution over
expected acoustics be modeled? This is especially difficult when the variables are

continuous and the distribution must be represented functionally.

e What characteristics are invariant across a wide variety of speakers? How should the

data be processed to generate speaker-independent features?

Clustering Phonetic Units

One way of creating context dependent units, say left-context biphones, is to create
a new phone for each phoneme in the left-context of every possible preceding phoneme.
Many current speech recognition systems refine this kind of technique by grouping together
contextual phonemes with similar phonetic features (Young et al. 1997). For example, one
might simply use a simple binary distinction based on whether the preceding phoneme is
nasalized. While this kind of analysis requires the use of a-priori linguistic knowledge, it
is also possible to derive context dependent units through a data-driven clustering process

(Lee 1989; Young et al. 1997).

A similar procedure can be encoded in a Bayesian network. Suppose one maintains
in each timeslice a variable representing not just the current phone, but also the preceding
and following phones. (This information is readily available if linear word-models are used.)

One can then link this triplet of phones to a single hidden variable that itself has relatively

CHAPTER 8. CONCLUSION AND FUTURE WORK 141

Position in Word

Preceding
Phone

Following

Current
<> Phone

Phone

Learned Context-Dependent Unit

O Observation

Figure 8.1: Network structure for automatic induction of context dependent units.

few values, and condition the observations on this hidden variable. In the process of EM
learning, the network will be forced to learn a compact encoding of the triplet of available
phones, thus automatically deriving a context-dependent alphabet. The network structure

for this is shown in Figure 8.1.

Pronunciation Variants

As discussed in Section 6, the work of (Fosler-Lussier & Morgan 1998; Mirghafori
et al. 1995) shows that pronunciations can vary according to speaking rate. By conditioning
the phone variable both on position in the word model, and a rate-of-speech measure, it will

be relatively straightforward to model phone-substitutions due to speaking-rate variability.

8.2 Closing

On the first page of his decade old classic, Kai-Fu Lee identified the “Lack of a
sophisticated yet tractable model of speech” as a principle deficiency of speech recognition
systems (Lee 1989). This thesis has argued that the Bayesian network framework is ideally

suited to constructing just the kind of precise, expressive, and tractable models that are

CHAPTER 8. CONCLUSION AND FUTURE WORK 142

needed.

At a low-level, the thesis has shown how to structure Bayesian networks to ad-
dress the technical problems of model composition and efficient inference with deterministic
variables. Solving these problems is crucial to encoding in a DBN the distributions over pho-
netic sequences that are typically represented in other systems with finite state automata.
This has not been done before with Bayesian networks, and allows both pronunciation and

acoustic modeling to be done in a unified framework.

At a higher level, the thesis shows how to model a large collection of phenomena
in the Bayesian network framework. These phenomena include articulatory models, rate-
of-speech variability, speaker characteristics, perceptual models, and noise modeling. The
principle characteristic of the Bayesian network framework that gives it this flexibility is
that the probabilistic models are expressed in terms of arbitrary sets of random variables.
Thus, once the groundwork has been laid by writing a program for ASR with DBNs, a wide

variety of model structures can be encoded and tested.

A system for doing isolated word recognition in the Bayesian network framework
has been implemented, and experimental results indicate that a significant improvement
is possible by augmenting the phonetic state information with one or more auxiliary state
variables. This improvement is apparent both when a phonemic alphabet is used, and with
a context-dependent alphabet. This suggests that the auxiliary variable is able to model

utterance-specific contextual effects that a context-dependent alphabet is insensitive to.

143

Bibliography

AKMAIIAN, A., R.A. DEMERS, A.K. FARMER, & R.M. HarNISH. 1995. Linguistics: An
Introduction to Language. Cambridge, Massachusetts: MIT Press, fourth edition.

ALLEN, JaMmes F. 1995. Natural Language Understanding. Redwood City, California:
Benjamin/Cummings.

ANDERSON, BriaN D. O., & Joun B. MoorE. 1979. Optimal Filtering. Fnglewood Cliffs,
New Jersey: Prentice-Hall.

A/S, HuGIN EXPERT. 1995. HUGIN API Reference Manual. Hugin Expert A/S.

Baur, L.R., P.F. Brown, P.V. DESoUzZA, & L.R. MERCER. 1986. Maximum mutual
information estimation of hidden markov model parameters for speech recognition. In

ICASSP-86, 49-52.

BakEr, J. 1975. The Dragon system—an overview. IFEF Transactions on Acoustics,

Speech, and Signal Processing 23.24-29.

Bauwm, L. E., T. PeTRIE, G. SovuLEs, & N. WErIss. 1970. A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains. Annals

of Mathematical Statistics 41.164-171.

BeroMaN, RiCHARD ERNEST. 1957. Dynamic Programming. Princeton, New Jersey:

Princeton University Press.

Bencio, Y., Y. LECun, C. Nour, & C. Burces. 1995. A nn/hmm hybrid for on-line
handwriting recognition. Neural Computation 7.1289-1303.

BiNDER, JOHN, DAPENE KOLLER, STUART RUSSELL, & KEIIT KANAzZAWA. 1997. Adaptive

probabilistic networks with hidden variables. Machine Learning 29.213-244.

BIBLIOGRAPHY 144

Bisuor, CHRISTOPHER M. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford

University Press.

BranchEeT, 1., C. FRANKIGNOUL, & M.A. CANE. 1997. A comparison of adaptive kalman

filters for a tropical pacific ocean model. Monthly Weather Review 125.40-58.

BourLarD, HERVE, & NELsoN MoraGaN. 1994. Connectionist Speech Recognition: A
Hybrid Approach. Dordrecht, The Netherlands: Kluwer.

Browman, C.P., & L.. GOLDSTEIN. 1992. Articulatory phonology: An overview. Phonetica

49.155-180.

BunTINE, WrAY L. 1994. Operations for learning with graphical models. Journal of
Artificial Intelligence Research 2.159-225.

CHavez, R. M., & G. F. CooPER. 1990a. An empitrical evaluation of a randomized
algorithm for probabilistic inference. In Uncertainty in Artificial Intelligence 5, ed. by
M. Henrion, R. D. Shachter, L. N. Kanal, & J. F. Lemmer, 191-207. Elsevier Science
Publishers.

—, & ——. 1990b. A randomized approximation algorithm for probabilkistic inference on

bayesian belief networks. Networks 20.661-685.

CounEeN, M., H. FraNCE, N. MorGaN, D. RUMELHART, & V. ABRASH. 1992. Hybrid
neural network/hidden markov model continuous-speech recognition. In ICSLP-92,

915-918.

CoOPER, G., & E. HErskOVITS. 1992. A Bayesian method for the induction of probabilistic
networks from data. Machine Learning 9.309-347.

CooPER, GREGORY F. 1990. The computational complexity of probabilistic inference

using Bayesian belief networks. Artificial Intelligence 42.393-405.

Dacum, P., & M. LuBy. 1993. Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artificial Intelligence 60.141-153.

—, & ——. 1997. An optimal approximation algorithm for bayesian inference. Artificial

Intelligence 93.1-27.

BIBLIOGRAPHY 145

DarTELLs, C.E., & E. CorTINA. 1990. Simultaneous estimation of neutron density and

reactivity in a nuclear reactor using a bank of kalman filters. Nuclear Science and

Engineering 105.297-299.

Davis, S, & P. MERMELSTEIN. 1980. Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences. IFFE Transactions on

Acoustics, Speech, and Signal Processing 28.357-366.

DEAN, THomAs, & KEnT Kanazawa. 1988. Probabilistic temporal reasoning. In Proceed-
ings of the Seventh National Conference on Artificial Intelligence (AAAI-88), 524-528,

St. Paul, Minnesota. American Association for Artificial Intelligence.

DELLER, J. R., J. G. Proaxkis, & J.H.L.. HansEN. 1993. Discrete-Time Processing of
Speech Signals. London: Macmillan.

DEMPSTER, A., N. LalrD, & D. RuBIn. 1977. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society 39 (Series B).1-38.

DenG, L. 1996. Speech recognition using autosegmental representation of phonological

units with interface to the trended hmm. Free Speech Journal .

——, & K. ERLER. 1992. Structural design of hidden markov model speech recognizer using
multivalued phonetic features: Comparison with segmental speech units. Journal of

the Acoustical Society of America 92.3058-3067.

—, & D. Sun. 1994. A statistical approach to automatic speech recognition using the
atomic speech units constructed from overlapping articulatory features. Journal of the

Acoustical Society of America 95.2702-2719.

Dicaraxis, V., J.R. RouLICEK, & M. OsTENDORF. 1993. MI estimation of a stochastic
linear system with the em algorithm and its application to speech recognition. IFEF

Transactions on Speech and Audio Processing 1.431-442.

DupronT, S., H. BourLARD, O. DEROO, & J.-M. FONTAINE, V.AND BoITE. 1997. Hybrid
HMM/ANN systems for training independent tasks: Experiments on PhoneBook and
related improvements. In ICASSP-97: 1997 International Conference on Acoustics,
Speech, and Signal Processing, 17671770, Los Alamitos, CA. IEEE Computer Society

Press.

BIBLIOGRAPHY 146

ErpuraiM, Y., A. DEMBO, & L..R. RABINER. 1989. A minimum discrimination information

approach for hidden markov modeling. IFFE Transactions on Information Theory

35.1001-1003.

ErrEr, K., & L. DENG. 1993. Hidden markov model representation of quantized articu-

latory features for speech recognition. Computer Speech and Language 7.265-282.

——, & G. FREEMAN. 1996. An hmm-based speech recognizer using overlapping articulatory
features. Journal of the Acoustical Society of America 100.2500-2513.

Fanrman, S.E., & C LEBIERE. 1990. The cascade-correlation learning architecture. In
Advances in Neural Information Processing Systems I, ed. by D.S. Touretzky, 524-532.

San Mateo, California: Morgan Kaufmann.

FosLER-LuUssIER, E., & N. MorcaN. 1998. Effects of speaking rate and word predictability
on conversational pronunciations. In Tutorial and Research Workshop on Modeling

Pronunciation Variation for Automatic Speech Recognition.

FrEAN, M. 1990. The upstart algorithm: A method for constructing and training feedfor-

ward neural networks. Neural Computation 2.198-209.

FriEDMAN, Nir. 1997. Learning belief networks in the presence of missing values and
hidden variables. In Proceedings of the Fourteenth International Conference on Machine

Learning, Nashville, Tennessee. Morgan Kaufmann.

FriTscH, J. 1997. Acid/hnn: A framework for hierarchical connectionist acoustic modeling.

In ASRU-97, 164-171.

Gares, M.J.F., & S. Youwna. 1992. An improved approach to the hidden markov model
decomposition of speech and noise. In ICASSP-92, 1-233-1-236.

GHAHRAMANI, Z., & M. I. JorDAN. 1995. Factorial hidden Markov models. Technical

Report 9502, MIT Computational Cognitive Science Report.
—, & ——. 1997. Factorial hidden Markov models. Machine Learning 29.

GHITZA, O. 1991. Auditory nerve representation as a basis for speech processing. In
Advances in Speech Processing, ed. by S. Furui & M. Sondhi, 453-485. Marcel Dekker.

BIBLIOGRAPHY 147

GoopwIN, GrauAM C., & Kwal SANG SIN. 1984. Adaptive Filtering and Control. Fu-
glewood Cliffs, New Jersey: Prentice-Hall.

HAYKIN, SIMON. 1994. Neural Networks: A Comprehensive Foundation. London: Macmil-

lan.

——. 1996. Adaptive Filter Theory. Englewood Cliffs, New Jersey: Prentice-Hall, third

edition.

HECKERMAN, D. 1995. A tutorial on learning with Bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, Redmond, Washington. Revised June 1996.

HeNNEBERT, J., C. Ris, H. BourLARD, S. RENALS, & N. MorGan. 1997. Estimation

of global posteriors and forward-backward training of hybrid hmm/ann systems. In

FPurospeech 97, volume 4, 1951-1954.

HENRION, MaX. 1988. Propagation of uncertainty in Bayesian networks by probabilistic
logic sampling. In Uncertainty in Artificial Intelligence 2, ed. by John F. Lemmer &
Laveen N. Kanal, 149-163. Amsterdam, London, New York: Elsevier/North-Holland.

HermaANsKY, H., & N. MorGaN. 1994. Rasta processing of speech. IEEF Transactions
on Speech and Audio Processing 2.578-589.

HEerTZ, JOHN, ANDERS KROGH, & RICHARD G. PALMER. 1991. Introduction to the Theory

of Neural Computation. Reading, Massachusetts: Addison-Wesley.

Hoapen, J., A. LorqvisT, V. Gracco, . ZLOKARNIK, P. RUBIN, & E. SALTZMAN.

1996. Accurate recovery of articulator positions from acoustics: New conclusions based

on human data. Journal of the Acoustical Society of America 100.1819-1834.

HovzricHTER, J.F., W.A. LEa, L.C. NG, & G.C. BURNETT. 1996. Speech coding,
recognition, and synthesis using radar and acoustic sensors. Technical Report UCRL-

1D-123687, Lawrence Livermore National Laboratory.

Hu, J., M.K. Brown, & W. TurInN. 1996. Hmm based on-line handwriting recognition.
IEFEFE Transactions on Pattern Analysis and Machine Intelligence 18.1039-1045.

BIBLIOGRAPHY 148

Jacogs, R.A, & M.I. JorpaN. 1991. A competitive modular connectionist architecture.
In Advances in Neural Information Processing Systems I, ed. by R.P Lippmann, J.E.
Moody, & Touretzky, 767-773. San Mateo, California: Morgan Kaufmann.

Jacogs, R.A., M.I. Jorpan, S.J. Nowran, & G.E. HinTon. 1991. Adaptive mixtures
of local experts. Neural Computation 3.79-87.

JELINEK, F. 1976. Continuous speech recognition by statistical methods. Proceedings of
the IFFE 64.532-556.

JELINEK, FREDERICK. 1997. Statistical Methods for Speech Recognition. Cambridge, Mas-
sachusetts: MIT Press.

JENSEN, F., & F. V. JENsSEN. 1994. Optimal junction trees. In Uncertainty in Artifi-
cial Intelligence: Proceedings of the Tenth Conference, 360-366, Seattle, Washington.

Morgan Kaufmann.

—, ——, & S. L. DITTMER. 1994. From influence diagrams to junction trees. In Uncer-
tainty in Artificial Intelligence: Proceedings of the Tenth Conference, 367-373, Seattle,

Washington. Morgan Kaufmann.

JENSEN, FINN V., STEFFEN L. LAURITZEN, & KRISTIAN G. OLESEN. 1990. Bayesian up-

dating in causal probabilistic networks by local computations. Computational Statistics

Quarterly 5.269-282.

JorDAN, M.I. ANDS JacoBs. 1992. Hierarchies of adaptive experts. In Advances in
Neural Information Processing Systems IV, ed. by J.E. Moody, S.J. Hanson, & R.P.
Lippmann, 985-992. San Mateo, California: Morgan Kaufmann.

Juang, B-H., & L.R. RABINER. 1985. Mixture autoregressive hidden markov models for

speech signals. IEFF Transactions on Acoustics, Speech and Signal Processing 1404—
1413.

Karman, R. E. 1960. A new approach to linear filtering and prediction problems. Journal

of Basic Engineering 35-46.

Kavazawa, KeE1, DAPHNE KOLLER, & STUART RUSSELL. 1995. Stochastic simulation

algorithms for dynamic probabilistic networks. In Uncertainty in Artificial Intelli-

BIBLIOGRAPHY 149

gence: Proceedings of the Eleventh Conference, 346-351, Montreal, Canada. Morgan

Kaufmann.

Karrrus, K., C. SJOLANDER, K. AMD BARRETT, & M. CLINE. 1997. Predicting protein
structure using hidden markov models. Proteins - Structure Function and Genetics

SUPP1.134-139.

Kenny, P., M. LENNIG, & P. MERMELSTEIN. 1990. A linear predictive hmm for vector-
valued observations with applications to speech recognition. IEFE Transactions on

Acoustics, Speech, and Signal Processing 38.220-225.

KiagrurLrr, U. 1992. A computational scheme for reasoning in dynamic bayesian networks.
In Uncertainty in Artificial Intelligence: Proceedings of the Fighth Conference, 121—
129, Stanford, California. Morgan Kaufmann.

Krogu, A., 1. Mian, & D. HaussLER. 1994. A hidden markov model that finds genes in
e-coli dna. Nucleic Acids Research 22.4768-4778.

Kurp, D., D. HaussLEr, M.G. REESE, & F.H. EECkMAN. 1996. A generalized hid-
den markov model for the recognition of human genes in dna. In 4th Conference on

Intelligent Systems in Molecular Biology.

LaberoceD, P. 1993. A Course in Phonetics. New York: Harcourt Brace Jovanovich,

third edition.

Lanag, K. J., & G. E. HinTon. 1988. The development of the time-delay neural network
architecture for speech recognition. Technical Report CMU-CS-88-152, Carnegie Mellon

University.

LaPeDpEs, A., & R. FARBER. 1988. How neural nets work. In Neural Information Processing
Systems, ed. by D. Z. Anderson, 442-456. American Institute of Physics.

LavuriTZEN, STEFFEN L. 1991. The EM algorithm for graphical association models with
missing data. Technical Report TR-91-05, Department of Statistics, Aalborg Univer-
sity.

——, & DAvID J. SPIEGELHALTER. 1988. Local computations with probabilities on graph-
ical structures and their application to expert systems. Journal of the Royal Statistical

Society B 50.157-224.

BIBLIOGRAPHY 150

Le Cun, Y., B. BosEr, J.S. DENKER, D. HENDERSON, R.E. HowarD, W. HUBBARD,

& L.D. Jackern. 1989. Backpropagation applied to handwritten zip code recognition.
Neural Computation 1.541-551.

——, J.S. DENKER, & S.A. SorLrA. 1990. Optimal brain damage. In Advances in Neural
Information Processing Systems Il ed. by D.S. Touretzsky, 396-404.

Lee, Kai-Fu. 1989. Automatic speech recognition: The development of the SPHINX
system. Dordrecht, The Netherlands: Kluwer.

Levinson, S.E. 1986. Continuously variable duration hidden markov models for automatic

speech recognition. Computer Speech and Language 1.29-45.

——, L.R. RABINER, & M.M. SonDHI. 1983. An introduction to the application of the
theory of probabilistic functions of a markov process to automatic speech recognition.

The Bell System Technical Journal 62.1035-1074.

LinDE, Y., A. Buzo, & Gray R. M. 1980. An algorithm for vector quantizer design.
IEEFE Transactions on Communication COM-28.84-95.

MAKHOUL, J. 1975. Linear prediction: A tutorial review. Proceedings of the IFEFE 63.561—
580.

——, & R. ScawARTZ. 1995. State of the art in continuous speech recognition. Proceedings

of the National Academy of Science 92.9956-9963.

MamMonNE, R.J., X. ZHANG, & R.P. RAMACHANDRAN. 1996. Robust speaker recognition.

IFEFFE Signal Processing Magazine 58-71.

MANOHAR Rao, M.J. 1987. Filtering and Control of Macroeconomic Systems: A Control

System Incorporating the Kalman Filter for the Indian Fconomy. Amsterdam, London,

New York: Elsevier/North-Holland.

MirgHAFORI, N., E. FOSLER, , & N. MorGAN. 1995. Fast speakers in large vocabulary

continuous speech recognition: Analysis and antidotes. In Furospeech-95.

Moonby, J.E., & C. J. DARKEN. 1989. Fast learning in networks of locally-tuned processing

units. Neural Computation 1.281-294.

BIBLIOGRAPHY 151

Moraan, N., & H. BoUurLARD. 1992. Factoring networks by a statistical method. Neural

Computation 4.835-838.

——, ——, S. GREENBERG, & H HERMANSKY. 1994. Stochastic perceptual auditory-event-

based models for speech recognition. In Proceedings ICSLP-94, 1943-1946.

——, & E. FosLER-Lussier. 1998. Combining multiple estimators of speaking rate. In
ICASSP-98.

MurprHY, K. 1998. Inference and learning in hybrid bayesian networks. Technical Report
UCB/CSD-98-990, UC Berkeley.

NEY, H. 1984. The use of a one-stage dynamic programming algorithm for connected word
recognition. IEFFE Transactions on Acoustics, Speech, and Signal Processing 32.263—
271.

NoLr, M.A. 1964. Short-time spectrum and “cepstrum” techniques for vocal-pitch detec-
tion. Journal of the Acoustical Society of America 36.296-302.

Parcun, G., J. HocuBErG, T.R. THOMAS, F. LAROCHE, J. Zacks, & S. LEvy. 1992.
Inferring articulation and recognizing gestures from acoustics with a neural network

trained on x-ray microbeam data. Journal of the Acoustical Society of America 92.688—

700.

PrARL, JUDEA. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. San Mateo, California: Morgan Kaufmann.

PeoT, MARK, & Ross SHACHTER. 1991. Fusion and propagation with multiple observa-
tions. Artificial Intelligence 48.299-318.

PrrreLrr, J., C. Fonag, S. Wong, J. Sritz, & H. Lrunag. 1995. Phonebook: A
phonetically-rich isolated-word telephone-speech database. In ICASSP-95: 1995 Inter-
national Conference on Acoustics, Speech, and Signal Processing, 101-104, Los Alami-

tos, CA. IEEE Computer Society Press.

PoriTz, A.B. 1982. Linear predictive hidden markov models and the speech signal. In
ICASSP-82,1291-1294.

BIBLIOGRAPHY 152

Price, WirtLiam H. 1992. Numerical Recipes in C'. Cambridge: Cambridge University

Press.

RABINER, L. R., & B.-H. Juana. 1986. An introduction to hidden markov models. IFEFE
ASSP Magazine 4-16.

—, & ——. 1993. Fundamentals of Speech Recognition. Prentice-Hall.

RoBinson, A.J., & F. FALLsIDE. 1988. Static and dynamic error propagation networks

with application to speech coding. In Neural Information Processing Systems, ed. by

D.7Z. Anderson, 632-641.

—, & ——. 1991. A recurrent error propagation speech recognition system. Computer

Speech and Language 5.259-274.

Rosgk, D. J. 1970. Triangulated graphs and the elimination process. Journal of Mathe-
matical Analysis and Applications 597-616.

Russerrn, M.J., & R.K. MoorEk. 1985. Explicit modeling of state occupancy in hidden
markov models for automatic speech recognition. In ICASSP-85, 5-8.

SCALETTAR, R., & A. ZEE. 1988. Emergence of grandmother memory in feed forward
networks: Learning with noise and forgetfulness. In Connectionist Models and their
Implications: Readings from Cognitive Science, ed. by D. Waltz & J.A. Feldman, 309-
332.

SCcHWARTZ, R., J. KLovsTAD, J. MAKHOUL, & J. SORENSEN. 1980. A preliminary design
of a phonetic vocoder based on a diphone model. In IFEFE International Conference

on Acoustics, Speech, and Signal Processing, 32—35.

SHACHTER, R. D., & M. A. ProT. 1989. Simulation approaches to general probabilistic
inference on belief networks. In Proceedings of the Fifth Conference on Uncertainty in

Artificial Intelligence (UAI-89), Windsor, Ontario. Morgan Kaufmann.

SHACHTER, R. S., & C. R. KENLEY. 1989. Gaussian influence diagrams. Management
Science 35.527-550.

SIEGLER, M. A., & R. M. STERN. 1995. On the effects of speech rate in large vocabulary
speech recognition syst ems. In ITCASSP-95.

BIBLIOGRAPHY 153

SMyTH, P., D. HECKERMAN, & M. JORDAN. 1996. Probabilistic independence networks
for hidden Markov probability models. Technical Report MSR-TR-96-03, Microsoft
Research, Redmond, Washington.

SToKBRO, K., D. K. UMBERGER, & J. A. HERTZ. 1990. Exploiting neurons with localized

receptive fields to learn chaos. Complex Systems 4.603-622.

ToweLr, G.G., & J.W. SHAVLIK. 1993. Extracting refined rules from knowledge-based

neural networks. Machine Learning 13.71-101.

VarGa, A.P., & R.K. MoorE. 1990. Hidden markov model decomposition of speech and
noise. In ICASSP-90, 845-848.

WaiBeL, A., T. Hanazawa, G. HinTon, K. SHikaNO, & K. J. Lang. 1989. Phoneme
recognition using time-delay neural networks. IFEE Transactions on Acoustics, Speech,

and Signal Processing ASSP-37.328-3309.

Wan, E. A. 1990. Temporal backpropagation for fir neural networks. In IFEF International
Joint Conference on Neural Networks, volume 1, 575-580.

Wirtiams, R. J., & D. Zipser. 1989. A learning algorithm for continually running fully

recurrent neural networks. Neural Computation 1.270-280.

Wu, S., B. KiNgsBURY, N. MorGaN, & S. GREENBERG. 1998. Incorporating information

from syllable-length time scales into automatic speech recognition. In JCASSP-98.

——, M.L. SHIRE, S. GREENBERG, & N. Moraan. 1997. Integrating syllable boundary
information into speech recognition. In ICASSP-97.

Younag, S. 1996. A review of large-vocabulary continuous-speech recognition. IFEFE Signal

Processing Magazine 45-57.

——, J. OpELL, D. Orrason, V. VarTcuEv, & P. Woobranp. 1997. The HTK Book.
Entropic Cambridge Research Laboratory, 2.1 edition.

ZwEIG, GEOFF, & STUART J. RusseLL. 1997. Compositional modeling with dpns. Tech-
nical Report UCB/CSD-97-970, Computer Science Division, University of California
at Berkeley.

BIBLIOGRAPHY 154

ZwWEIG, GEOFFREY. 1996. A forward-backward algorithm for inference in bayesian networks
and an empirical comparison with hmms. MS report, Computer Science Division, UC

Berkeley.

——, & STUART RUSSELL. 1998. Speech recognition with dynamic bayesian networks. In
AAAI-9S.

