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1AbstractSpeech Recognition with Dynamic Bayesian NetworksbyGeo�rey G. ZweigDoctor of Philosophy in Computer ScienceUniversity of California, BerkeleyProfessor Stuart J. Russell, ChairDynamic Bayesian networks (DBNs) are a powerful and 
exible methodology forrepresenting and computing with probabilistic models of stochastic processes. In the pastdecade, there has been increasing interest in applying them to practical problems, and thisthesis shows that they can be used e�ectively in the �eld of automatic speech recognition.A principle characteristic of dynamic Bayesian networks is that they can model anarbitrary set of variables as they evolve over time. Moreover, an arbitrary set of conditionalindependence assumptions can be speci�ed, and this allows the joint distribution to berepresented in a highly factored way. Factorization allows for models with relatively fewparameters, and computational e�ciency. Standardized inference and learning routinesallow a wide variety of probabilistic models to be tested without deriving new formulae, orwriting new code.The contribution of this thesis is to show how DBNs can be used in automaticspeech recognition. This involves solving problems related to both representation and infer-ence. Representationally, the thesis shows how to encode stochastic �nite-state word modelsas DBNs, and how to construct DBNs that explicitly model the speech-articulators, accent,gender, speaking-rate, and other important phenomena. Technically, the thesis presentsinference routines that are especially tailored to the requirements of speech recognition:e�cient inference with deterministic constraints, variable-length utterances, and online in-ference. Finally, the thesis presents experimental results that indicate that real systemscan be built, and that modeling important phenomena with DBNs results in improvedrecognition accuracy.



2Professor Stuart J. RussellDissertation Committee Chair



iii
ContentsList of Figures viList of Tables xi1 Introduction 11.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11.1.1 Probabilistic Models for Speech Recognition : : : : : : : : : : : : : : 11.1.2 A Next Step : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31.2 Goals and Accomplishments : : : : : : : : : : : : : : : : : : : : : : : : : : : 61.3 Outline : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72 Probabilistic Models for Temporal Processes 92.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.2 Hidden Markov Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112.2.1 Variations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122.2.2 Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132.3 Kalman Filters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142.4 Neural Networks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 152.4.1 Multi-Layer Perceptrons : : : : : : : : : : : : : : : : : : : : : : : : : 152.4.2 Finite Impulse Response MLPs : : : : : : : : : : : : : : : : : : : : : 162.4.3 Recurrent NNs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 172.4.4 Radial Basis Function Networks : : : : : : : : : : : : : : : : : : : : 182.5 Dynamic Bayesian Networks : : : : : : : : : : : : : : : : : : : : : : : : : : : 192.5.1 Bayesian Networks : : : : : : : : : : : : : : : : : : : : : : : : : : : : 222.5.2 Dynamic Bayesian Networks : : : : : : : : : : : : : : : : : : : : : : 242.5.3 Strengths of DBNs : : : : : : : : : : : : : : : : : : : : : : : : : : : : 242.6 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 263 Inference and Learning with DBNs 273.1 Inference on a Tree : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 283.1.1 De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 293.1.2 Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 303.1.3 Comparison with HMM Inference : : : : : : : : : : : : : : : : : : : : 323.1.4 A Speedup : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33



iv3.1.5 Proof of Speedup : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 343.2 Inference in General Graphs : : : : : : : : : : : : : : : : : : : : : : : : : : : 353.2.1 Equivalent Representations of Probability Distributions : : : : : : : 363.2.2 Inference with Trees of Composite Variables : : : : : : : : : : : : : : 363.2.3 Summary of Inference in a Clique Tree : : : : : : : : : : : : : : : : : 383.3 Fast Inference with Deterministic Variables : : : : : : : : : : : : : : : : : : 403.3.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 403.3.2 Approach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 403.3.3 Enumerating the Legal Clique Values : : : : : : : : : : : : : : : : : 413.3.4 Discussion of Time and Space Requirements : : : : : : : : : : : : : : 413.4 A Tree-Building Procedure : : : : : : : : : : : : : : : : : : : : : : : : : : : 433.4.1 Moralization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 443.4.2 Triangulation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 443.4.3 Tree Formation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.4.4 Tree Reduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.4.5 An Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 463.4.6 Correctness of the Tree-Building Procedure : : : : : : : : : : : : : : 483.5 Comparison with Other Approaches : : : : : : : : : : : : : : : : : : : : : : 513.6 Variable Length Observation Sequences : : : : : : : : : : : : : : : : : : : : 533.6.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 533.6.2 De�nitions and the Splicing Algorithm : : : : : : : : : : : : : : : : : 553.6.3 Proof of Splicing Algorithm : : : : : : : : : : : : : : : : : : : : : : : 563.6.4 Comparison with HMMS : : : : : : : : : : : : : : : : : : : : : : : : 623.7 Online Inference : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 623.7.1 Chain Decoding : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 633.7.2 Backbone Decoding : : : : : : : : : : : : : : : : : : : : : : : : : : : 653.8 Learning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 663.8.1 Gradient Descent Techniques : : : : : : : : : : : : : : : : : : : : : : 673.8.2 EM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 683.8.3 Comparison with HMMs : : : : : : : : : : : : : : : : : : : : : : : : : 684 DBNs and HMMs on Arti�cial Problems 694.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 694.2 Converting DBNs to HMMs : : : : : : : : : : : : : : : : : : : : : : : : : : : 694.3 Performance on a Family of Regular Graphs : : : : : : : : : : : : : : : : : : 714.3.1 Learning with an Incorrect Model : : : : : : : : : : : : : : : : : : : 754.4 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 775 Speech Recognition 805.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 805.1.1 The Problem : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 805.1.2 Approaches : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 885.2 Standard Techniques : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 915.2.1 Hidden Markov Models : : : : : : : : : : : : : : : : : : : : : : : : : 925.2.2 Neural Networks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93



v5.2.3 Kalman Filters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 955.3 Outstanding Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 976 Speech Recognition with DBNs 986.1 Model Composition with DBNs : : : : : : : : : : : : : : : : : : : : : : : : : 986.1.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 986.1.2 Encoding an SFSA with a DBN : : : : : : : : : : : : : : : : : : : : 996.1.3 Discussion: Write Networks not Code? : : : : : : : : : : : : : : : : : 1106.2 Model Structures for ASR : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1106.2.1 Articulatory Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : 1106.2.2 Modeling Speaking Style : : : : : : : : : : : : : : : : : : : : : : : : : 1136.2.3 Noise Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1156.2.4 Perceptual and Combined Models : : : : : : : : : : : : : : : : : : : 1166.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1187 Speech Recognition Experiments 1197.1 Database : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1197.2 Acoustic Processing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1207.3 Phonetic Alphabets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1217.3.1 Context Independent Alphabet : : : : : : : : : : : : : : : : : : : : : 1217.3.2 Context Dependent Alphabet : : : : : : : : : : : : : : : : : : : : : : 1217.4 Experimental Procedure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1227.4.1 Training, Tuning, and Testing : : : : : : : : : : : : : : : : : : : : : : 1227.4.2 Models Tested : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1237.5 Results with a Single Auxiliary Variable : : : : : : : : : : : : : : : : : : : : 1257.5.1 Context Dependent Alphabet : : : : : : : : : : : : : : : : : : : : : : 1257.6 Results With Two Auxiliary Variables : : : : : : : : : : : : : : : : : : : : : 1267.7 Cross-Product HMM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1277.8 Clustering Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1297.9 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1307.9.1 Improvements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1307.9.2 What Does it Mean? : : : : : : : : : : : : : : : : : : : : : : : : : : : 1337.9.3 Perspective : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1358 Conclusion and Future Work 1388.1 A Roadmap for the Future : : : : : : : : : : : : : : : : : : : : : : : : : : : 1388.1.1 Technological Enhancements : : : : : : : : : : : : : : : : : : : : : : 1388.1.2 Modeling Strategies : : : : : : : : : : : : : : : : : : : : : : : : : : : 1398.2 Closing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141Bibliography 143



vi
List of Figures1.1 A Bayesian network for a simple medical situation. The shaded variableshave known values, while the unshaded variable does not. : : : : : : : : : : 41.2 An articulatory model of the pronunciation of \ten cats," adapted from Dengand Sun, 1994. The linguistic units are shown along the top row. Thenumbers in the chart represent target articulator positions that correspondto these linguistic units. The shaded boxes represent the range of variabilityin articulator positions from utterance to utterance and person to person.While Deng and Sun use rules to determine the possible ranges, this kind ofinformation can be encoded probabilistically in a Bayesian network. : : : : 52.1 A MLP with one hidden layer. The nodes are typically fully interconnectedbetween layers. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 162.2 A RTR-NN. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 172.3 A radial basis function neural network. The �rst layer computes Gaussianactivations while the second layer is linear. : : : : : : : : : : : : : : : : : : : 192.4 A Bayesian network. The shaded nodes represent variables whose values areobserved. Each variable has an associated conditional probability table (orequivalent functional representation) that speci�es a distribution over values,conditioned on the values of the variable's parents. : : : : : : : : : : : : : : 232.5 Top: A simple DBN, \unrolled" to show �ve time steps. Bottom: A DBNwith a factored state representation. The factored representation can de-scribe the evolution of an equal number of total states with exponentiallyfewer parameters. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 253.1 A tree of variables. The partitioning of the evidence is shown for Xi. : : : : 293.2 Inference in a tree. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 313.3 A chain structured graph. A two-dimensional grid is an adequate data struc-ture for computing the �s and �s for a chain. In this case, the �s are analogousto HMM �s and the �s are analogous to �s. The diagonal arrows in the gridshow the values that are used to compute the � and � values for a particularcell. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 323.4 Enumerating the legal values of each clique. : : : : : : : : : : : : : : : : : : 423.5 The triangulation algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : 44



vii3.6 Clique tree formation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 453.7 Non-deterministic tree condensation. : : : : : : : : : : : : : : : : : : : : : : 463.8 A linear time algorithm for producing MAC. : : : : : : : : : : : : : : : : : 463.9 A Bayesian network and its clique tree. : : : : : : : : : : : : : : : : : : : : 473.10 Splicing a clique tree. The triangles represent non-repeating initial and �nalportions of the clique tree. The rectangles represent repeating segments.Splicing is accomplished by redirecting arcs connecting repeating segments. 543.11 Splicing terms de�ned. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 553.12 The splicing algorithm. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 563.13 The backbone of a clique tree. : : : : : : : : : : : : : : : : : : : : : : : : : : 593.14 Two slices of a complex DBN; when reduced to a chain-structured tree, thecomputational requirements are signi�cantly lower than if a cross-product ofthe state values were used in a an HMM. : : : : : : : : : : : : : : : : : : : 634.1 A 3 � 3 DBN and an equivalent HMM. Both have been unrolled four timesteps. The observation variables are boxed. The variables in the HMM cantake on many more values than those in the DBN: each state variable musthave a distinct value for each way the DBN's cluster of state variables canbe instantiated. The same is true for the observation nodes. : : : : : : : : : 714.2 Solution quality as a function of the number of training examples. Thehorizontal axis is logscale. Large values represent good HMM performance. 724.3 Absolute number of EM iterations required as a function of the number oftraining examples. The average number of iterations is about 3 except forthe HMM on a 2� 2, 3� 3, and 4� 4 network, which require many more. : 734.4 Time to process one example through one EM iteration. Times are shown fora DBN and analogous HMM. The horizontal axis shows k in a k � k network. 744.5 Solution quality as a function of the number of state nodes in the learnednetwork. Note that the lines for the simpler models lie to the left of the linegenerated when the correct network is used. This indicates a faster increasein the HMM's performance. : : : : : : : : : : : : : : : : : : : : : : : : : : : 754.6 Log probability of the learned DBN model vs. log probability of the trainingmodel. The DBN's learning performance is degraded as the number of statesin the learned model decreases. : : : : : : : : : : : : : : : : : : : : : : : : : 764.7 Solution quality as a function of the number of state nodes in the learnednetwork. Note that the lines for the correct models lie to the left of the linesgenerated when the over-complex network is used. This indicates a slowerincrease in the HMM's performance. : : : : : : : : : : : : : : : : : : : : : : 774.8 Log probability of the learned DBN model vs. log probability of the trainingmodel. Learning performance is degraded when the learned model has toomany states and only a small number of training examples are available. : : 785.1 Overlapping, triangular, nonlinear MFCC-style �lterbank. The peaks havea constant spacing on the mel-frequency scale. The output of each �lter is aweighted sum of the sound energy in its frequency range. : : : : : : : : : : 825.2 Word model for \tomato" showing two possible pronunciations. : : : : : : : 86



viii5.3 Utterance A is time-aligned to utterance B. : : : : : : : : : : : : : : : : : : 895.4 An HMM for the word \because." The transition matrix is de�ned graphi-cally by the solid arcs; if there is no arc between two states, the transitionprobability is 0. The small shaded nodes represent arti�cial initial and �nalstates. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 925.5 A Kalman �ltering approach to ASR, loosely adapted from Anderson andMoore, 1979. The probability of a phone qi at time t is recursively calculatedfrom the acoustic input at, and all prior acoustic input, at�11 by P (qijat1) =P (atjat�11 ;qi)P (qijat�11 )PNj=1 P (atjat�11 ;qj)P (qj jat�11 ) . All the required quantities are readily available. 966.1 Concatenating submodels. Naive submodel concatenation requires specifyingwhich state-evolution model to use at each point in time. : : : : : : : : : : 1006.2 An SFSA and a DBN network representation for �xed-length observation se-quences. Note that in the automaton the arcs represent transition probabil-ities while in the Bayesian network they represent conditional independencerelations. The initial and �nal states of the SFSA are shaded. The shadednode in the DBN represents an arti�cial observation; the CPT of this variablewill encode the length of the observation sequence. : : : : : : : : : : : : : 1016.3 A DBN structured for model composition. The submodel-index variablespeci�es which submodel to use at each point in time. : : : : : : : : : : : : 1046.4 Mapping states into equivalence sets with respect to transition probabilities.The variables are labeled with one possible assignment of values. States 1and 3 both map into the same transition equivalence set. : : : : : : : : : : : 1056.5 Mapping states into multiple equivalence classes. There is a transition equiv-alence class, and an acoustic one. The states behave di�erently with respectto the two. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1056.6 The control structure used in this work. A state maps into a phone label,and this value will determine both durational and acoustic properties. : : : 1066.7 Modeling null states with a DBN. At the top is a portion of two concatenatedSFSAs, showing the �nal state of one connected to the initial state of the next.At the bottom is a DBN with two auxiliary state and transition variables pertimeslice. These allow the null states to be skipped. The state and transitionvariables from a single timeslice are boxed with the dashed line. : : : : : : : 1076.8 SFSA structure structured to re
ect a trigram language model. The shadedcircles represent dummy states; there is one for each pair of words. Therectangles represent whole word models (each with its own initial and �nalstate). The total number of boxes is equal to the cube of the vocabulary size:there is a box for each word preceded by every possible two-word combination.Since the combination of the last two words with the current word uniquelydetermines the two-word context for the next word, the arcs leading out ofthe word models have transition probabilities of 1. The trigram probabilitiesare associated with the arcs from the dummy states into the word models.To avoid clutter, a only subset of the possible arcs are drawn. : : : : : : : : 108



ix6.9 A DBN representation of a simple HMM. Nodes with �xed CPTs are �xedon a per-example basis. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1096.10 An articulatory DBN structured for speech recognition. The tongue movesfrom the alveolar ridge to the back of the mouth; the lips move from anunrounded to a rounded con�guration. The properties of each node areshown to the right. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1116.11 Tongue position for di�erent vowels, adapted from Deller et al., 1993. : : : 1126.12 A DBN structured to model speaker-type. : : : : : : : : : : : : : : : : : : : 1146.13 A DBN structured to model speaking-rate. : : : : : : : : : : : : : : : : : : 1156.14 A DBN structured to model speaking-rate, with observations that are highlycorrelated with rate. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1166.15 A DBN structured to model speech in a noisy environment. : : : : : : : : : 1176.16 A perceptually-structured DBN (top), and a combined perceptual-generativemodel. For clarity, the index, transition, and phone variables are simplyrepresented by a \phonetic state" variable. : : : : : : : : : : : : : : : : : : : 1177.1 The acoustic models for four of the network topologies tested. The indexand transition variables are omitted. The dotted lines indicate conditioningon the previous frame. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1237.2 Network with two context variables. : : : : : : : : : : : : : : : : : : : : : : 1267.3 Top: a four-state HMM phone model. Bottom: the same model with a binarycontext distinction. There are now two states for each of the previous states,corresponding to the di�erent combinations of phonetic and contextual state. 1277.4 The frequency with which utterances from a single speaker were assignedto the same cluster. For example, about 15 speakers has their utterancesclustered together with 85% consistency. On average, there are 68 utterancesper speaker. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1307.5 The frequency with which utterances of a single word were assigned to thesame cluster. The area of the histogram representing a random distributionis greater than the area of the observed histogram because of of a binningartifact. On average, there are 12 occurrences of each word; the �rst binrepresents 6 or 7 being classi�ed together; the next 8, then 9, and so on. Dueto the small number of bins, the widths are large. : : : : : : : : : : : : : : 1317.6 Probability that the context variable has the value 1 as a function of C0 anddelta-C0. To minimize occlusions, the graphs are viewed from di�erent angles.1347.7 Learning continuity. The lines show P (Ct = 0jCt�1 = 0; Qt = p), i.e. theprobability of the context value remaining 0 across two frames of speech, asa function of phone. The solid line is before training, and the dotted line isafter training. The context variable represents voicing, so values close to 1:0are for voiced phones. After training, the context value is unlikely to change,regardless of phone. This re
ects temporal continuity. : : : : : : : : : : : : 1367.8 Learning continuity. This graph shows shows that a context value of 1 alsoshows continuity. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1367.9 Error rate as a function of the number of network parameters. The errorbarsrepresent one standard deviation in either direction. : : : : : : : : : : : : : 137



x8.1 Network structure for automatic induction of context dependent units. : : : 141



xi
List of Tables5.1 The ARPAbet. This phonetic alphabet was adopted for use by ARPA, andis representative of phonetic alphabets. : : : : : : : : : : : : : : : : : : : : : 856.1 The properties of the di�erent variables. In this work, we use a chain-structured pronunciation model, so the value of the initial state is uniquelydetermined. This allows all occurrences of the index variable to be deter-ministic. The CPTs that are not learned are adjusted on an utterance-by-utterance basis. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1097.1 Typical words in the Phonebook database. : : : : : : : : : : : : : : : : : : : 1207.2 Test set word error rate for systems using the basic phoneme alphabet. Allthe systems had slightly di�erent numbers of parameters. The standard erroris approximately 0.25%. Results from Zweig & Russell, 1998. : : : : : : : : 1257.3 Test set word error rates for systems using context dependent alphabets. The�rst two results use an alphabet with 336 units, and the last result uses analphabet with 666 units. The standard error is approximately 0.20%. Resultsfrom Zweig & Russell, 1998. : : : : : : : : : : : : : : : : : : : : : : : : : : : 1267.4 Test results with multi-valued and multi-chain context variables; the stan-dard error is approximately 0.25%. The double-chain network used binaryvariables, and thus had a total of 4 possible context values. : : : : : : : : : 1277.5 Results for cross-product HMMs. Due to computational limitations, threestates per phone were used in combination with the four-valued context dis-tinction. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1287.6 The words that occurred in a particular cluster more than 90% of the time.About half the words in the �rst cluster end in liquid consonants (/l/ or/r/), even more if terminal /s/ is allowed. For example, \unapproachable"and \astronomical." None of the words in the second cluster end in liquidconsonants. Instead, about a quarter of them begin with liquid consonants,e.g. \lifeboat" and \laundromat." Only one of the words in the �rst cluster,\reels," begins with a liquid consonant. : : : : : : : : : : : : : : : : : : : : 1327.7 Percent similarity in the errors made by pairs of recognizers. If A and B arethe sets of words the systems respectively got wrong, similarity is de�ned as100 jA\BjjA[Bj. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 137



xiiAcknowledgementsThis work bene�ted from interactions with numerous people during the course ofmy graduate study. In addition to my committee members, I would like to thank RichardKarp, Steve Glassman, and Mark Manasse. Working with Richard Karp on computationalbiology impressed on me the importance of addressing practical problems. Steve Glassmanand Mark Manasse at DEC SRC introduced me to the world of large-scale computing, andtaught me that every bit counts.The speech group at the International Computer Science Institute provided anexceptionally supportive and pleasant atmosphere to work in. I fondly acknowledge all themembers: Nelson Morgan, Steven Greenberg, Dan Ellis, Je� Bilmes, Eric Fosler-Lussier,Daniel Gildea, Adam Janin, Brian Kingsbury, Nikki Mirghafori, Michael Shire, WarnerWarren, and Su-Lin Wu.My ideas on Bayesian networks bene�ted from discussions with Nir Friedman,Kevin Murphy, Paul Horton, and especially Stuart Russell.



1
Chapter 1Introduction1.1 Motivation1.1.1 Probabilistic Models for Speech RecognitionThe problem of automatic speech recognition (ASR) consists of writing computerprograms that are able to examine a speech waveform and emit the same sequence of wordsthat a person would hear when listening to the sound. Essentially, this requires de�ningan association between the acoustic features of sounds and the words people perceive; ASRfurther imposes the constraint that the association must be de�ned so precisely that it canbe evaluated by a computer. In the course of the last quarter century, probabilistic modelshave become the predominant approach to de�ning the association between sounds andwords, and have been used to model the processes of both speech perception and speechgeneration.These models work in terms of linguistic units that represent the di�erent kinds ofsounds that are encountered in a language. As an example, syllables are representative andintuitive. Taken together, the set of syllables spans the range of sounds used to producewords, and syllabic word representations can be found in any dictionary.A perceptual model makes the association between sounds and words in a bottom-up fashion, and can be thought of as two black boxes. The �rst takes acoustic features froma short period of time as its input, and produces a probability distribution over the the setof possible linguistic units. The second black box takes this stream of disjoint probabilities,



CHAPTER 1. INTRODUCTION 2and incorporates information about which sequences of linguistic units constitute acceptablewords, in order to �nd an interpretation that makes sense over a long span of time. Theassociation between sounds and linguistic units is most often made with arti�cial neuralnetworks (ANNs) (Robinson & Fallside 1988; Waibel et al. 1989; Robinson & Fallside 1991;Bourlard & Morgan 1994). The linkage between subword linguistic units and complete wordmodels is made with a stochastic �nite state automaton (SFSA) that de�nes a distributionover the possible pronunciations of a word.A generative model works the other way around, and starts with a word hypothesis.It �rst relates this hypothesis to a sequence of linguistic units, and then relates the linguisticunits to sounds. The linkage between words and subword units is made with the same SFSAthat the perceptual approach uses, and the association between subword units and soundsis established with a simple lookup table or equivalent functional representation. HiddenMarkov models (HMMs) encompass both aspects of this process, are the most commonlyused generative models.Despite a great deal of success, as indicated by current commercial products fromcompanies such as IBM and Dragon Systems, current systems have signi�cant problems(Makhoul & Schwartz 1995; Young 1996). These problems are caused by a number ofdi�erent factors, including coarticulation (the modi�cation of a sound in the context of sur-rounding sounds), rate-of-speech variability, speaker accent, and ambient noise conditions.Although there are techniques for addressing these problems within the current frameworksof speech recognition, they are limited by the fact that the basic representational unit is thesubword linguistic unit, and there is no explicit causal representation of either generativeor perceptual processes.In the HMM framework, the subword linguistic unit is atomic, and there is nottypically any explicit representation of the physical process by which sound is generatedor modi�ed by noise. In the ANN framework, below the level of the linguistic unit theredoes exist a highly distributed representation of the perceptual process | in the form of amultiplicity of arti�cial neurons | but no explicit meaning is assigned. The contributions ofthis thesis are to apply a new probabilistic modeling framework, Bayesian networks, to theproblem of speech recognition, and to show how it can be used to address these problems.



CHAPTER 1. INTRODUCTION 31.1.2 A Next StepComputational power has doubled roughly every 18 months since the late 1960s,and this trend is expected to continue for another ten to twenty years. This increase incomputing power makes it feasible to move beyond the simple representational frameworkof current ASR systems, and Bayesian networks provide an ideal framework in which toformulate probabilistic models that are simultaneously expressive, precise, and compact.A Bayesian network (Pearl 1988) has the ability to represent a probability dis-tribution over arbitrary sets of random variables. Moreover, it is possible to factor thesedistributions in arbitrary ways, and to make arbitrary conditional independence assump-tions. The combination of factorization and conditional independence assumptions canvastly reduce the number of parameters required to represent a probability distribution.Because of Ockham's razor, this is desirable on general principles; on a more practical level,it allows the model parameters to be estimated with greater accuracy from a limited amountof data (Zweig 1996; Ghahramani & Jordan 1997).As a simple example of the application of a factored probabilistic model, considera doctor with a patient who is complaining of headaches and blurred vision. Suppose thedoctor knows that the person has a family history of diabetes, and also that the person is aprogrammer who stares long hours at a computer screen, and is under stress at work. Thedoctor is interested in evaluating the probability that the patient has diabetes. The set ofrelevant variables is:fheadaches; blurredV ision; programmer; stress; familyHistory; diabetesg;and the doctor wants to evaluateP (diabetes = truejheadaches = true; blurredV ision = true;programmer = true; stress = true; familyHistory = bad):In order to do this, it is necessary to be able to computeP (headaches; blurredV ision; programmer; stress; familyHistory; diabetes)for every possible combination of variable values, and one way to do this is to maintain afull representation of the joint probability distribution. However, in situations where there
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family-history

diabetes

programmerstress

headaches blurred vision

Figure 1.1: A Bayesian network for a simple medical situation. The shaded variables haveknown values, while the unshaded variable does not.are a large number of variables, there are an excessive number of combinations, and thescheme ignores the fact that not everything is relevant to everything else. A more reasonableapproach might be to factor the full joint distribution as:P (programmer)P (stress)P (familyHistory)P (headachesjfamilyHistory; stress)P (blurredV isionjfamilyHistory; programmer).This factoring expresses a good deal of intuition, e.g. that both family medical history andstress at work are relevant to the existence of headaches, but also that being a programmeris irrelevant to the family medical history. With a factored model like this, the doctor canlook up a small number of probabilities, multiply them together, and get the answer.Perhaps, however, being a programmer is not irrelevant to stress, and a factoriza-tion such asP (programmer)P (stressjprogrammer)P (familyHistory)P (headachesjfamilyHistory; stress)P (blurredV isionjfamilyHistory; programmer)would be more appropriate.The primary strength of a Bayesian network system is that once the program iswritten, it is extremely easy to switch from one model to another and evaluate di�erentideas. There can also be savings in the number of model parameters, and it should be noted
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Figure 1.2: An articulatory model of the pronunciation of \ten cats," adapted from Dengand Sun, 1994. The linguistic units are shown along the top row. The numbers in the chartrepresent target articulator positions that correspond to these linguistic units. The shadedboxes represent the range of variability in articulator positions from utterance to utteranceand person to person. While Deng and Sun use rules to determine the possible ranges, thiskind of information can be encoded probabilistically in a Bayesian network.that both of the factorizations presented above require fewer parameters than the unfactoredrepresentation. Finally, Bayesian networks have the advantage that the mathematics whichthey express is also simple to represent in graphical form. The �rst factorization is shownin Figure 1.1. The second di�ers simply by the addition of an arc.Dynamic Bayesian networks (DBNs) extend the Bayesian network methodology toaddress temporal processes. DBNs are used to model discrete time processes that evolve over�xed time intervals. To do this, a set of variables is associated with each time interval, andthe joint probability distribution over assignments of values to these variables is speci�edwith a set of conditional independence assumptions as in a static Bayesian network. DBNshave the same strengths as static networks, and allow for arbitrary sets of variables, andarbitrary conditional independence assumptions.The ability to model arbitrary sets of variables is highly desirable in ASR becauseit enables the construction of explicit models of speech generation and perception. Thereare several ways in which the expressive power of Bayesian networks can be used to model



CHAPTER 1. INTRODUCTION 6speech generation, perhaps the most attractive of which is in the construction of articulatorymodels. In contrast to conventional models, where the atomic representational unit is thesubword linguistic unit, articulatory models maintain an explicit representation of speecharticulators such as the lips, tongue, jaw, velum, and glottis. These models have beenused previously, e.g (Deng & Erler 1992), and have the advantage of naturally modelingpronunciation variability as a causal process.As an example, consider Figure 1.2, which is adapted from (Deng & Sun 1994).This shows the expected positions of several speech organs as the phrase \ten cats" ispronounced. This type of information can be conveniently expressed in a Bayesian networkby modeling a set of variables corresponding to the articulators. Once programs for inferenceand learning are written, it is easy to test di�erent model structures, and learn modelparameters.1.2 Goals and AccomplishmentsThis thesis has both theoretical and computational goals. The main theoreticalgoal is to demonstrate how to structure DBNs in a way that is appropriate for speechrecognition. This requires �rst creating DBNs that are able to achieve the functionality ofHMMs, and then showing how to extend them to address the problems with current systems.The challenge of emulating an HMM is that the dynamic programming procedures that anHMM uses to consider all possible partitionings of a speech signal into subword linguisticunits must be encoded declaratively in terms of variables and conditional probabilities.This is signi�cantly di�erent from the usual imperative way of accomplishing the task (seeChapter 6). The problem is exacerbated by the fact that interpretations of the speech signalmust respect known facts about word pronunciations.Once the basic machinery for emulating an HMM is in place, it is straightforwardto address many current problems in ASR. A second theoretical contribution of this thesisis to show how to address speaking-rate variability, accent, gender, coarticulation, noise,and combined generative and perceptual models in a uni�ed Bayesian network framework.In order to build a working Bayesian network system for ASR, it is necessaryto solve a number of algorithmic challenges, and the �nal theoretical contribution of thethesis is to present inference algorithms that are especially tailored to the speech recognition



CHAPTER 1. INTRODUCTION 7application. This application imposes the following constraints:� The routines must be extremely e�cient, and in particular able to handle deterministicrelationships between variables (i.e. cases where a variable's value is uniquely deter-mined by its parents' values). This constraint stems from the necessity of encodingthe deterministic constraints of pronunciation models.� The routines must be able to e�ciently handle variable length training utterances.� The routines must be able to do online recognition, where words are recognized beforean utterance is completed.These issues are resolved in Chapter 3.The main computational goal of this work was to implement a general Bayesiannetwork system for ASR, and test it on a challenging database. This goal was achieved,and the thesis presents results that show that it is in fact practical to base an ASR sys-tem on Bayesian network technology, and that signi�cant bene�ts accrue from using thetechnique. Chapter 7 presents results that indicate that modeling acoustic and articulatorycontext with a DBN reduces the word error rate by between 10 and 30%, depending on theexact conditional independence assumptions. The 
exibility of the methodology is furtherdemonstrated by presenting results with multiple context variables, and for networks thatperform unsupervised utterance clustering.1.3 OutlineThis thesis is divided into two main parts. Chapters 2 through 4 present Bayesiannetworks as a general tool for modeling stochastic processes. Chapter 2 describes a rangeof current methods for stochastic modeling, and places Bayesian networks in that context.Chapter 3 describes in detail the algorithms that are necessary for inference and learning inBayesian networks. In this chapter, special attention is given to the requirements imposed bythe speci�c application of speech recognition, including the ability to do online recognition.Chapter 4 presents a set of experimental results that illustrate the bene�ts of using factoredrepresentations of probability distributions.



CHAPTER 1. INTRODUCTION 8The second half of the thesis applies Bayesian networks speci�cally to the problemof speech recognition. Chapter 5 presents background material on speech recognition, andillustrates the use of the standard stochastic modeling techniques introduced in Chapter 2in this area. Chapter 6 shows how to structure Bayesian networks speci�cally to do speechrecognition. The chapter begins by showing how to encode �nite state pronunciation modelsof the type used by HMMs and ANN/HMM hybrids in Bayesian networks. Then we presenta set of Bayesian network structures designed to address di�erent issues in ASR. Chapter7 presents experimental results that indicate that signi�cant bene�ts can accrue from moredetailed models of speech generation.



9
Chapter 2Probabilistic Models for TemporalProcesses2.1 OverviewThe purpose of this chapter is to describe the main approaches that have been usedto model stochastic processes in the past, and to describe the use of Bayesian networks inthis context. The stochastic processes we will be concerned with generate a sequence ofobservable quantities, or observations, as they evolve over time in a non-deterministic way.Although stochastic processes occur in a large range of application areas, there are a numberof common themes, and the modeling methods fall into a well-developed taxonomy. Theprincipal distinctions are:� Continuous-time vs. discrete-time processes. Continuous time processes occur nat-urally in many models of physical systems. Discrete time models can be used asapproximations to continuous models, and also occur naturally in many areas of eco-nomics, communications and computer science.� Use of hidden state. Many time-series modeling techniques work exclusively withobservable quantities. More complex techniques posit the existence of a hidden un-derlying state, whose value determines in some way the observed quantities.



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 10� Continuous-state vs. discrete-state processes. Again, when modeling physical sys-tems, continuous state variables are often most appropriate, whereas discrete statevariables are more appropriate in other areas.� Continuous vs. discrete observables. This distinction is analogous to the dichotomyin hidden state types.An example of a completely continuous stochastic process is the trajectory of a ball whenthrown in the air and bu�eted by the wind. An example of a completely discrete processis the sequence of dice rolls in a backgammon game. In this chapter, we will be concernedwith hidden-state, discrete-time modeling techniques that are applicable to systems withboth discrete and continuous variables. The standard techniques we will examine are hiddenMarkov models, Kalman �lters, and neural networks.A key feature of the methods we will study is that they all have probabilisticinterpretations, and may be used to generate one or more of the following:� The likeliest hidden state value(s) at each point in time.� A marginal posterior distribution over the hidden state values.� The probability of an observation sequence.Furthermore, the models make the �rst-order Markovian assumption that the present stateis conditionally independent of the entire past given the immediately preceding state. Thisenables a factorization of the joint distribution as the product of localized factors, each ofwhich involves variables from no more than two time-slices.A �nal key point of similarity is that the modeling techniques all have associatedlearning procedures by which their parameters can be adjusted. This adjustment is usuallydone according to the principle of maximum likelihood: the model parameters � are ad-justed to maximize the probability that a collection of data D was generated by the model:�� = argmax� P (Dj�), where �� is the optimal set of parameter values. Neural networksdi�er from the other approaches in this respect because there are a variety of di�erentcriteria that are used.We turn now to a more speci�c discussion of the di�erent techniques.



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 112.2 Hidden Markov ModelsHidden Markov models (HMMs) are a powerful modeling technique for discretestate processes (Baum et al. 1970; Baker 1975; Jelinek 1976; Rabiner & Juang 1986). Thebasic idea of a hidden Markov model is that the observation sequence o is generated by asystem that can exist in one of a �nite number of states. At each time-step, the systemmakes a transition from the state it is in to another state, and the emits an observablequantity according to a state-speci�c probability distribution. More precisely, a hiddenMarkov model is de�ned by the following things:1. A set of possible states Q = Si qi.2. A state transition matrix A where aij is the probability of making a transition fromstate qi to state qj .3. A prior distribution over the state of the system at an initial point in time.4. A state-conditioned probability distribution over observations. That is, a speci�cationof P (ojqi) for every state and all possible observations.The observation sequence modeled by the HMM may be either discrete or continuous innature, but because of the transition matrix, the state space is required to be discrete. Hid-den Markov models have been used in a wide variety of application �elds, with great suc-cess. Examples include gene prediction, protein secondary-structure prediction, handwritingrecognition, and speech recognition (Hu et al. 1996; Bengio et al. 1995; Karplus et al. 1997;Krogh et al. 1994; Levinson et al. 1983; Kulp et al. 1996).The use of HMMs is well-illustrated by a (simpli�ed) example from computationalbiology: the problem of predicting whether a region of DNA codes for a gene. The DNAin the chromosome of a higher animal falls into one of two categories: it either codes fora protein, and can be used by a cell as a template for constructing that protein, or it isextraneous with respect to protein coding. The former regions are referred to as exons,and the latter as introns. Introns are \spliced out" of a DNA strand in the process oftranscription. The ability to recognize exons is signi�cant to biologists because it allowsthem to identify and study regions of biological signi�cance. An HMM can be used tomodel this distinction by assuming that the DNA sequence is generated by a system that



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 12essentially acts like a typist. The system can either be in the state of \typing out" a gene, orof \typing out" a non-coding region. When in the gene-producing state, base pairs from theset fA;C; T;Gg are emitted with characteristic frequencies. When in the intron state, thecharacteristic frequencies are di�erent. The HMM is \trained" to learn these characteristicfrequencies, and the probability of switching from one region to another, with examplesof DNA where the coding and non-coding regions are known. Using this information, theHMM can �nd the likeliest partitioning of an unknown sequence into coding and noncodingregions. A more sophisticated approach that has been found to produce good results inpractice can be found in (Kulp et al. 1996).2.2.1 VariationsThe HMM methodology has been quite successful, and this is indicated by a largenumber of variations that have been explored. One approach, used by researchers at IBM,is to associate output distributions with transitions, rather than states. Ostensibly, this hasthe e�ect of squaring the number of output distributions; in fact, the two approaches areformally equivalent (Jelinek 1997).The assumption of time-invariant transition probabilities implies an exponentiallydecreasing a-priori distribution over durations, but in cases where this is undesirable, itis possible to explicitly model the state durations. A particularly elegant parametric rep-resentation based on the gamma distribution is discussed in (Levinson 1986); the gammafunction looks like a skewed Gaussian, and is de�ned for positive durations. Related work ispresented in (Russell & Moore 1985). Although more sophisticated transition probabilitiescan give a better �t to the data, it is often the case that the behavior of the model isdominated by the observation probabilities.Another important variation deals with the modeling of autoregressive observa-tion sequences. The assumption behind autoregressive HMMs (Poritz 1982) is that it isreasonable to model the output yt at time t as a linear combination of the immediatelypreceding values. The precise assumption is that the observation stream is real-valued,and yt = Pk1 akyt�k + ut. The term ut represents a normally distributed error term, andthe ai are autoregressive coe�cients. Essentially, this model tries to predict the currentobservation from the past k observations. Since the errors are assumed to be normally



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 13distributed with some standard deviation �, the probability of a particular error can becomputed as 1p2��exp(ut=2�2). The errors are also assumed to be independent and iden-tically distributed, so that the probability of a sequence of observations can be computedfrom the product of their individual probabilities. The idea behind an autoregressive HMMis to associate a set of predictor coe�cients with each state, and compute the observationprobability from the prediction errors. This type of model is extended to autoregressivemixtures in (Juang & Rabiner 1985).This sampling of HMM variations shows that one must be careful in de�ning anHMM. That said, in this thesis, the term HMM will be used to refer to the \plain vanilla"kinds of HMMs described in early papers (Baum et al. 1970; Baker 1975; Jelinek 1976),and now de�ned in standard texts (Rabiner & Juang 1993; Deller et al. 1993; Lee 1989;Jelinek 1997). The only signi�cant di�erence between the formulations found in thesesources is the question of state vs. transition emissions, which is universally agreed to beirrelevant.2.2.2 AlgorithmsWe now turn to the algorithms that are available for use with HMMs. Denote a�xed length observation sequence by o = (o1; o2; : : : ; on) and a corresponding state sequenceby q = (q1; q2; : : : ; qn). An HMM de�nes a joint probability distribution over observationsequences as follows:P (o) = Xq P (q)P (ojq)= Xq P (q1)P (q2jq1) � � �P (qnjqn�1)P (o1jq1)P (o2jq2) � � �P (onjqn)= Xq P (q1)P (o1jq1) nYi=2P (qijqi�1)P (oijqi)The value of P (qijqi�1) is speci�ed in the state transition matrix, and the value of P (oijqi) isspeci�ed by the observation distributions associated with the HMM.We denote the assertionthat the state of the system at time t was qi by Qt = qi. There are e�cient algorithms(Rabiner & Juang 1986) for computing the following quantities:1. P (o) =Pq P (o;q): the probability of an observation sequence.



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 142. argmaxq P (o;q): the likeliest hidden state sequence given an observation sequence.3. argmax� P (Oj�): the optimal model parameters in the maximum likelihood sense.4. P (Qt = qijo); 8t; i: the marginal distribution over states at time t given an observationsequence.Since the algorithms themselves are well known, we do not present them here, and noteonly that the running time is in all cases proportional to njQj2.2.3 Kalman FiltersKalman �lters were developed in the 1960s to address the problem of estimatingthe state of a process with continuous hidden state variables. The paradigmatic use ofKalman �ltering is to infer the position of an airplane from a sequence of imperfect radarmeasurements. A Kalman �lter (Kalman 1960) assumes a stochastic process of the followingkind: qt+1 = Aqt + �tot = CqtThe state and observation variables, qt and ot are real-valued vectors, while A and C arereal-valued matrices; A governs the evolution of the state variables, while C relates the statevariables to the observations. The quantity �t is assumed to be drawn from a Gaussiannoise source with zero-mean and a �xed variance. There are many variations on the exactmathematical formulation, e.g. those found in (Goodwin & Sin 1984; Anderson & Moore1979). To give the 
avor of the matrices associated with Kalman �lters, q might consist ofentries for position, velocity, and acceleration; in this case, A would encode the Newtonianequations relating successive values for these quantities over a small time increment. Kalman�lters have found widespread use in �elds as diverse as engineering and economics (Dattellis& Cortina 1990; Blanchet et al. 1997; Manohar Rao 1987). In contrast to HMMs, Kalman�lters are most relevant when the hidden state is most naturally described by continuousvariables. Kalman �lters are also distinctive because they factor the hidden state into acombination of quantities, as indicated by the vector nature of the hidden state variable.



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 15Algorithms exist for computing the same quantities that can be computed with aHMM (Goodwin & Sin 1984; Anderson & Moore 1979). Moreover, the algorithms are highlye�cient with running times proportional to the amount of time required to multiply two d byd matrices, where d is the larger of the state and observation dimensions. Although it is notimmediately obvious that Kalman �lters can be applied to problems with a discrete-statecomponent, we will see in chapter 5 that such an extension is possible.2.4 Neural NetworksOver the course of the last decade, neural networks have found widespread usein time-series modeling (Haykin 1994; Haykin 1996; Hertz et al. 1991). In the followingsections, we will describe three examples. The �rst two are based on extensions to multi-layer perceptrons (MLPs) using sigmoidal nonlinearities, while the third is based on theuse of Gaussian radial basis functions. In order to understand the application of MLPs totemporal processing, we will begin with a brief description of their functioning for problemsof static input-output mappings. For further details of these algorithms, the reader isreferred to the original articles, or to (Haykin 1994), which provides thorough summaries,and on which the next few sections are based.2.4.1 Multi-Layer PerceptronsThe basic unit of an MLP is the perceptron. A perceptron can be thought of asa nonlinear function, or processing unit, taking k real-valued inputs and producing a real-valued output. We will refer to the inputs by the vector y, and the output as v. The outputof a perceptron is given by v = '(w � y), where w is a real-valued \weight" vector, and'(x) is a nonlinear function, typically sigmoidal: '(x) = a1+exp(�x) , where a is a constantand often 1. In the case that there are several di�erent perceptrons each receiving the sameinput, we will denote them by vi = '(wi � y); note that each has its own weight vector.An MLP consists of several \layers" of perceptrons (see Figure 2.1). Each layerconsists of a collection of perceptrons, and the output of one layer forms the input to thenext. Thus, a single layer can be thought of as a function mapping an input vector y into ak-dimensional output vector v(y). The function is given by v(y) = (v1(y); v2(y) : : : ; vk(y)).In the case that there are several di�erent layers, we will denote them by vi(y), each of
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Hidden Layer:

SigmoidalFigure 2.1: A MLP with one hidden layer. The nodes are typically fully interconnectedbetween layers.which de�nes a distinct function. A f layer MLP relates its input y to its output z by thecomposition of the functions de�ned by each of its layers: z(y) = vf (vf�1(� � �(v1(y)))).The speci�cation of an MLP consists of the number of layers, the number ofperceptrons in each layer, and the weight vectors of each perceptron. Training consists ofadjusting the weight vectors so as to minimize the discrepancy between the network outputand some desired output for a set of training examples. Let zie be the value of the ith outputperceptron on the eth example, and let tie be the target value. There are two commonlyused measures of discrepancy or error E:1. Least squares: E =PePi(zie � tie)2.2. Cross entropy: PePi tielog( tiezie ) + (1 � tie)log( 1�tie1�zie ). This is appropriate when thetarget values represent a probability distribution.The standard learning techniques (Haykin 1994; Hertz et al. 1991; Bishop 1995) work bydoing gradient descent in weight space so as to minimize the error.2.4.2 Finite Impulse Response MLPsFinite impulse response MLPs, or FIR-MLPs, are a simple generalization of MLPsin which a standard MLP is presented with a succession of input vectors, and each of the
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Input(s)Figure 2.2: A RTR-NN.constituent perceptrons is endowed with a memory of its previous input values (Wan 1990;Haykin 1994). A temporal interpretation of this model results when successive input vectorscorrespond to successive instants in time.More speci�cally, each perceptron remembers the last p input values presented toit, so that the input at time t is e�ectively the concatenation of yt�p; yt�p+1; : : :yt�1; yt.The weight matrix is correspondingly enlarged. Algorithms for training FIR-MLPs can befound in (Wan 1990; Haykin 1994).FIR-MLPs are of interest because they are a general form of temporal modelingthat, in restricted form, has found widespread use in speech recognition. Examples of thiskind of network include the time-delay neural networks of (Lang & Hinton 1988; Waibelet al. 1989), and the MLPs described in (Bourlard & Morgan 1994). We will discuss theseapplications in more detail in Chapter 5.2.4.3 Recurrent NNsThe second broad class of neural networks for temporal processing are real-timerecurrent neural networks (RTR-NNs) of the type �rst described in (Williams & Zipser1989). Restricted versions of this kind of network have also found important application inspeech recognition (Robinson & Fallside 1991). The basic idea of a RTR-NN is to maintaina single layer of hidden nodes with sigmoidal nonlinearities; some of these nodes represent



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 18the output of the network, and others are used solely to encode state information. The inputto the hidden layer consists of an input vector concatenated with the values of the hiddennodes at the previous time step. This scheme is illustrated in Figure 2.2. The method of(Robinson & Fallside 1991) is the same, except that the output nodes do not feed back intothe network.RTR-NNs are similar to Kalman �lters in that they maintain a real-valued hiddenstate vector, whose value at time t is a function both of its previous value and some new inputto the system. RTR-NNs are signi�cantly di�erent, however, because whereas Kalman �lterswere developed to model a \dynamic system excited by an independent Gaussian randomprocess," (Kalman 1960), the input vector to a RTR-NN is not assumed to be Gaussiannoise, and the state at time t is related in a highly nonlinear way to both its previous valueand the current input vector.2.4.4 Radial Basis Function NetworksA radial basis function neural network (RBF-NN) works along completely di�erentlines from the sigmoid-based networks, but can also be used for temporal modeling. Thedistinguishing feature of RBF-NNs is that they are based on localized nonlinear functions,typically Gaussians. The idea is to form a two-layer network (see Figure 2.3) in which thenodes in the �rst layer take an input vector and compute Gaussian activations (Moody &Darken 1989): vi(y) = 1p2��i exp(�(y� �i)2=(2�2i ))Pj 1p2��j exp(�(y� �j)2=(2�2j )) :The values of the nodes in the second layer form the output of the network; each node inthis layer simply computes a linear combination of the values of the �rst-layer outputs:zj(y) =Xi Vi(y)wij;where zj(y) is the jth output and wij is a scalar weighting factor.Intuitively, the operation of a RBF-NN is easy to understand. The input space ispartitioned into regions by the Gaussian centers, and stereotypical output values for eachregion of the input space are stored by the weights connecting the hidden nodes to theoutput nodes. To the extent that more than one Gaussian is activated, the input vectorbelongs in more than one region, and the �nal output is determined by linear interpolation.
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Output Layer:

Linear activations

Hidden Layer:

Gaussian activations

Input LayerFigure 2.3: A radial basis function neural network. The �rst layer computes Gaussianactivations while the second layer is linear.One of the main advantages of RBF-NNs is the ease with which they can betrained. The means and variances of the Gaussians can be found by EM (Bishop 1995),and the weights on the second layer can be found by setting up and solving (in the leastsquares sense) a system of simultaneous equations that relate the Gaussian activations tothe target outputs for each of the input vectors (Haykin 1994; Bishop 1995).RBF-NNs can be used for time-series modeling by treating each of the sequencesin the training data as a multiplicity of static training examples. For example, consider thetime-series x1; x2; : : : ; xn, and suppose we want to predict xk from xk�p : : :xk�1. We canturn this into something amenable to a RBF-NN by creating a distinct training pattern fromeach point-in-time: ((xj�p; : : : ; xj�1); xj); n � j > p. The network can be trained to predictthese static patterns, and then used to predict unknown values from unseen segments ofa similar time series. This method has been used by (Moody & Darken 1989) to predictchaotic time-series, and improved on by (Stokbro et al. 1990).2.5 Dynamic Bayesian NetworksBefore turning to Bayesian networks, we pause to consider the methods for tem-poral processing discussed so far. While all the methods maintain a hidden state represen-



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 20tation and operate in the discrete time domain, there are very signi�cant di�erences andlimitations. It is convenient to consider these along the axes of linearity, interpretability,factorization, and extensibility.Linearity. The Kalman �ltering technique is fundamentally linear: it assumesthat successive states are related by a linear transform, and that the state and observationvariables are related by a linear transform. Although various schemes have been developedto model nonlinear systems with Kalman �lters (Anderson & Moore 1979), they tend tobe complex and of limited applicability. In contrast, both HMMs and NNs are naturallysuited to model nonlinear processes. In HMMs, this capability derives from the arbitraryconditional probabilities that can be associated with both the transmission and emissionmatrices, or with functional representations thereof. In the case of NNs, it derives from theuse of nonlinear activation functions.Interpretability. The Kalman �lter is probably the most interpretable of themodeling techniques we have discussed. In many applications, the matrices involved aredesigned by hand to re
ect known physical laws. The parameters associated with HMMs areinterpretable in so far as they are clearly labeled as \transition" or \emission" probabilities,but the states of an HMM do not always have a clear interpretation, especially after training.Neural networks are the least interpretable because often the hidden units are not assignedany meaning, either before or after training. There are exceptions, however, see e.g. (Towell& Shavlik 1993).Factorization. There is wide variation in the degree of factorization imposed bythe di�erent modeling techniques, and the variability is increased by the degree to whichone is willing to modify \plain vanilla" systems. The simplest case to deal with is Kalman�lters, where the vectorized state and observation representation are inherently factored.To the extent that the matrices are sparse, the factorization also leads to a reduced numberof parameters.Basic neural networks are factorized in the sense that state is represented in adistributed fashion by a large number of nodes; but, if there is complete interconnectionbetween the nodes in successive layers, the number of parameters is quadratic in the numberof states, and scalability is severely limited. (Pruning techniques and weight-decay can beused to counteract this: see, e.g. (Le Cun et al. 1990; Scalettar & Zee 1988).) A greaterdegree of structure can be imposed by breaking a large network into a combination of



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 21smaller networks. For example, a system to recognize handwritten digits (Le Cun et al.1989) decomposes the units in the hidden layers into several separate groups, and does notuse a complete interconnection between layers. Moreover, the weights of di�erent groupsare constrained to be the same (i.e. there is parameter tying), further reducing the numberof free parameters. Hierarchical network construction algorithms (Frean 1990; Fahlman &Lebiere 1990) achieve a factored representation by carefully building a hierarchical structurein which the nodes in successive layers are carefully added to correct the mistakes of theprevious layer; again, complete interconnection is avoided. The mixture of experts structurepresented in (Jacobs & Jordan 1991; Jacobs et al. 1991) is similar: small neural networkscan be trained as local \experts," and their outputs combined in a principled way to formthe output of the entire system. In (Jordan 1992), this scheme is extended to hierarchicallyorganized networks of experts.In the �eld of speech recognition, factored neural net approaches have been used bya number of researchers. In (Morgan & Bourlard 1992), a method is presented for factoringa neural net so that it computes P (A;BjC) asP (A;BjC) = P (AjC)P (BjA;C):A separate neural net is used to compute each of the factors, and this scheme reducesthe number of parameters in the output layer, without requiring statistical independenceassumptions. This method is extended and applied to a large-scale speech recognition task in(Cohen et al. 1992); clearly, a factorization into more than two components is also possible.The work of (Fritsch 1997) uses a hierarchy of ANNs to represent a probability distributionin a factored way. These schemes indicate that parameter-reducing factorization techniquescan be applied to neural networks.In the standard de�nitions, HMMs are fundamentally unfactored: if the state ofthe system consists of a combination of factors, it cannot be represented concisely this in themethodology. With e�ort, however, it is again possible to create HMM systems in which thestates implicitly represent the combination of multiple distinct pieces of information. Thisis the case in, for example, HMM-decomposition (Varga & Moore 1990) which implicitlymodels both a noise source and a speech source, and in the articulatory HMMs of (Deng &Erler 1992). It should be noted that although these schemes achieve a parameter reduction,there is no corresponding reduction in computational requirements.



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 22Extensibility. Neural networks are extremely extensible, and can be proven tobe universal function approximators; a simple explanation for this can be found in (Lapedes& Farber 1988). Kalman �lters are also quite extensible because the state and observationvariables are vectors; thus system complexity can be increased by increasing the dimension-ality of these vectors. This 
exibility is modulated, however, by the underlying assumptionof linearity. Hidden Markov models are somewhat limited in their extensibility by thefact that the main way of increasing their complexity is simply to increase the number ofstates. This can be awkward when the overall state of the system is actually composed ofa combination of separately identi�able factors.In the following sections, we will see that Bayesian networks, and their tempo-ral counterparts, dynamic Bayesian networks, combine most of the advantages of HMMs,Kalman �lters, and NNs, while avoiding many of their limitations.2.5.1 Bayesian NetworksIn recent years, probabilistic or Bayesian networks (Pearl 1988) have emerged asthe primary method for representing and manipulating probabilistic information in the AIcommunity. These networks can be used to represent either static events, such as the co-occurrence of a set of diseases and symptoms, or to represent temporal processes such asthe motion of an automobile in tra�c.A probabilistic network represents the joint probability distribution of a set ofrandom variables fX1; : : : ; Xng. Denoting the assignment of a speci�c value to a variableby a lower-case letter, the probability of a joint assignment of values is speci�ed withthe chain rule and a set of conditional independence assumptions as: P (x1; : : : ; xn) =Qi P (xijParents(Xi)). Here Parents(Xi) refers to a subset of the variables X1 : : :Xi�1;given values for its parents, Xi is assumed to be conditionally independent of all otherlower-indexed variables. The conditional probabilities associated with each variable areoften stored in tables referred to as CPTs. A Bayesian network has a convenient graphicalrepresentation in which the variables appear as nodes, and a variable's parents are speci�edby the arcs leading into it, see Figure 2.4.As an example of a Bayesian network, consider Figure 2.4. This network relatesasbestos exposure to medical symptoms that can be observed, through two underlying dis-
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P(Bronchitis | Asbestos) = 0.1
P(Bronchitis | not Asbestos) = 0.01
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BronchitisLung Cancer

Short-of-Breath Headaches
(False)(True)

Asbestos Exposure

B C

Figure 2.4: A Bayesian network. The shaded nodes represent variables whose values areobserved. Each variable has an associated conditional probability table (or equivalent func-tional representation) that speci�es a distribution over values, conditioned on the values ofthe variable's parents.eases. The set of variables in this case is: \asbestos exposure," \lung cancer," \bronchitis,"\shortness-of-breath," and \headaches." These are all binary variables, though in generalthe variables can take many values or be continuous. For referential convenience, the vari-ables have also been given single-letter abbreviations. The factorization that this networkencodes is: P (a; b; c; d; e) = P (a)P (bja)P (cja)P (djb; c)P (ejc):As with the other techniques we have discussed, there are well-known algorithmsfor computing with Bayesian networks (Pearl 1988; Heckerman 1995), and these procedureswill be covered in more detail in Chapter 3.It is usually the case that knowledge of a variable's parents does not completelydetermine the value of the variable; we refer to such variables as stochastic. There areimportant exceptions, however, where a variable's parents completely determine its value,and we refer to such variables as deterministic. When this is the case, large gains in e�ciencycan result from using a sparse encoding of the conditional probabilities; this will emerge asan important issue in the application of Bayesian networks to speech recognition in Chapter6.



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 242.5.2 Dynamic Bayesian NetworksIn the dynamic case, a probabilistic network models a system as it evolves overtime (Dean & Kanazawa 1988). At each point in time, a set of variables X1; : : : ; Xn are ofinterest. For example, to model car-driving, lane-position and speed are relevant. A DBNuses a set of variables X ti to represent the value of the ith quantity at time t. DBNs arealso time-invariant so that the topology of the network is a repeating structure, and theCPTs do not change with time. The joint probability distribution is then represented asQi;t P (xtijParents(X ti )). In networks with the �rst-order Markov property, the parents ofa variable in timeslice t must occur in either slice t or t � 1. The conditional distributionswithin and between slices are repeated for all t > 0, so that DBNs can be speci�ed simply bygiving two slices and the links between them. When applied to an observation sequence ofa given length, the DBN is \unrolled" to produce a probabilistic network of the appropriatesize to accommodate the observations.The top of Figure 2.5 illustrates a generic DBN unrolled to show �ve time steps.The variables are divided into state variables, whose values are unknown, and observationvariables, whose values are known. The state variables evolve in time according to a modelencoded in their CPTs, which we refer to as the state evolution model. The state variablesare related to the observation variables by the CPTs of the observation nodes. The bottomof Figure 2.5 shows a more realistic DBN in which the hidden state has been factored.In this example, the observation stream is conditioned on the hidden state vari-able(s), and the same model could be expressed implicitly, but with less computationale�ciency, as a factored HMM. It should be noted that this is not always the case; for exam-ple, with a DBN it is possible to condition the hidden state variables on the observations,thus resulting in a fundamentally di�erent model.2.5.3 Strengths of DBNsDynamic Bayesian networks are ideally suited for modeling temporal processes. Interms of the qualities mentioned earlier, DBNs have the following advantages:1. Nonlinearity. By using a tabular representation of conditional probabilities, it is quiteeasy to represent arbitrary nonlinear phenomena; moreover, it is possible to do e�cient
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observation sequence

state evolution model

observation sequence

state sequence

observation-generation model

factored state
representationFigure 2.5: Top: A simple DBN, \unrolled" to show �ve time steps. Bottom: A DBN witha factored state representation. The factored representation can describe the evolution ofan equal number of total states with exponentially fewer parameters.computation with DBNs even when the variables are continuous and the conditionalprobabilities are represented by Gaussians - see, e.g. (Shachter & Kenley 1989).2. Interpretability. Each variable represents a speci�c concept.3. Factorization. The joint distribution is factorized as much as possible. This leads to:� Statistical e�ciency. Compared to an unfactored HMM with an equal num-ber of possible states, a DBN with a factored state representation and sparseconnections between variables will require exponentially fewer parameters.� Computational e�ciency. Depending of the exact graph topology, the reductionin model parameters may be re
ected in a reduction in running time.4. Extensibility. DBNs can handle large numbers of variables, provided the graph struc-ture is sparse.Finally, DBNs have a precise and well-understood probabilistic semantics. The combinationof theoretical underpinning, expressiveness, and e�ciency bode well for the future of DBNsin many application areas.



CHAPTER 2. PROBABILISTIC MODELS FOR TEMPORAL PROCESSES 262.6 DiscussionThis chapter has presented thumbnail sketches of several important techniquesfor modeling stochastic processes. For comprehensibility, it is useful to present somewhatstereotyped descriptions of the di�erent methods, thus exaggerating their di�erences. It isalso important to realize that the methodologies are neither mutually exclusive, nor com-pletely distinct. In its simpler forms, the DBN framework merges into the HMM framework;conversely, as implicit factorization is added to the HMM framework, it blends with theDBN methodology. Hybrid approaches are also possible, for example one might encodethe conditional probabilities required by a DBN with a small neural network; the resultingsystem would then consist of a large number of relatively small neural networks organizedwith a coherent large-scale structure, and endowed with a natural probabilistic semantics.This is similar to the approach proposed in (Fritsch 1997) for phone classi�cation in speechrecognition.
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Chapter 3Inference and Learning withDBNsIn this chapter, we present inference and learning algorithms for DBNs, with spe-cial attention to the requirements imposed by the speech recognition task. These require-ments, which will be discussed more fully in Chapter 6 are:1. that the procedures be extremely e�cient in networks that include both stochasticand deterministic variables, and2. that variable-length observation sequences are dealt with e�ciently.Although there are well-known procedures for doing inference in Bayesian net-works, e.g. (Pearl 1988; Lauritzen & Spiegelhalter 1988; Jensen et al. 1990), we presentalgorithms in some detail because� the special requirements of speech recognition have not been dealt with before, and� the simple dynamic programming formulation we present is more appropriate forimplementation than the usual message-passing formulation.The algorithm we use for inference in a tree is an improvement on that presentedin (Peot & Shachter 1991). Inference in general graphs is most often done by clusteringtogether groups of variables in the original graph into \cliques." These cliques are then



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 28joined together into a tree structure known as a clique tree, and a special set of inferenceroutines are derived (Lauritzen & Spiegelhalter 1988; Jensen et al. 1990). In this chapter, wepresent a novel derivation of the clique tree procedure that retains the simple tree-inferencealgorithm, and uses a change of variables to convert an arbitrary Bayesian network intoan equivalent tree-structured one. The derivation proceeds to speci�c algorithms from anaxiomatic statement of the requirements that must be satis�ed for two Bayesian networksto represent the same probability distribution.The main points of this chapter are:1. A simple statement of inference in a tree in terms of dynamic programming. This islacking in the literature.2. A novel derivation of clique tree inference in terms of a change of variables.3. A novel method for propagating the constraints of deterministic variables through aclique tree so that inference with deterministic variables is highly e�cient. In con-trast to previous methods, this procedure exploits evidence on a case-by-case basis.Triangulation routines that enable the procedure are presented.4. Novel procedures for handling variable length observation sequences are presented.These procedures are useful for o�ine inference and learning.5. A novel method for online inference is presented. This scheme can easily be combinedwith beam-search to maintain a small set of highly likely hypotheses in an onlinemanner.Where relevant, we present a short comparison with analogous issues in HMMs; this com-parison brings the issues into sharper relief, and clari�es the di�erences between the method-ologies.3.1 Inference on a TreeThis section presents an inference algorithm for the case where the variables in aBayesian network are connected together in a tree-structured graph.
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iFigure 3.1: A tree of variables. The partitioning of the evidence is shown for Xi.3.1.1 De�nitionsFor each variable Xi we de�ne three mutually exclusive sets of assignments: e0i ; e�i ,and e+i . e0i is the observed value of Xi in the case that Xi is an evidence variable. e�i is theset of observed values for the evidence variables in the subtrees rooted in Xi's children. e+iis the set of observed values for all other evidence variables. The partitioning is shown inFigure 3.1. In the case that e0i 6= �, an assignment Xi = j is consistent with the evidenceif it matches the assignment in e0i , and all other assignments are inconsistent. If e0i = �,we say that all values of Xi are consistent with the evidence. We denote the set of valuesfor Xi that are consistent with the evidence by CON(i).Note thatP (e; Xi = j) = P (e0i ; e�i ; e+i ; Xi = j)= P (e+i ; Xi = j)P (e�i ; e0i je+i ; Xi = j)= P (e+i ; Xi = j)P (e�i ; e0i jXi = j)If Xi = j is inconsistent with the evidence, i.e. contradicts e0i , then P (e�i ; e0i jXi =j) = 0. In the inference procedure, the following two key quantities will be calculated foreach variable Xi:



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 30� �ij = P (e�i ; e0i jXi = j)� �ij = P (e+i ; Xi = j).It follows from these de�nitions that� P (Observations) =Pj �ij � �ij ; 8i.� P (Xi = jjObservations) = �ij��ijPj �ij��ij ; 8i.Hence, once the �s and �s are calculated, we can determine the probability of theobservations, and the marginal posterior probabilities for all of the variables.3.1.2 AlgorithmThe � probabilities will be calculated in a bottom up pass over the tree, and thenthe � probabilities will be calculated from the �s in a top-down pass. The algorithm isgiven in Figure 3.2.The likeliest assignment of values to the variables can be found with a simplemodi�cation to this algorithm. In the bottom-up pass, the �s are computed as before,except that the sum over f is replaced by a maximization over f . The maximizing f valueis stored for each of the children and for each �ij . Then the �s are calculated for the rootas in the �rst step of the top-down pass. At this point, the likeliest assignment to the rootvariable Xr can be computed as argmaxj �rj � �rj . By starting at the root and recursivelylooking up the maximizing values for the children, the remainder of the variables can beassigned values.There are a couple of things to note. First, in the calculation of the �s, the sumover f can be modi�ed to read sumf2CON(c). This is because �cf = 0; 8f =2 CON(c). Thisis advantageous since no values need to be stored for the �s that are inconsistent with theevidence. Secondly, �ij needs only be stored for j 2 CON(i), and can be implicitly assumedto be 0 otherwise. This will have no e�ect on any results because 1) in computationsinvolving Xi itself, �ij will be multiplied by �ij, which is 0 for j =2 CON(i); and, 2) in therecursive computation of �s for Xi's children, inconsistent values are ignored. Again, aspace savings can result from doing this.
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Algorithm Inference()for each variable Xi in postorderif Xi is a leaf�ij = 1; 8j consistent with the evidence;�ij = 0; otherwise:else�ij = Qc2children(Xi)Pf �cf �P (Xc = f jXi = j); 8j consistent with the evidence;�ij = 0; otherwise:for each variable Xi in preorderif Xi is the root�ij = P (Xi = j)else let Xp be the parent of Xi�ij =Pv2CON(p)P (Xi = jjXp = v)��pv�Qs2siblings(Xi)Pf �sf �P (Xs = f jXp = v)Figure 3.2: Inference in a tree.
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TimeFigure 3.3: A chain structured graph. A two-dimensional grid is an adequate data structurefor computing the �s and �s for a chain. In this case, the �s are analogous to HMM �s andthe �s are analogous to �s. The diagonal arrows in the grid show the values that are usedto compute the � and � values for a particular cell.3.1.3 Comparison with HMM InferenceRecall that HMMs deal with a set of states Q = Si qi and an observation sequenceo1; o2; : : :on. In HMM inference, the following quantities are computed (Rabiner & Juang1986): �t(i) = P (o1; o2; : : :ot; qt = i)�t(i) = P (ot+1; ot+2; : : :onjqt = i):These are analogous to the �s and �s respectively, with the di�erence that we have as-sociated the evidence at time t with the � rather than the �; this makes the Bayes netderivations slightly simpler, and is otherwise irrelevant. The bottom-up computation of the�s is analogous to the backwards �-recursion in HMMs, and the top-down computation ofthe �s is analogous to the forwards �-recursion. The analogy becomes precise for chain-



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 33structured Bayesian networks, when e+t corresponds with o1; o2; : : : ; ot�1, e�t correspondswith ot+1; ot+2; : : :on, and e0t corresponds with ot. The inference procedures for Bayesiannetworks are essentially identical to those for HMMs when the underlying graph is a chain;when the graph is a real tree, however, and has side-branches emerging from the main back-bone, the two are substantially di�erent. The analogy between HMM and DBN inferenceis illustrated in Figure 3.3.Viterbi decoding in an HMM is usually done with a modi�ed forward recursion. Inchain-structured DBNs, a similar procedure can be used. In general, however, the modi�edbackward procedure is necessary. This is because the forward recursion in a tree-structuredgraph cannot proceed without already knowing the �s. The root cause of this is thatfor a variable \hanging" o� the main backbone of a chain, e+i includes evidence from alltimeslices. Therefore, the �s for this variable cannot possibly be computed without lookinginto the future. The implications of this are discussed further in Section 3.7.3.1.4 A SpeedupLet Xp denote the parent of Xi. If we de�ne � iv as� iv =Xf �if � P (Xi = f jXp = v)we may rewrite �ij for non-leaf variables as�ij = Yc2children(Xi) � cjand �ij as�ij = Xv2CON(p)P (Xi = jjXp = v) � �pv � Ys2siblings(Xi)Xf �sf � P (Xs = f jXp = v)= Xv2CON(p)P (Xi = jjXp = v) � �pv � �pv=� ivHence if the � -factors contributing to each � are stored in the bottom up pass, the productsover siblings can be constructed with a division.In the case that � iv = 0 in the calculation of �ij , no update is necessary. This is incontrast to the original algorithm of (Peot & Shachter 1991) which computes the productover siblings from scratch in this case. This change makes the code slightly simpler, andimproves the running time when this case occurs.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 343.1.5 Proof of SpeedupThe proof of correctness is inductive. We begin by noting that a � computed byXi is only used by Xi and its children, and therefore only relevant to those variables. Wewill show that1. The only way an error can be made is in the calculation of a child's � value.2. Either the child's �s are correctly calculated, or the a�ected terms have � -factorswhich themselves are 0. This implies an inductive chain in which �s can only bemiscalculated for leaf variables. But since errors can only occur in a child's �, and aleaf variable has no children, the calculation is sound.The proof is given in more detail below.Theorem 3.1 The omission of terms for which � iv = Pf �if � P (Xi = f jXp = v) = 0 isirrelevant.Proof Without loss of generality, consider the calculation of �ij :�ij = Xv2CON(p)P (Xi = jjXp = v) � �pv � Ys2siblings(Xi)Xf �sf � P (Xs = f jXp = v):Suppose a value of v is encountered for which� iv =Xf �if � P (Xi = f jXp = v) = 0:First note that Pf �if � P (Xi = f jXp = v) = 0 implies �if � P (Xi = f jXp = v) =0; 8f . In particular, �ij �P (Xi = jjXp = v) = 0, so either �ij = 0 or P (Xi = jjXp = v) = 0.If P (Xi = jjXp = v) = 0, the product over siblings is irrelevant because it will bemultiplied by 0. Omitting the term does not result in error, and neither values associatedwith Xi nor its children will be a�ected.If �ij = 0 we must consider �rst the e�ects of miscomputing �ij on future cal-culations regarding both Xi and its children. There are no e�ects on future calculations



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 35regarding Xi because whenever �ij is used (e.g. to calculate marginals) it will be multipliedby �ij . Thus far we have shown that omitting the term can only a�ect future calculationsregarding Xi's children, and never calculations regarding Xi itself. This implies that if Xiis a leaf, the omission is safe. Furthermore, the children can only be a�ected when �ij = 0.Now suppose �ij = 0 and consider a child Xc computing some � value �cw.�cw = Xv2CON(i)P (Xc = wjXi = v) � �iv � Ys2siblings(Xc)Xf �sf � P (Xs = f jXi = v)Since we are considering the results of a miscomputation of �ij , the only e�ect onthe computation of �cw occurs when v = j. If j =2 CON(i), there is no contribution to thesum, so a miscomputed �ij is irrelevant. Otherwise, the term involved isP (Xc = wjXi = j) � �ij � Ys2siblings(Xc)Xf �sf � P (Xs = f jXi = j)= P (Xc = wjXi = j) � �ij � �ij=� cj� P (Xc = wjXi = j) � �ij � �ij=(Xf �cf � P (Xc = f jXi = j))Since �ij = 0, we know by its de�nition that(Xf �cf � P (Xc = f jXi = j)) � Ys2siblings(Xc)Xf �sf � P (Xs = f jXi = j) = 0Either one of the factors over siblings is 0 or the parenthesized factor is 0.If one of the factors over siblings is 0, the miscomputed value of �ij is multipliedby 0, rendering it inconsequential. In the case that the parenthesized factor is 0, we havediscovered a term in the calculation of �cw for which the � -factor is 0. This term willbe omitted, and we have already shown that omitting it can only a�ect Xc's children.This establishes an inductive chain in which harmless omissions are made; the chain mustterminate at a leaf variable, where the omissions are again harmless.3.2 Inference in General GraphsThe algorithm presented in section 3.1 works only in tree-structured graphs. Inthis section, we present a technique for doing inference in graphs with arbitrary topology.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 36The method of attack is to use a change-of variables. We will de�ne a new tree-structurednetwork in terms of a new set of variables in such a way that the new network representsexactly the same joint probability distribution as the old network. We will then be able touse the simple tree-inference algorithm.3.2.1 Equivalent Representations of Probability DistributionsSuppose we have two Bayesian networks N and N 0 over the sets of variables XandX0 respectively. Let xi denote a joint assignment of values to the variables in X, and letx0i denote a joint assignment of values to the variables in X0. Let � be the set of all possiblejoint assignments of values to the variables in X; i.e. � = [i xi. Let �0 be the set of allpossible joint assignments of values to the variables in X0; i.e. �0 = [i x0i. Assume withoutloss of generality that j �0 j >= j � j. Let �� denote a subset of �0 such that j �� j = j � j. Wewill use P to represent probabilities associated with N , and P 0 to represent those associatedwith N 0.Theorem 3.2N 0 represents the same distribution as N if the following conditions are met:1. There is a one-to-one correspondence between the members of � and the members of��. For notational convenience, let xi be associated with x�i .2. For each such pairing, P (xi) = P 0(x�i ).3. For all joint assignments x0i 2 �0 n ��, P 0(x0i ) = 0.Proof. These conditions imply that the sum or max over any subset of � can becomputed by performing the same operation on a well-de�ned subset of �0 .3.2.2 Inference with Trees of Composite VariablesIn this section, we will derive the clique tree inference algorithms (Lauritzen &Spiegelhalter 1988; Jensen et al. 1990) from the principles set out in section 3.2.1. We willstructure the derivation by satisfying each requirement of Theorem 3.2 in turn.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 37Correspondence RequirementThe variables in the tree will be de�ned to represent subsets of the variables inthe original network. Each composite variable ranges over the Cartesian product of thevariables in the subset associated with it. This creates the one-to-one mapping from eachjoint assignment in the original network to a joint assignment in the tree.Equal Probability RequirementWe will now add a further stipulation that each variable in the original networkmust occur together with its parents in at least one of the composite variables. We maythus \assign" each variable in the original network to a composite variable Ci in which itoccurs with its parents. Let Fi represent the variables in the original network that areassigned to Ci. Let Cp and Cc denote two composite variables in a parent-child relationshipin the tree. De�ne P 0(Cc = ijCp = j) to be QXk2Fi P (xk jParents(Xk)), with xk andParents(Xk) implied by i. In the case of a composite variable Cr with no parents, de�neP 0(Cr = i) in to be QXk2Fi P (xkjParents(Xk)), with xk and Parents(Xk) implied by i. Inthe case that Fi = ;, the conditional probabilities are de�ned to be 1, unless i and j implyinconsistent values for shared variables, in which case the conditional probability is 0 (seebelow). These de�nitions ensure equality between the individual factors used to computethe probability of a joint assignment in the two representations, and thus guarantee thatP 0(x�i ) = P (xi) for all xi 2 �. Operationally the required condition can be ensured by theprocess conventionally known as \moralization".Zero Probability RequirementThere are more possible joint assignments to the composite variables than to theoriginal variables. However, each of the assignments to the composite variables for whichthere is no analog in the original network must imply the simultaneous assignment of in-consistent values to at least one of the original variables. (This follows from the one-to-onemapping in which there occurs a x�i for every possible xi. Thus any excess assignments in�0 must correspond to invalid assignments in the original network.)To satisfy the �nal requirement, we will impose two further stipulations.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 381. We will de�ne P (Cc = ijCp = j) = 0 if i and j imply inconsistent values for sharedvariables.2. We will require that the members of the composite variables satisfy the running in-tersection property: if two variables from the original network occur in any pair ofcomposite variables, they also occur in every composite variable along the path con-necting the two.To see that this is su�cient, it su�ces to realize that all inconsistencies must involve either:1. two occurrences of an original variable in composite variables that are in a parent-childrelationship, or2. two occurrences of an original variable in composite variables that are separated byother composite variables.The �rst requirement ensures that all inconsistencies of the �rst variety receive zero prob-ability; the second requirement ensures that all inconsistencies of the second type implyan inconsistency of the �rst kind, and therefore receive zero probability. Operationally,the running intersection requirement can be satis�ed by the process of triangulation (Rose1970).3.2.3 Summary of Inference in a Clique TreeThe variables in a clique tree represent subsets of the original variables. Algorith-mically, the most natural way to view these subsets is as new variables. Each new clique-variable can take a distinct value for every possible assignment of values to its members.Each variable in the original network is assigned to a single clique in which it occurs withits parents (when there are several such cliques, and an arbitrary choice may be made). Theinference procedure outlined in Section 3.1 works on clique trees with the following changeof variables:� e0i is the set of observed values for the evidence variables assigned to clique Ci.� e�i is the set of observed values for the evidence variables assigned to cliques in thesubtrees rooted in Ci's children.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 39� e+i is the set of observed values for all other evidence variables.� �ij = P (e�i jCi = j)� �ij = P (e+i ; Ci = j).� Fi is the set of variables assigned to Ci.� P (Cc = ijCp = j) = 0 if i and j imply inconsistent values for shared variables.Otherwise, if Fi 6= ;,{ P (Cc = ijCp = j) = QXk2Fi P (xk jParents(Xk)), with xk and Parents(Xk)implied by i.{ P (Cr = i) = QXk2Fi P (xkjParents(Xk)), with xk and Parents(Xk) implied byi.� Otherwise, (Fi = ;), any remaining conditional probability is de�ned to be 1.SeparatorsIn an implementation, it is also bene�cial to introduce separator variables betweeneach pair of parent-child cliques. These separator variables represent the variables in fCp\Ccg. The value of a separator's parent uniquely de�nes the separator's value, and theconditional probability of a separator taking its one allowed value given its parent's valueis always 1. The inference algorithm remains unchanged; the separators simply representextra variables which have the same status as any other variables. This view of separatorcliques is quite di�erent from that taken in (Lauritzen & Spiegelhalter 1988; Jensen et al.1990) where separators play a fundamental role in representing the probability distribution.The use of separators can have a dramatic e�ect on running time since the workdone for each clique is proportional to the number of values it can take multiplied by thenumber of values its parent can take, subject to the consistency constraints imposed byshared variables. For example, suppose there is a network consisting of variables A;B;Cand D, which take a; b; c and d values respectively. In a clique tree consisting of the cliquesfA;B;Cg and fB;C;Dg, the introduction of a separator-variable representing fB;Cg re-duces the work from a � b � c � d to a � b � c + b � c � d.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 403.3 Fast Inference with Deterministic Variables3.3.1 MotivationWe will see that modeling word pronunciations with a Bayesian network requiresthe extensive use of deterministic variables. In contrast to regular stochastic variables,deterministic ones impose signi�cant constraints, and in order to achieve e�cient inference,these must be addressed.There will be a further complication in that the deterministic relationships willchange on a word-by-word basis. Essentially, the same network structure will be \repro-grammed" on a word-by-word basis to do the dynamic programming that is appropriatefor that word model. Thus, it is not possible to determine the repercussions of the deter-ministic relationships just once in a network-compilation stage, as is done typically, e.g. inthe HUGIN system (A/S 1995). The HUGIN approach also su�ers from the serious 
awthat it �rst tabulates and stores every possible clique value, and then throws away the onesthat can be proven to have zero probability. The space required for this approach can beprohibitive in networks with a large number of deterministic relationships.A �nal point is that the possible clique values will in general vary depending on thepattern of evidence observed. Thus any static compilation scheme is bound to miss somee�ciencies that a dynamic scheme will be able to identify and exploit on a case-by-casebasis. Therefore, our approach is to structure the network so that the possible clique valuescan be swiftly enumerated on demand.3.3.2 ApproachThe basic approach is to do a preorder traversal of the tree and recursively identifythe values that are legal for a child clique, given the just-computed legal values of the parent.Since neighboring cliques typically share variables, it is usually the case that knowing thepossible values of the parent clique signi�cantly reduces the set of possible values for a childclique. Examination of the inference procedures shows that all the loops are of the form\for each value of a parent clique and for each value of a child clique, do a handful ofmultiplications and additions." Thus, once the legal values of a child are identi�ed for each



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 41of the possible parent values, the inference loops can be made considerably more e�cientby iteration just over the subset of values that are possible, given the known facts anddeterministic relationships.Deterministic variables impose a constraint on the feasibility of this approach:in order to resolve the legal values in a single pass, it is necessary that the �rst timea deterministic variable appears in a clique, its parents also be present. Without thisconstraint, the (unique) value of a deterministic variable cannot necessarily be resolvedwhen it is �rst encountered. This property is a fundamental requirement, and we restate itas follows:Immediate Resolution Property IRP: In a preorder traversal of a clique tree, each deter-ministic variable �rst appears in a clique with all its parents. This is equivalent to theStrong Clique Tree property of (Jensen et al. 1994) for in
uence diagrams with decisionvariables.In Section 3.4 we will present a method for constructing trees with this property.First, however, we will describe how the property can be used to e�ciently enumerate thepossible clique values.3.3.3 Enumerating the Legal Clique ValuesOnce a clique tree satisfying IRP is set up, there is a simple procedure for iden-tifying the legal values of each clique. High-level pseudocode for the procedure is given inFigure 3.4.The IRP property guarantees that if a deterministic variable is present in Ci, itsvalue can be immediately determined.3.3.4 Discussion of Time and Space RequirementsEnumerating Possible Clique ValuesConsider two cliques Cp and Cc in a parent-child relationship. The legal valuesof Cc can be found by recursively instantiating the variables in fCc n Cpg, for each of thelegal values of Cp, in a depth-�rst manner. Clearly, the space required is proportional tothe number of values which are �nally stored (and some negligible stack overhead). In the
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Algorithm Enumerate Legal Values()for each clique Ci in preorderif Ci is the root CrEnumerate all the values j for which P (Cr = j) 6= 0.else let Cp be Ci's parentif Ci is a separatorFor each legal value k of Cp which represents a distinct instantiationof the variables in fCi \ Cpg, store a legal value j for Ci.Note that each parent value k maps onto a distinct child valuej = mapping(k), and P (Ci = mapping(k)jCp = k) = 1.else for each legal value k of Cpfor each combination of assignments to the variables in fCi nCpg,Generate a candidate value j corresponding to the now completeassignment of values to Ci's members.Store a legal value if P (Ci = jjCp = k) 6= 0.Figure 3.4: Enumerating the legal values of each clique.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 43worst case, the running time is proportional to the total number of possible assignments tothe variables in Cc.In general, however, the actual number of values enumerated will be smaller be-cause the legal values discovered for Cp will be a subset of the total possible values. Fur-thermore, if we instantiate the variables in fCc nCpg in topological order, the enumerationprocedure can be pruned as soon as there is some variable Xi 2 fCc n Cpg for whichP (xijParents(Xi)) = 0.Clique Tree InferenceLet dCi denote the degree of clique i; i.e. the total number of edges incidenton Ci including both incoming and outgoing edges. Let sCi denote the total number ofpossible values Ci can take. Once the possible clique values are enumerated, an examinationof the inference loops reveals that the running time of the actual inference procedure isO(PCi2Non�Separators dCisCi). This work is about evenly distributed between � and �calculations.This time bound is slightly more precise than, but in the worst case the same as, thethe bound presented in (Lauritzen & Spiegelhalter 1988). This bound cannot be improvedon by any procedure in which each clique transmits information to all its neighbors.3.4 A Tree-Building ProcedureIn our previous discussion, we have required clique trees to have the followingproperties:1) Running Intersection Property RIP: If any two cliques share a variable, all the cliquesalong the path joining them must also contain the variable.2) Moralization MORAL: Each variable in the original graph must occur in at least oneclique with its parents.3) Immediate Resolution Property IRP: In a preorder traversal of the tree, every deter-ministic variable is �rst encountered in a clique in which its parents are also present.To keep the number of cliques to a minimum consistent with RIP, it is also useful



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 44Algorithm Triangulate(graph, order)For each variable X in decreasing orderEliminate X : add edges between all the pairs of X 's lower-numbered neighbors.Figure 3.5: The triangulation algorithm.to enforce one further requirement:4) Maximal Clique PropertyMAC: The cliques in the clique tree correspond to the maximalcliques in a triangulation of the moralized Bayesian network.The tree-construction routines described in, for example, (Pearl 1988; Lauritzen& Spiegelhalter 1988; Jensen et al. 1990) guarantee RIP, MORAL, and MAC, but notIRP. In the following section we present an algorithm for constructing a clique tree thatsatis�es all four properties. We will �rst construct a tree satisfying RIP, MORAL, andIRP, and then systematically transform it until it satis�es MAC.The key to our algorithm is to produce a triangulated graph (Rose 1970; Pearl1988) by using an elimination sequence in which each deterministic variable is eliminatedbefore any of its parents. To ensure that variable length sequences can be e�ciently pro-cessed, we will also require that all the variables from time-slice i be eliminated before anyfrom slice i� 1. This produces a clique tree that is segmented into time-slices. The trian-gulation routine is itself from (Pearl 1988). In the following, a variable's \neighbors" arethe variables connected to it by any edge, including those introduced in the triangulationprocess.3.4.1 MoralizationForm an undirected version of the Bayesian network in which edges are addedbetween each variable's parents, if they are not already present (Pearl 1988).3.4.2 TriangulationThe triangulation algorithm is shown in Figure 3.5. It is from (Pearl 1988) andbuilds on original work by (Rose 1970).



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 45Algorithm Clique Tree(triangulated-graph)1. Form a clique for each variable and its lower-numbered neighbors.2. Order the cliques C1; C2; :::; Cn in increasing order according to the highest num-bered vertex in each clique.3. For each clique Y in increasing order� Identify the subset of its constituent variables that have occurred in lower-numbered cliques.� Find a lower-numbered clique X that contains this subset.� Make X the parent of Y .Figure 3.6: Clique tree formation.3.4.3 Tree FormationThe triangulation step is followed by a tree building procedure which is a combi-nation of those described in (Pearl 1988) and (Lauritzen & Spiegelhalter 1988). However,unlike the latter, we do not insist on working with maximal cliques. Instead, a clique isformed for every vertex in the original graph. This ensures that the resulting tree will haveRIP. 1 In contrast to (Lauritzen & Spiegelhalter 1988), the object of this procedure is togenerate a tree with directed edges. The procedure is shown in Figure 3.6.As we prove in section 3.4.6, the tree produced so far has RIP, MORAL, andIRP. The following procedure repeatedly modi�es the tree in such a way that RIP andIRP are maintained at each step, and MAC is guaranteed on termination. (Once thegraph is triangulated, the MORAL property cannot be lost.)3.4.4 Tree ReductionThe simplest possible algorithm for producing MAC is shown in Figure 3.7. Alinear-time recursive version of Condense() is shown in Figure 3.8. When called with theroot as the argument, it produces a fully transformed tree.1The example in the following section shows that if maximal cliques are used, RIP may be violated.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 46Algorithm Condense()repeatIdentify a child that is a superset of its parent.Contract the edge between the two and replace the parent by the child.until no child is a superset of its parent.Figure 3.7: Non-deterministic tree condensation.Algorithm Condense(Clique C)Initialize a queue with C's children.while the queue is not emptyRemove a child Ci.if Ci is a superset of CReplace C's members with Ci's members.Remove Ci from C's list of children.Add Ci's children to the queue and to C's list of children.for each child Cj of CCondense(Cj).Figure 3.8: A linear time algorithm for producing MAC.3.4.5 An ExampleFigure 3.13 shows a Bayesian network, a clique tree for this network, and severalintermediate stages in the tree-construction process. The original network is shown in theupper-left corner. The variables are numbered for use in the elimination sequence. Thetriangulated graph after elimination in reverse order is shown in the upper-right corner.The cliques corresponding to the elimination of each vertex are:f1g; f2; 1g; f3; 2; 1g; f4; 3; 2; 1g; f5; 4; 3; 1g; f6; 2; 1g; f7; 4; 3; 2; 1g:The tree produced by the initial construction procedure is shown in the lower-left corner.When Condense executes, the edge to f2; 1g is contracted �rst, followed by the edge to
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5,4,3,1 6,2,1Figure 3.9: A Bayesian network and its clique tree.f3; 2; 1g and the one to f4; 3; 2; 1g. This produces the intermediate tree shown. Finally, theedge to f7; 4; 3; 2; 1g is contracted, producing the output tree.Note that the tree construction process will not work if the maximal cliquesf5; 4; 3; 1g; f6; 2; 1g; f7; 4; 3; 2; 1gare used directly as its input: the addition of the last clique will violate RIP. Hence it isnecessary to construct a full initial tree, and then condense it. This issue has apparentlybeen overlooked in the literature, e.g. (Pearl 1988; Lauritzen & Spiegelhalter 1988), perhapsbecause a maximum cardinality search is intended to be used to renumber the verticesafter triangulation. In other cases, e.g. (Jensen et al. 1994), there is no renumbering. Themaximum spanning tree algorithm presented in (Jensen & Jensen 1994) for generating aclique tree from a collection of cliques does not have this problem, but is di�cult to extendto trees with IRP.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 483.4.6 Correctness of the Tree-Building ProcedureWe have established that clique trees which satisfy RIP, MORAL, and MACare acceptable representations of the underlying Bayesian network. We show the correctnessof our algorithms by establishing that the output trees have these properties. First we notethat the moralization and elimination processes will produce a triangulated graph in whichMORAL is satis�ed. We then show that the tree building procedure satis�es RIP andfurthermore that IRP is satis�ed. We end by showing that the condensation procedureensures MAC without violating RIP or IRP.Moralization and TriangulationIt is proven in (Rose 1970) that an arbitrary elimination ordering will produce avalid triangulation. Furthermore, since moralization induces a clique on each family, thewhole family is guaranteed to occur together in the clique that is generated when the �rstof its members is eliminated.Proof of RIPLemma 3.1 After step 2 of Clique Tree, all the variables in a clique C which have oc-curred in earlier numbered cliques can be found together in a single clique other than C.Proof. Consider the subset of variables U that has occurred earlier. Since U induces asubgraph on a clique C, the vertices of U themselves form a clique. Consider the highestnumbered vertex in U , X . The previously processed clique resulting from X 's eliminationwill contain all the other members of U .Theorem 3.3 Algorithm Clique Tree produces a tree with RIP.Proof. The proof is inductive. Consider an arbitrary variable Xi. The base case is whenthe �rst clique containing Xi is added to the tree. Clearly the property holds at this point.Now consider the addition of a new clique Cj containing Xi to the tree. By Lemma 3.1,we know that Cj can be added, and by construction it will be joined to a clique that alsocontains Xi. Hence RIP is maintained at each step.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 49Proof of IRPTheorem 3.4 Algorithm Clique Tree produces a tree with IRP.Proof. The elimination of a variable X generates a clique C in which X is the highestnumbered variable. Therefore when the cliques are ordered by their highest numberedmember, the �rst clique in which X occurs is the one it generated when it was eliminated.When X is a deterministic variable, the restriction on the elimination ordering ensures thatthis clique contains X 's parents. An earlier-occurring clique will be selected as C's parent.Since all further cliques containing X must be descendants of C (in order to have as a parenta clique in which all previously seen vertices occur), C will be the �rst clique encounteredin a preorder traversal.Proof of Condense()Lemma 3.2 When Clique Tree terminates, all the supersets of a clique Ci will be de-scendants of Ci.Proof. Let Cj be a superset of Ci. Consider Xj , the highest numbered variable in fCj nCig.In order for Xj not to be present in Ci, Xj must be higher numbered than any member ofCi. Hence Cj will occur after Ci in the clique ordering and be added as a descendant.Lemma 3.3 If a superset of clique Ci exists, then Ci has an immediate descendant that isa superset.Proof. Suppose there is a clique Cj that is a superset of Ci, and that Cj is a descendantof Ci, but not an immediate descendant. (By Lemma 3.2, it must be a descendant of somesort.) Let Ck be the �rst clique encountered on the path from Ci to Cj. If Ck is not asuperset of Ci, then there exists some member of Ci which is present in Ci and Cj but notCk. This violates RIP, which was established in theorem 2.Theorem 3.5 Condense() guarantees a tree with RIP, IRP, and MAC.Proof. The proof of correctness for Algorithm Condense proceeds as follows:



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 501. We show that after each step RIP holds.2. We show that after each step IRP holds.3. We show that upon termination MAC holds.Proof of Part 1: At each step of the algorithm, a child clique Cc replaces a parent clique,Cp. Consider a path between two cliques Cx and Cy. There are four cases:1. The path goes through neither Cc nor Cp. In this case the contraction is irrelevant.2. The path goes through Cc only. In this case the contraction is acceptable because Ccis unchanged.3. The path goes through Cp only. In this case the contraction is acceptable because Cpis replaced by a superset.4. The path goes through both Cc and Cp. In this case the contraction is acceptablebecause any variable that was previously present in both Cc and Cp will still be presentin Cc.Proof of Part 2: Let Cp be replaced by Cc. Consider a clique Ci in which variable Xi�rst appears. There are three cases:1. Ci is Cp. Here Cc will replace Cp as the �rst clique with Xi, but since Cc is a supersetof Cp, it will still have Xi's parents.2. Ci is Cc. This is acceptable because Cc remains the �rst clique encountered with Xi.3. Ci is neither Cc nor Cp. Since all the other cliques with Xi are rooted in Ci, thepreorder relationship is unaltered.Proof of Part 3: Suppose that on termination of Condense there exists a clique Cj thatis a superset of clique Ci. By Lemma 3.3, Ci must have an immediate descendant that is asuperset, thus violating Condense's termination condition.The linear-time recursive version of Condense is correct because each step in thewhile loop is a legal contraction. Furthermore, when the while loop terminates none ofC's descendants can be a superset of C without violating either the termination conditionor RIP.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 513.5 Comparison with Other ApproachesWe pause here to brie
y describe other approaches to inference in Bayesian net-works and their relationship the scheme presented here. Historically, there have been twomain approaches to doing inference: exact algorithms, and stochastic simulation algorithms.The exact algorithms all attempt to make the required summations tractable through theuse of dynamic programming. Stochastic simulation algorithms produce approximate an-swers by sampling a representative subset of the terms. The problem of inference in Bayesiannetworks is NP-hard (Cooper 1990), and recently it has been shown that even producinganswers that are accurate to within a �xed fraction is equally di�cult (Dagum & Luby1993). This suggests that the choice of an inference algorithm should not be made once-and-for-all, but should be done with the particular characteristics of a speci�c network andtask in mind.Exact InferenceThe simplest algorithms for exact inference, and the only ones whose running timesare linear in the size of the underlying graph, work with graphs that induce an undirectedtree. Algorithms for this kind of graph can be found in (Pearl 1988) and (Peot & Shachter1991), and the basic algorithm of 3.1 is an expression of this explicitly in terms of dynamicprogramming. When loops are present in the underlying graph, the inference problem isfundamentally more di�cult. As we have seen, loops are typically handled by transformingthe input graph in some way so that an inference procedure for trees can be used.The simplest method of dealing with graphs that contain loops is known as cutsetconditioning (Pearl 1988). In this approach, cycles in the underlying graph are broken byassuming a known value for one of the variables in the cycle. A set of variables such thatevery (undirected) cycle has at least one variable in the set is known as a cutset. The treealgorithm is run once for every possible assignment of values to the variables in the cutset,and the results are combined. Obviously, a small cutset is necessary for this approach tobe feasible.A second method, and the most widely used, is to somehow agglomerate theunderlying variables into mega-variables in such a way that the mega-variables form a tree.The join-tree algorithms (Lauritzen & Spiegelhalter 1988; Jensen et al. 1990) are the most



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 52widely used of this sort. The agglomeration is done through the process of moralizationand triangulation. Although the subsequent calculations boil down to essentially the oneswe presented in Section 3.2, the terminology and intermediate derivations di�er.Stochastic SimulationStochastic simulation schemes approximate a sum such as P (o) = Ps P (o; s) bysumming over a small subset of the terms. The simplest of these schemes, logic sampling(Henrion 1988), generates full instantiations of the network by assigning values to the vari-ables in topological order, each according to the distribution speci�ed by the assignmentto its parents. Statistics conditioned on certain events are computed by computing thedesired frequencies in the samples conforming to the conditions. This scheme has the severedisadvantage that many simulations may be required before one is generated that matchesthe speci�ed conditions or evidence.Likelihood weighting (Shachter & Peot 1989) is a more re�ned version of logicsampling, in which evidence nodes are always instantiated to their observed values. Byweighting each simulation by an appropriate quantity, unbiased statistics can be computed.Likelihood weighting is the workhorse of simulation schemes, and is described in detail by(Dagum & Luby 1997).There are several approximation algorithms based on sampling a Markov chain inwhich the states represent joint instantiations of the variables (Chavez & Cooper 1990b;Chavez & Cooper 1990a; Pearl 1988). Although bounds can sometimes be provided forthese and the other simulation schemes, there are always cases in which they are bound tofail. Unfortunately, the bounds break down when extreme probabilities, i.e. probabilitiesarbitrarily close to 0 and 1, are present in the network (Dagum & Luby 1997). Theseare exactly the kind of probabilities needed to express pronunciation models in speechrecognition (see Chapter 5).Another problem with simulation algorithms arises with DBNs spanning manytime-slices. Intuitively, as one instantiates the network in a forward manner, it is possi-ble to generate samples all of which, though they seen reasonable at the current time, arerendered implausible by future evidence. In general (Dagum & Luby 1997), the numberof simulation runs required to achieve a �xed degree of accuracy is inversely proportional



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 53to the probability of the observations. Thus the number increases exponentially with thenumber of time-slices in the network. For example, the probability of a one-second utter-ance might be 10�1400 in a trained DBN. Note that the e�ciency of exact inference is nota�ected by the probability of the evidence. Two promising approaches to ameliorating thisproblem are arc reversal, in which arcs leading into evidence variables are reversed andthe necessary conditional probabilities recalculated, and \survival-of-the-�ttest" samplingin which samples having a low probability are replaced by likelier samples at each time-stepin the simulation (Kanazawa et al. 1995).3.6 Variable Length Observation Sequences3.6.1 MotivationIn order to compute the statistics necessary to learn parameter values, both �sand �s are required (see Section 3.8). Therefore, inference and learning must be done with aBayesian network that is as long as the observation sequence. Unfortunately, the utterancesvary in length across a wide range of values; there are two obvious ways of dealing withthis:1. On demand, unroll the network to the appropriate length for an utterance, moralizeit, triangulate it, and form a clique tree.2. Precompute and store a clique tree for every reasonable utterance length.The �rst solution is ine�cient in terms of computing time, and the second solution hopelesson the grounds of excessive memory requirements.In this section, we present an alternative in which a single clique tree of the max-imum possible length is precomputed, and spliced down to the appropriate length for anyparticular utterance. The operations involved boil down to some pointer-swapping, and asweep over the tree in which the numbering of the constituent variables of the cliques isadjusted. Note that this is not simply a question of truncating the tree. The cliques corre-sponding to the initial and �nal few slices of a �xed length Bayesian network are typicallydi�erent than the cliques corresponding to intermediate slices.
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Figure 3.10: Splicing a clique tree. The triangles represent non-repeating initial and �-nal portions of the clique tree. The rectangles represent repeating segments. Splicing isaccomplished by redirecting arcs connecting repeating segments.The procedure is based on the observation that, despite the fact that the initialand �nal segments of a clique tree may have an arbitrary structure, when ties are broken ina consistent manner, the clique tree creation algorithms will produce a tree with a repeatingintermediate structure. By identifying the beginning and ending of each of the repeatedsegments, it will be possible to e�ciently remove segments on demand. The basic ideacan be gleaned from Figure 3.10. An alternative approach to dealing with variable lengthsequences that focuses on generality, rather than e�ciency, can be found in (Kjaerul� 1992).Finally, we note that this section assumes that an entire utterance is available atthe start of the inference procedures. That makes the technique suitable for o�ine learning,and the recognition of isolated words. The subject of online recognition for continuousspeech is dealt with in Section 3.7.
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Repeating SegmentsFigure 3.11: Splicing terms de�ned.3.6.2 De�nitions and the Splicing AlgorithmIn order to reason about the clique trees that are used in conjunction with DBNs,it is useful to associate each clique in the tree with a speci�c time-slice in the underly-ing Bayesian network. We will associate each clique with earliest time-slice of any of itsconstituent variables, and say that a clique is \from" the time-slice of this variable. Forexample, a clique containing variables from time-slices 2 and 3 will be said to be \from"time-slice 2. We refer to the set of cliques from time-slice i as a \segment," and say thatthe segment is from time-slice i.Let the original Bayesian network have N slices. We will refer to the number ofvariables in a time-slice of the underlying network as S. We shall see that in the correspond-ing clique tree, any path from the root, which is from slice 1, to a clique with a memberfrom slice N , will be uniquely de�ned through segment N � 2. We refer to this unique pathas the backbone of the tree. Denote the repeating units by r1; : : :rk. We will assume thatthe cliques in the last repeating segment rk are from time slice w. The repeating segmentsare denoted by rectangles in Figure 3.11. We will refer to the unique arc along the backboneleaving ri as the \exit" from ri. The clique in segment ri+1 that is connected to the exitfrom ri is referred to as the entry clique for ri+1. We will refer to the cliques that occur inthe part of the tree rooted in rk's exit as the \tail." The tail is denoted by the rightmosttriangle in Figure 3.11. We will choose rk so that it is from slice N � 2 or earlier, thusensuring that the exit arcs are uniquely de�ned. Cliques that do not lie in a repeating unitor the tail are referred to collectively as the \head." These are represented by the leftmosttriangle in Figure 3.11.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 56Algorithm Splice(j: number of slices to remove)� Redirect the exit of rk�j to point to the exit of rk.� Renumber the variables occurring in the tail cliques by lowering their indices byj � S.� Recalculate the conditional probabilities for all the cliques.Figure 3.12: The splicing algorithm.The repeating segments have the following properties by de�nition:1. Segment ri contains exactly the cliques from a �xed time slice.2. Each clique Cg from ri; i = 2; : : :k has an analog Ag in segment ri�1:� The variables associated with Ag are the same as those associated with Cg, exceptthat their indices are less by S.� The parent of Cg is analogous to the parent of Ag , except possibly for the entryclique into r2. The restriction can be relaxed in this case because the entry arcinto r1 is never redirected to a later segment.� The indices of the variables in FAg are the same as those associated with FCg ,except that their indices are less by S.We will take the occurrence of a repeating structure for granted, subject to runtimeveri�cation. (Veri�cation is necessary because a repeating structure is not guaranteed toexist, e.g. if ties are broken randomly in the tree-creation process.)AlgorithmThe splicing algorithm to remove j time slices is shown in Figure 3.12.3.6.3 Proof of Splicing AlgorithmWe will show the correctness of the splicing algorithm by showing that the cliquetree produced is well-de�ned, and represents the same probability distribution as the short-



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 57ened Bayesian network. The proof will proceed in several stages:� First we will show that the arcs connecting the segments are unambiguously de�ned.� Then we will show that the requirements of section 3.2.1 are satis�ed.Proof of Uniqueness of Splicing ArcsThe proof will proceed in several steps. First we will establish some general prop-erties of clique trees. Then we will show that there is a path connecting the head to thetail, that it goes through a monotonically increasing sequence of segments, and �nally thatthere is only one path.Lemma 3.4 Each pair of variables A;B that are connected by an arc in the underlyingBayesian network will appear together in a clique.Proof. One of the variables, say A, must be higher-indexed than the other. When A iseliminated, B will be a lower-indexed neighbor, and will be added to A's clique.De�nition 3.1 A Bayesian network has the property of time-slice contiguousness when forevery pair of variables in time-slice k there is an (undirected) path connecting them that onlygoes through other variables from time-slice k. A clique tree has the property of time-slicecontiguousness when for every pair of cliques with any variables from time slice k, all thecliques along the path connecting them contain at least one variable from time-slice k.Theorem 3.6 Time-slice contiguousness in the underlying Bayesian network implies time-slice contiguousness in the resulting clique tree.Proof. Consider an arbitrary pair of cliques F and G, and let the �rst one contain variableA from slice k and the second one contain variable B from slice k. If A and B are thesame, the theorem is proved by RIP. Suppose A and B di�er. Let A and B be linked inthe underlying Bayesian network by the path A �X1; X1 �X2; : : : ; Xm � B where all thevariables in the path are in slice k. Locate the clique that contains the pair A � X1. ByLemma 3.4, the clique must exist. Proceed from F to this clique; by RIP, all the cliques onthis path must contain A and therefore a variable from slice k. Locate the clique with the



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 58pair X1�X2. Again, Lemma 3.4 ensures that it exists, and RIP ensures that it is connectedto the last clique by a path along which X1 (which is from slice k) occurs in every clique.Continue in this manner until the clique with Xm �B is reached. Now proceed to G. Thisprocess has visited all the clique along the path connecting F to G, and they all had avariable from k.Assumption 3.1 The underlying Bayesian network is time-slice contiguous.Assumption 3.2 All variables in time-slice i + 1 are higher indexed (in the eliminationsequence) than any variable in slice i. Since we are free to use any elimination sequence,this can be achieved.Assumption 3.3 The underlying Bayesian network has the Markov property, i.e. all theparents of a variable from time-slice i are either in slice i or i� 1.De�nition 3.2 The length of an edge between two variables in a Bayesian network is thedi�erence in the time-slice indexes of the variables. For example, the length of an edgebetween two variables in slice i is 0, and the length of an edge between a variable in slice iand a variable in slice i+ 1 is 1.Theorem 3.7 No clique contains variables from time-slices that di�er by more than 1.Proof. In the triangulated graph, a clique containing variables from more than two time-slices must have an edge of length 2 or more. We will show that this is impossible. Considerthe process of moralization and triangulation. Originally all edges have length 0 or 1, be-cause of the Markov property. Adding edges between parents in the process of moralizationcan only introduce edges of length 1, again because of the Markov property. Now considereliminating a variable from a graph whose edges are length 1 at most. Let the variable liein slice i. It can be connected to variables in slices i� 1, i, and i + 1. But by assumption3.2 and the triangulation algorithm, edges will only be introduced between variables fromslices i and i� 1. Hence only edges of length at most 1 are added, and a graph whose edgesare at most length 1 results from the operation. This holds at each step, so a clique withvariables spanning more than 2 time-slices cannot occur.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 59
root

from N-2backbone from N-1 from NFigure 3.13: The backbone of a clique tree.Assumption 3.4 The underlying Bayesian network is connected. By RIP and Lemma3.4, this implies that the intersection between neighboring cliques is nonempty.Lemma 3.5 Two adjacent cliques are always from the same slice or from slices that di�erby at most 1.Proof. Let the cliques share a variable from time-slice i. The biggest the minimum membercould be is i. The smallest the minimum member could be is i� 1 by Theorem 3.7. Thusthe greatest the di�erence can be is 1.Lemma 3.6 There is a directed path (the backbone) from the root of the clique tree, whichis from time-slice 1 by the tree-construction process, to any clique with a member from sliceN , and this terminating clique is from no earlier than slice N � 1.Proof. A variable from slice N must occur in some clique, and by Theorem 3.7, no otherconstituent variable can be from a slice earlier than N � 1. Since there is a directed pathfrom the root to every other clique, the path in question exists.Lemma 3.7 The backbone contains cliques from all the time-slices 1; 2; : : : ; N � 1.Proof. The path must proceed from a clique from slice 1 to one from slice at least N � 1,and by Lemma 3.5 it can only do so by steps of 1.Lemma 3.8 The minimum node in each clique along the backbone increases monotonically.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 60Proof. Consider the �rst violation along a path where this is not the case. By Lemma 3.5,the decrease must be by 1. The minimum variables encountered in the cliques along thispath must proceed in the sequence i; (i+ 1)+; i. This leads to a contradiction: by Theorem3.6, all the cliques in this part of the path would have to have variables from time-slice i,so a variable from i+ 1 could not be the minimum.Lemma 3.9 The backbone is uniquely de�ned up to the last clique encountered from N�2.Proof. The cliques with variables from slice N form a connected component by Theorem3.6. The same holds for cliques with variables from slices 1; : : : ; N � 2. These componentshave no intersection by Theorem 3.7. The backbone is one path connecting the root, whichis in one component, to the cliques in the other component. The existence of a second pathfrom the root to the variables from slice N would imply a cycle.Theorem 3.8 The edge along the backbone connecting a clique from slice i to one fromslice i+ 1; i � N � 2 de�nes a unique point in the tree.Proof. The backbone is unique up to this point by Lemma 3.9, and the minimum nodesin the cliques along this path increase monotonically by Lemma 3.8.We now turn to the question of whether the new clique tree represents the correctprobability distribution.Proof of RepresentationWe assume here that j � 1 slices are removed from the Bayesian network. Al-though it is not actually necessary to renumber the variables in the cliques from rk, this isconceptually useful, and we imagine doing it in the proofs.Theorem 3.9 The correspondence requirement and MORAL are satis�ed, i.e. each vari-able in the underlying Bayesian network from slice 1::N � j occurs in the new tree, andmoreover they all occur at least once with their families.Proof. We will show that



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 611. All the variables from slices 1; : : : ; w�j occur with their families in the cliques presentin the head through segment rk�j .2. All the nodes from slices w�j+1; : : : ; N�j occur with their families in the renumberedtail cliques and the renumbered rk cliques.Since rk's cliques have the same members and F sets after renumbering as rk�j (by thede�nition of analogous cliques), all the variables and their families are present in the splicedtree. The proofs of these two parts follow:1. All the variables from 1; : : : ; w � j must occur no later than rk�j , by the segmentde�nition and monotonicity (see also Figure 3.11). And they must occur with theirfamilies by MORAL in the original tree.2. All the variables from slices w + 1; : : : ; N occur, necessarily somewhere with theirfamilies, in the cliques in rk through the tail. After renumbering, the cliques in rkthrough the tail will contain all the variables from time-slices w� j+1; : : :N � j andtheir families, by de�nition of analogous cliques. Since the renumbered rk has cliqueswith the same variables and families as rk�j , the new tree, which has both rk�j andthe tail, will have all the variables in time slices w�j+1; : : : ; N�j and their families.Theorem 3.10 RIP is satis�ed in the new tree.Proof. RIP holds in head; : : : ; rk�j because this is a connected component of the originaltree. RIP holds in the renumbered segments rk; : : : tail by RIP in the original tree com-bined with a uniform o�set in numbering. RIP holds in the connection between rk�j andthe tail because the exit from rk�j has the same variables as the exit from the renumberedrk, and RIP holds between the exit of the renumbered rk and the renumbered tail.Theorem 3.11 IRP is satis�ed in the new tree.Proof. IRP holds in the original tree, and the splicing operation retains the relativeordering of all the remaining cliques.Theorem 3.12 The equal and zero probability requirements hold between the new underly-ing Bayesian network and the new clique tree.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 62Proof. The required probabilities are recalculated. Since each variable's family is present,equality can be achieved. Since the new tree has RIP, the zero-probability requirementcan be satis�ed. IRP ensures that deterministic variables can be handled as e�ciently asbefore.3.6.4 Comparison with HMMSVariable length observation sequences are not an issue with HMMs. This is becausecomputation is done on a homogeneous two-dimensional grid; every column of the grid isidentical. Therefore it is trivial to allocate a grid suitable for the longest possible utterance,and only use the portion that is needed for any particular utterance. The comparisonbetween DBNs and HMMs for online inference is presented in the following section.3.7 Online InferenceIn many applications, it is desirable to process a continuing stream of data in anonline fashion. For example, in speech recognition it is necessary to recognize words in realtime, before a person has �nished speaking. In these types of applications, it is not possibleto construct a complete clique tree to represent the utterance, because the total number offrames is unknown and too long a delay would be imposed by waiting until the end. Underthese circumstances, it is useful to do a Viterbi decoding in an online fashion.Under some circumstances, there is an additional constraint: the number of pos-sible clique values may be too large to handle in real time, or with the available memory.In speech recognition, this occurs when a Bayesian network is used to encode an entirelanguage model, and tens of thousands of words are possible at any point in time. Underthese circumstances, it is necessary to prune the set of hypotheses, and keep track only ofones that are reasonably likely. Typically a beam search is used, and this is straightforwardto incorporate into the forward pass of HMM inference (see, e.g. (Jelinek 1997)).With DBNs, however, the situation is more tricky. Recall that the likeliest assign-ment of values to the variables is computed with a bottom-up pass over the tree. Since theroot of the tree must be at time 0 in order to handle deterministic variables, this createsa problem: the bottom of the tree is extended as each new frame becomes available. This
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JEFigure 3.14: Two slices of a complex DBN; when reduced to a chain-structured tree, thecomputational requirements are signi�cantly lower than if a cross-product of the state valueswere used in a an HMM.means that the Viterbi decoding must be recomputed from scratch for the entire utteranceafter each frame. Clearly, this is prohibitive.There are two obvious ways around this, neither of which works:1. Compute the likeliest assignment of values in a top-down manner, rather than bottom-up. This does not work because the �s must be computed with reference to the �s,which are not available until the bottom-up pass is complete.2. Modify the tree-building procedure so that the bottom of the tree - rather than theroot - is at time 0. This has the 
aw that it becomes extremely cumbersome tokeep track of the clique values that are possible, given the constraints of deterministicvariables. Recall that this was done in a top-down manner, starting at the root.We now present two methods for online decoding.3.7.1 Chain DecodingThe �rst method comes from realizing that with chain-structured DBNs, it ispossible to compute the likeliest values with a forward sweep. When the Bayesian networkis a chain, the computation of �ij (for variable i with parent p) reduces to:�ij =Xv �pvP (Xi = jjXp = v):Since there is no reference to anything that must be computed in a bottom-up pass (speci�-cally to any �s), this quantity can be computed online in a top-down fashion. By maximizing



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 64over v, rather than summing, and keeping track of the best v for each �ij , the likeliest as-signment of values can also be recovered online. This is exactly analogous to online Viterbidecoding with HMMs (Rabiner & Juang 1993; Jelinek 1997). Finally, beam search canbe implemented by pruning away the least likely �ijs after each new frame. Since this isa top-down procedure and the root of the tree is still at time 0, it is straightforward tocombine with the procedure for propagating deterministic constraints.It is important to realize that in terms of computational requirements, a chain-structured DBN may be signi�cantly more e�cient than an HMM in which the state spacerepresents the cross-product of all the variables in a timeslice (even though both can berepresented by chain structures). This is because it is possible to \spread" the variablesfrom a single slice across many cliques in the chain. Figure 3.14 shows an example of this.A valid chain of cliques - that satis�es all the requirements of the previous sections - is:ABCDBCDBCDEBCDBCDFGCDFGCDFGHDFGHDFGHIGHIGHIJ Assuming that each of the hidden variables has f values, the compute time isproportional to f5. This compares favorably to the f8 requirement of a cross-productHMM, which results from the necessity of considering a transition from any of f4 states attime t to any of f4 states at time t + 1. In general, if there are k hidden variables in themiddle layer, the compute time is fk+2 as opposed to f2k+2. Finally, we note that this isnot a question of parameter tying; it is an unavoidable consequence of computing with across-product representation.The tree-building procedures presented in Section 3.4 generate trees, not necessar-ily chains. There are, however, simple ways of creating chain-structured \trees." A simpleand e�ective technique known as the frontier algorithm is presented in (Zweig 1996), alongwith specialized inference routines.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 653.7.2 Backbone DecodingThe second method for online decoding stems from two observations:1. The likeliest assignment of values can be recovered from a combination of � and �values.2. The side chains hanging o� the main backbone of the clique tree cannot extend morethan one timeslice into the future. 2This suggests the following process for extending the backbone of the clique tree, one cliqueat a time:1. Add the next clique along the backbone, and all the side-chains rooted in it. Sincea side-chain can have variables from up to two timeslices, it may be necessary tomaintain a bu�er of one frame in order to be able to assign values to all its members.2. Find the set of possible clique values by propagating forward the deterministic con-straints.3. Compute �s for the side-chain cliques:�ij = Yc2children(Xi)maxf �cf � P (Xc = f jXi = j):Store the maximizing f value.4. Compute �s for the new backbone clique. These require only �s that are alreadyavailable:�ij = maxv P (Xi = jjXp = v) � �pv � Ys2siblings(Xi)maxf �sf � P (Xs = f jXp = v)Store both the maximizing f and v values.Since the side chains are short compared to the entire tree, it makes sense simply to computeall the �s. Beam search can be done with the �s by retaining a subset. The likeliest2Suppose there is a backbone clique A from slice i, and a clique B from slice i+2 on a side-chain rootedin A. Now consider a clique C on the backbone that is from i+2. A and B are connected via the side chain,and A and C are connected by the backbone. By timeslice contiguousness, B and C must be connected bya chain of cliques with variables from i+ 2, but Theorem 3.7 excludes a path through A. Therefore, theremust be yet another path from B to C, and a cycle is implied.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 66assignment for the cliques on the backbone can be recovered by starting with the mostlikely value for the last clique on the backbone, and recursively looking up the maximizingvalues of its parent and siblings. The likeliest values for the side-chains can be recovered byproceeding top-down from the backbone and using the �s. This procedure has the drawbackof being signi�cantly more complicated than chain decoding. However, it is theoreticallymore e�cient since it does not impose any constraints on the tree structure. Since onlineinference is not explored further in this thesis, we do not reproduce the algorithm.3.8 LearningThere are two basic issues involved with learning Bayesian networks. The �rst con-cerns learning the structure of the network, and the second concerns learning the requiredconditional probabilities once the network structure has been selected (Heckerman 1995;Buntine 1994). Traditionally, these have been viewed as separate problems; early work onstructure learning (Cooper & Herskovits 1992) performed a greedy search over model struc-tures, and evaluated each candidate structure by learning optimal parameters for it. Morerecent work, (Friedman 1997), combines the two processes and changes the network struc-ture dynamically as the conditional probabilities are learned. In our work, the candidatestructures were generated manually to address speci�c issues.There are also two main approaches to learning the conditional probabilities �. Inboth cases, parameter adjustment is done according to the maximum likelihood principleto maximize the probability of a collection of observed data, i.e. argmax� P (oj�). The�rst method is that of gradient descent (Binder et al. 1997), and is applicable whenever thederivative of the data likelihood with respect to � can be computed. The second methodis the EM algorithm (Dempster et al. 1977), and is applicable when the conditional prob-abilities are represented by distributions in the exponential family. (The de�nition of theexponential family is complex (Buntine 1994), but it includes many common distributionssuch as the Gaussian, Chi-squared, and Gamma distributions). The gradient descent tech-niques have the advantage of greater generality, while the EM algorithm has the advantagesof simplicity and robustness. In the following sections, we will provide an overview of bothapproaches; in our implementation, we adopted the EM approach. One key similarity be-tween the two is that the information they require is computed with the inference routines.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 67Thus inference is a crucial step in parameter adjustment. Another similarity is that ingeneral, both are guaranteed to �nd only a local optimum in the parameter space.3.8.1 Gradient Descent TechniquesAn excellent review of gradient descent techniques applied to Bayesian networkscan be found in (Binder et al. 1997). Gradient descent can be thought of as moving apoint corresponding to the parameter values through parameter space so as to maximizethe likelihood function. The basic questions that must be answered are:� What direction to move?� How far to move?This is complicated by the fact that in many cases there are restrictions on the parametervalues. For example, if conditional probability tables are used, all the entries must liebetween zero and one. Furthermore, all the entries in a distribution must add to one.These constraints de�ne a feasible region in parameter space in which � must lie. Thus,the problem is one of constrained optimization.Gradient descent techniques move either in the direction of the gradient, or, inthe case of conjugate gradient techniques (Price 1992), in a conjugate direction. In (Binderet al. 1997), a derivation is given that shows the gradient to be a simple function of Nijk, thenumber of times that variable Xi has value k and its parents are found in the jth possiblecon�guration. Again, this issue is complicated, because the current parameter setting maylie on the boundary of the feasible region with the gradient pointing out of the region.This can be dealt with either by projecting the gradient onto the constraint surface, orre-parameterizing the conditional probabilities so the unconstrained optimization can beperformed on the new parameters (Binder et al. 1997).The simplest strategy for deciding how far to move is to move a �xed amount.More sophisticated techniques perform line search to maximize the likelihood along thedirection chosen. Once more, the question of constraints complicated both approaches. Forexample, if the likelihood is optimal and increasing at the point where the line intersectsthe feasible region, a decision must be made whether to recalculate the gradient at thatpoint, or continue the line search along a projected direction.



CHAPTER 3. INFERENCE AND LEARNING WITH DBNS 683.8.2 EMThe questions of what direction, and how much to move are answered simultane-ously by the EM algorithm. In the case of discrete CPTs, the crux of the EM algorithm isextremely simple: estimate Nijk , and then estimate �ijk , the probability that Xi = k giventhat its parents have instantiation j, as NijkPk Nijk (Lauritzen 1991; Heckerman 1995). Whenboth a variable and its parents have observed values, Nijk is obtained simply by counting.More commonly, there are some unknown values in which case inference is necessary. Thecalculations can be summarized as follows.Let Ci be the clique containing xi and its parents. Because of the MORALproperty, we know such a clique exists. LetVijk be the set of Ci's clique values correspondingto underlying variable assignments that include Xi = j; Parents(Xi) = k. Recall thatP (Ci = wjObservations) = �iw � �iwPw �iw � �iwNow, Nijk can be found by summing over the appropriate clique values:Nijk = Xw2Vijk P (Ci = wjObservations)Estimating Nijk from a collection of examples simply requires summing the individualestimates for each example. By maintaining the appropriate data structures, the counts forevery family can be computed in a single sweep over the cliques. EM has much to recommendit. The problem of constrained parameter values is nonexistent, and line searches areunnecessary. Where applicable, it is usually the method of choice.3.8.3 Comparison with HMMsIn general, the learning techniques for Bayesian networks are analogous to thelearning techniques for HMMs. In both cases, EM is the everyday workhorse. Under somecircumstances, however, gradient descent is required. For example, if a functional repre-sentation of conditional probabilities is used in a Bayesian network, it may not be possibleto derive EM update equations. Similarly, when optimization criteria other than maxi-mum likelihood are used in HMMs (such as minimum discrimination information (Ephraimet al. 1989) or maximum mutual information (Bahl et al. 1986)), it is necessary to resort togradient descent techniques.



69
Chapter 4DBNs and HMMs on Arti�cialProblems4.1 OverviewThis chapter presents a set of experiments demonstrating the advantages of afactored state representation. The experiments were done by generating data from a processthat consists of multiple loosely interacting state and observation variables, and learningmodels with both factored and unfactored representations. HMMs are used to encode theunfactored representations, and DBNs are used to encode the factored representations. Asexpected, using a factored representation provides a signi�cant advantage that increasesas the number of underlying variables increases. In practice, the state representation in amodel will never exactly match reality; therefore, experimental results are also presentedthat study the e�ect of learning with models that are either overly-simple or overly-complex.This data is adapted from (Zweig 1996), and further experiments can be found there.4.2 Converting DBNs to HMMsThere is a simple procedure for constructing an HMM from a DBN. Recall that adiscrete HMM is characterized by �ve quantities:1. The number of states.



CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 702. The number of observation symbols.3. Transition probabilities between states.4. Emission probabilities for observation symbols.5. A probability distribution on the initial states.Given a DBN, these quantities can be derived for an equivalent HMM as follows:1. The number of HMM states is equal to the the number of ways the DBN state nodescan be instantiated. For example, if there are k binary DBN state nodes, there are 2kHMM states.2. The number of HMM observation symbols is equal to the the number of ways theDBN observation nodes can be instantiated.3. To calculate the HMM transition probability from state i to state j, instantiate theDBN state nodes in a time slice t in the con�guration that corresponds to HMM statei. Instantiate the state nodes in slice t+ 1 in the con�guration that corresponds to j.Compute the product of the probabilities of the state nodes in slice t+ 1, given theirparents. This is the transition probability.4. Emission probabilities are calculated similarly, except that the state and observationnodes in a single time slice are instantiated.5. To calculate the probability of being in state i initially, instantiate the DBN statenodes in time slice 1 in the con�guration that corresponds to HMM state i. Computethe product of the probabilities of the state nodes in time slice 1, given their parents(if any). This is the desired prior.Note that this is a one-way transformation. There is no known way of takingan HMM and constructing the minimal equivalent DBN. It is straightforward to create anequivalent DBN in which there is a single hidden variable in each timeslice, with as manypossible values as there are HMM states. However, this representation is not necessarilyminimal in terms of the number of parameters or computational requirements. There maybe a much better equivalent factored representation.
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Figure 4.1: A 3 � 3 DBN and an equivalent HMM. Both have been unrolled four timesteps. The observation variables are boxed. The variables in the HMM can take on manymore values than those in the DBN: each state variable must have a distinct value for eachway the DBN's cluster of state variables can be instantiated. The same is true for theobservation nodes.4.3 Performance on a Family of Regular GraphsIn this section we compare the performance of DBNs and HMMs on a class ofregular graphs. Each of these graphs has k state nodes and k observation nodes; we refer tosuch graphs as k�k graphs. The state nodes within a time slice are connected in what wouldbe a cycle, except that one of the arcs is reversed. The observation nodes in a time slice areconnected to each other similarly. Each state node is also connected to the correspondingobservation node in its time slice, and to the corresponding state node in the next timeslice. A 3� 3 network is illustrated in Figure 4.1.The results were obtained by using a k � k DBN to generate training and testdata. A topologically correct DBN was used to learn the distribution, and an unfactoredHMM was constructed and trained with the same examples. All the variables were trinary,and the networks are initialized with random CPTs; the representations were initialized to
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Figure 4.2: Solution quality as a function of the number of training examples. The horizontalaxis is logscale. Large values represent good HMM performance.equivalent starting points. The results reported are averages of 5 problem instances. Testcases that had 0 probability (because a particular combination of observations was neverobserved in the training data) were assigned the arbitrarily low log-likelihood of �1000.Note that for a 1� 1 network, there is a one-to-one correspondence between parameters inthe HMM and the DBN, so identical performance is expected, and observed.Figure 4.2 compares the test-set log-likelihood as a function of the number oftraining examples. The ratio of the HMM's score to the DBN's score is plotted. Sincelog-likelihoods are negative, low ratios indicate bad performance on the part of the HMM.These results clearly indicate the superiority of the DBN representation on k � k graphs.The factored representation requires fewer parameters to represent the same distribution,and these results indicate that the factorization translates into better likelihood scores onthe test data. As expected, this advantage increases rapidly with k.Figure 4.3 compares the number of EM iterations required by the two algorithms.When few training examples are available, the DBN converges more rapidly, and to superiorsolutions.
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Figure 4.4: Time to process one example through one EM iteration. Times are shown fora DBN and analogous HMM. The horizontal axis shows k in a k � k network.Figure 4.4 shows the absolute amount of time required to process a single trainingexample through one iteration of EM. The total running time is linear in the number oftraining examples and the number of iterations. Note that unlike the data on the numberof iterations required, this data is implementation dependent.For a 1�1 network topology, the DBN and HMM are equivalent. Exactly the sameresults are generated. Since the DBN is a more general model, however, there is additionaloverhead, and the running time per example-iteration is about ten times greater. For a 4�4network, the running times are comparable, and the DBN is signi�cantly faster on a 5� 5network. This graph shows that the factored representation used by the DBN results in asigni�cant decrease in the computational load, compared to an unfactored representation.As discussed in Section 3.7, this is not a question of parameter tying, and cannot be avoidedwith a simple modi�cation to the HMM inference procedures.
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Figure 4.5: Solution quality as a function of the number of state nodes in the learnednetwork. Note that the lines for the simpler models lie to the left of the line generated whenthe correct network is used. This indicates a faster increase in the HMM's performance.4.3.1 Learning with an Incorrect ModelThis section examines the e�ects of using an incorrect number of states in thelearned model. The results show that an HMM bene�ts (in a relative sense) when toosimple a model is used, and is harmed when too complex a model is used.Another important issue is how the DBN's performance changes relative to thatof the generating model. This can be determined by calculating the test-set log-probabilitywith the model that generated the instances, and comparing this performance with that ofthe trained network. Here we �nd that when there are either too many or too few statenodes, performance is degraded.Learning with too few StatesFigure 4.5 shows relative solution quality as a function of training examples whentoo simple a training model is used. The data were generated with a 4 � 4 network, andlearned with 1� 4 and 2� 4 networks. In the 1� 4 network, the single state node in a time
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Figure 4.6: Log probability of the learned DBN model vs. log probability of the trainingmodel. The DBN's learning performance is degraded as the number of states in the learnedmodel decreases.slice was connected to all the observation nodes in that slice. In the 2� 4 network, each ofthe state nodes was connected to two observation nodes. The inter-state arcs were as in a2 � 2 network. The HMM had an equal number of states, and was started with the sametransition, emission, and initial-state probabilities as the DBN.Figure 4.5 shows that HMM performance increases more rapidly relative to DBNperformance when too few states are available in the learned model. Figure 4.6 focuses onthe DBN alone, and shows that learning requires more examples with too simple a network.Surprisingly, both a 1� 4 and 2� 4 network can closely approximate a 4� 4 network - butan examination of the tails of the distributions shows that their performance is never quiteas good.Learning with too many StatesFigure 4.7 shows relative solution quality as a function of training examples whentoo complex a training model is used. Training data was generated with 1 � 4 and 2 � 4
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Figure 4.7: Solution quality as a function of the number of state nodes in the learnednetwork. Note that the lines for the correct models lie to the left of the lines generatedwhen the over-complex network is used. This indicates a slower increase in the HMM'sperformance.networks, and learned with a 4� 4 network and its HMM analog. The performance impactin this case is the opposite of when too simple a model is used: the HMM takes longer toachieve equal performance.Figure 4.8 compares the performance of the learned network with that of thegenerating network. Once again, an incorrect state model hampers performance. However, aclose examination of the tail of the distribution shows that when su�cient training examplesare available, the performance of the over-complex model equals or exceeds that of thecorrect model.4.4 DiscussionThese experiments demonstrate that when a system consists of several state andobservation variables, a factored representation and the DBN inference procedures consti-tute a better modeling tool than an unfactored HMM. Although a factored HMM represen-
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CHAPTER 4. DBNS AND HMMS ON ARTIFICIAL PROBLEMS 79tation can be used to reduce the number of model parameters, inference with a cross-productrepresentation is signi�cantly more expensive than with DBN techniques, which are spe-cially designed for factored representations. In our experimental results, the di�erencesbetween HMMs and DBNs are most apparent when a small number of training examplesare used. There is a range in which a trained DBN will produce good log-likelihood scoreswith respect to the generating model, but a trained HMM will do poorly. Remarkably, theHMM will also require many more EM iterations to converge.In practice, models will have various kinds of inaccuracies, and it is important tostudy their e�ects on performance. We found that when there is too little state, an HMMsperformance improves relative to a DBNs. When too many states are in the model, anHMM is harmed. In the networks we studied, both kinds of model were able to do well ineither case - with a su�cient number of training examples.
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Chapter 5Speech RecognitionThis chapter provides background material on automatic speech recognition (ASR).We begin with an overview of the problem and the general approaches that have been usedto solve it. We then show in more detail how the techniques introduced in Chapter 2 canbe applied to ASR. Finally, we describe some of the outstanding problems.5.1 Overview5.1.1 The ProblemSimply put, the problem of automatic speech recognition (ASR) is to program acomputer to take digitized speech samples and print on the screen the words that a humanwould recognize when listening to the same sound. Over the course of the last �fty years,innumerable approaches to solving this problem have been developed, but despite theirvariety, it is possible to analyze them in terms of some common themes. There are severalfundamental problems that must be overcome in any speech recognition system:1. Acoustic representation. How will the information in the acoustic signal be repre-sented?2. Word representation. How will words be represented? Words are linguistic units, andas such could represent the atomic units in a recognition system. But words are alsocomposed of syllables and phonemes, and these can also be used as the atomic units.



CHAPTER 5. SPEECH RECOGNITION 81When a word can be pronounced in multiple ways, how will this be represented?3. Linkage. In order to do recognition, we must link the acoustic representation of thesignal to the word representations that derive from prior linguistic knowledge.4. Training. It is generally agreed that a human cannot program a computer to recog-nize speech without giving the computer access to a large number of speech samplesrepresenting known utterances. Instead, the linkage between acoustic and word rep-resentations must be made by examining many examples for which the association isknown. How exactly should this be done?5. Recognition. Once the recognizer is trained, how exactly can it be used to do recog-nition?In the following sections, issues are discussed in more detail.Acoustic RepresentationAs a �rst step in ASR, the acoustic signal is processed to extract features thatare higher-level than the raw sound wave itself. Although much early work was in
uencedby computational limitations, and therefore restricted to very simple mathematical modelssuch as linear predictive coding (Makhoul 1975), more recently there has been an emphasison models that are motivated by an understanding of the human auditory system (Davis& Mermelstein 1980; Ghitza 1991; Hermansky & Morgan 1994; Morgan et al. 1994). Sincetechnical details are abundant in other work, e.g. (Rabiner & Juang 1993; Deller et al.1993), and not central to our own, we will present only the basic ideas.Essentially all speech representations begin by breaking the signal up into shorttime-frames, and computing a spectral representation of each of the frames. These framesare typically 25-30ms long, and overlap by 50-75%. The length of the analysis window ischosen to be long enough that good spectral estimates can be obtained, but at time sametime short enough that each frame represents a stationary portion of the speech signal.In practice, the spectral representation is considerably massaged before it is used.Cepstral representations are particularly useful. The simplest form of cepstral representa-tion results from taking the cosine transform of the log of the original power spectrum. Theresulting representation has many desirable properties (Noll 1964), including the fact that
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Figure 5.1: Overlapping, triangular, nonlinear MFCC-style �lterbank. The peaks have aconstant spacing on the mel-frequency scale. The output of each �lter is a weighted sum ofthe sound energy in its frequency range.the low-order coe�cients tend to be correlated with the overall shape of the vocal tract,while the high-order coe�cients are correlated with the presence of voicing. Additionally,by subtracting the mean value from each cepstral coe�cient, it is possible to remove thee�ect of many telephone transmission characteristics (Mammone et al. 1996). Frequently,derivative features are computed from the basic cepstral representation. For example, therate of change of the di�erent cepstral coe�cients might be computed, or even the secondderivative.There are two basic approaches to representing the spectral information extractedin this �rst stage of processing. In the �rst and most common approach, the spectral featuresare simply concatenated together into one long acoustic feature vector for each frame. Othersystems use the method of vector-quantization instead (Linde et al. 1980). The basic ideaof vector quantization is to �nd a relatively small number (e.g. 256-1024) of stereotypicalspectra or cepstra. The spectrum of a frame can then be concisely represented by the indexof the stereotype it is closest to, rather than by a whole vector of real-values numbers. Thistypically results in a factor of 40 reduction in the amount of space required to represent



CHAPTER 5. SPEECH RECOGNITION 83a speech frame, and has the bene�t of considerably simplifying all future computation byallowing for a completely discrete acoustic representation. It has the disadvantage thatrepresentation by a stereotype is inherently less precise than a full characterization. Whenvector-quantization is used, it is common to quantize the di�erent spectral features (e.g.the cepstrum and its derivative) separately, and then to represent a speech frame by acombination of several vector indices (Lee 1989).In many recent approaches to acoustic processing, an e�ort is made to mimic theprocessing of the human auditory system. Mel-frequency spectral warping (Davis & Mer-melstein 1980) is illustrative. Mel-frequency cepstral coe�cients (MFCCs) are computedin much the same way as ordinary cepstral coe�cients, except that the power in di�erentfrequency ranges is added together to generate a \warped" spectral representation (see Fig-ure 5.1). Approximately 20 overlapping frequency bins are used, and they are nonlinearlyspaced. For example, the �rst frequency band might extend from 100 to 200Hz, while thelast might extend from 3200 to 3600Hz (for telephone-quality speech). This nonlinear spac-ing emphasizes the high frequency range in a manner that is similar to the human auditorysystem. MFCCs have proven quite e�ective, and are now one of the most widely usedspectral representations (Young 1996; Makhoul & Schwartz 1995).Word RepresentationThe simplest way to represent words is atomically. If this is possible, the acousticsof a particular utterance are directly related to the words in the vocabulary; in essence,the system maintains an explicit model of how every word should sound. These types ofsystems have the advantage that they are explicit and direct, and can easily model any word-speci�c phenomena. However, they have the fatal disadvantages that in large vocabularysystems the parameters of the word models cannot be reliably estimated from the smallnumber of examples that are commonly available. Therefore, their use is restricted mainlyto small-vocabulary \command-and-control" applications such as navigating and automatedhelp-systems. More sophisticated systems must use sub-word units as their atomic buildingblocks. The simplest subword units that can be used are syllables. Syllables are relativelyintuitive units that are often de�ned as consisting of a vowel and optional surrounding con-



CHAPTER 5. SPEECH RECOGNITION 84sonants. (There is no completely agreed on precise de�nition, however: see, e.g. (Ladefoged1993).) Unfortunately, there are still approximately 10,000 syllables in English (Rabiner &Juang 1993), so they su�er from some of the same drawbacks as whole word models. De-spite the fact that syllable-based units are relatively rare in English-language ASR, recentwork (Wu et al. 1997; Wu et al. 1998) indicates that they can be used e�ectively both ontheir own, and in combination with other schemes.The next most atomic linguistic unit is the phoneme. Loosely speaking, a phonemerepresents a maximal group of sounds that are similar enough to be used interchangeably.Languages can typically be described in terms of 40-100 phonemes, and taken together,the phonemes of a language cover the entire range of speech sounds. One can think ofthe set of phonemes as partitioning acoustic space into as few regions as possible suchthat the following rule is satis�ed (Ladefoged 1993): every two sounds that can be usedto di�erentiate between any pair of words are in di�erent phonemic categories Thus, forexample, /p/ and /t/ are distinct in English because the sounds distinguish \pie" from\tie." However, the /p/ at the beginning of \pop" is not su�ciently di�erent from the /p/at the end of \pop" that the two can di�erentiate between any English words. Anotherway of viewing the de�nition of phonemes in terms of \minimal word pairs." A minimalword pair is a pair of words with the same number of phonemes, and that di�er only inone sound in one location, yet nevertheless have distinct meanings. An example is the pair\�ne" and \vine" (Akmajian et al. 1995). They di�er only in the initial sound, but havedi�erent meanings. The fact that the sounds /f/ and /v/ form the basis of a minimal wordpair is proof that the sounds must be placed in separate phonemic categories in English.The sounds that are grouped together in a phonemic category may have enoughintra-group variation that they can be further subdivided into groups of allophones. Al-lophones are distinct enough that they can be distinguished from one another, yet not sodistinct that they can form the basis of a minimal word pair. Allophones are atomic in thesense that linguists do not �nd further subdivisions, and these basic sounds are also referredto as phones (Akmajian et al. 1995). Table 5.1.1 lists one set of phones that is commonlyused to represent the English language, adapted from (Deller et al. 1993).Phonetic units based on phonemes or their allophones are attractive for use inASR because a relatively small number of them can be combined to form all the possiblewords. In any reasonably sized dataset, each phoneme will occur many times, so accurate



CHAPTER 5. SPEECH RECOGNITION 85Phone Example Phone Example Phone Example Phone ExampleIY heed V vice IH hid TH thingEY hayed DH then EH head S soAE had Z zebra AA hod SH showAO hawed ZH measure OW hoed HH helpUH hood M mom UW who'd N noonER heard NX sing AX ago L loveAH mud EL cattle AY hide EM someAW how'd EN son OY boy DX batterIX roses F �ve P pea W wantB bat Y yard T tea R raceD deep CH church K kick JH justG go WH whenTable 5.1: The ARPAbet. This phonetic alphabet was adopted for use by ARPA, and isrepresentative of phonetic alphabets.models can be learned.There are a variety of ways in which subword units can be combined to representactual words. In the simplest schemes, a word model is represented by a single linear stringof phones. For examples \dog" might be represented /D AO G/; cat might be represented/K AE T/, and so forth. At the next level of sophistication, alternative pronunciationscan be represented simply by maintaining multiple linear sequences; for example, \tomato"might be represented by the word modelf /T AH M EY T OW/, /T AH M AA T OW/ g.Although simple, this method of word representation involves considerable redundancy, andin general word models are represented by directed graphs; see Figure 5.2. This represen-tation has the advantage that it is easy to represent multiple words with concatenation: tolink word A to word B, it su�ces to take the two graphs, and add arcs from the terminalnode of A to the initial nodes of B. This sort of representation is the standard in speechrecognition.Phoneme based units have the advantage of being few in number, but they havethe signi�cant disadvantage that the actual acoustic realization of a phoneme-based unitis highly variable, and moreover it varies in a somewhat predictable way depending on thenature of the surrounding phonemes. This e�ect is known as coarticulation, and is is aconsequence of the way in which speech is generated.
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T AH M
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EY

T OWFigure 5.2: Word model for \tomato" showing two possible pronunciations.One way of understanding speech production is as an acoustic �ltering operation(Deller et al. 1993). In this model, a sound source forces air through the vocal tract, andthe combination of the shape of the vocal tract and the type of sound source determinesthe sound that is produced. Fundamentally, the sound source is exhalation by the lungs,but there is an important distinction between a voiced and an unvoiced source. In voicedspeech (e.g., when a vowel is uttered), periodic constriction of the vocal folds producessharp, periodic changes in air pressure. In unvoiced speech, the vocal folds remain open,and the sound source is more chaotic in nature. The shape of the vocal tract is determinedby the tongue, lips, jaw, and velum, and modulates the spectrum of the sound source.Together, the organs involved in producing and modulating speech sounds are known asthe speech articulators.It is possible to classify the di�erent phonemes according to characteristic articu-lator positions and modes of excitation; see, e.g. (Ladefoged 1993; Browman & Goldstein1992). However, the articulators are constantly in motion, and it is important to realize thatthey can move asynchronously and independently. It is in this context that coarticulationcan be understood as occurring for at least two reasons:1. The vocal apparatus is in a certain state after enunciating the immediately precedingunit, and cannot reach \target" positions, and2. one or more of the articulators undergoes a modi�ed motion in anticipation of anupcoming sound.To address coarticulatory e�ects, speech recognition systems often use context-dependent phonetic alphabets, in which there are one or more units for each phoneme in



CHAPTER 5. SPEECH RECOGNITION 87the context of surrounding phonemes. Several of the more common schemes are:1. Biphones. This scheme comes in two 
avors. In a left-context biphone alphabet,there is a phonetic unit for each phoneme in the context of every possible precedingphoneme. In a right-context biphone alphabet, there is a unit for each phoneme inthe context of every possible following phoneme.2. Diphones. In contrast to biphones, diphones do not represent entire phonemes.Rather, they represent the end of one and the beginning of another, and are thustransitional in nature (Schwartz et al. 1980).3. Triphones. Each phoneme is represented in the context of every possible pair ofsurrounding phonemes.In practice, not all combinations of phonemes are modeled in any of these schemes; only thefrequently occurring ones. Also, it can be pro�table to merge similar contexts, e.g. /b/ and/p/ into equivalence classes to reduce the number of possible contexts. This can be doneeither by hand, or through various automated clustering techniques (Lee 1989). Finally,hybrid schemes are common in which explicit word models for commonly occurring functionwords, e.g. \and," \of," \to," and \the" are used in combination with phone-based modelsfor less frequent words.Training and RecognitionThe training task consists of taking a collection of utterances with associated word-level labels, and learning an association between the speci�ed word models and the observedacoustics. Since it is impossible to be speci�c except with reference to a particular modelingapproach, we defer a detailed discussion to the following sections, and simply point out themain di�culties:� When the database consists of continuous speech, the word boundaries are not usuallyidenti�ed in the training data. Therefore, the program must either guess the wordboundaries, consider all possible word boundaries, or consider some sort of weightedcombination of the possible segmentations.



CHAPTER 5. SPEECH RECOGNITION 88� Even when the database has only isolated words, the boundaries of the subwordunits are not usually available. Hence there is a problem analogous the missing wordboundaries.A large part of the training task consists of �guring out, implicitly or explicitly, which wordmodel and which subword model to apply to each frame of an utterance.In the recognition phase, the unknown utterance is compared to the various wordmodels, and segmented in such a way that each part becomes associated with the most likelyatomic speech unit. Again, one of the main problems will be to determine which word modeland which subword unit to associate with each frame of the unknown utterance.5.1.2 ApproachesWe turn now to a brief description of two of the most commonly used techniquesfor associating word models to observed acoustic features.TemplatesThe template-based approach to pattern recognition is highly intuitive: the basicidea is to store several examples of each word, and then to do recognition by comparingan unknown utterance to all the templates, and picking the one it most closely matches.In a template-based system, training can consist of simply storing all previously heardutterances. In a more sophisticated setting, one can cluster the examples of each word, andstore only a small number of stereotypical examples, in a procedure analogous to vector-quantization.In order to adopt the template approach, one need simply de�ne a precise methodfor measuring the similarity of two utterances. Typically, this is done by de�ning the\distance" between the acoustic features associated with two frames of speech, aligning thetwo utterances, and adding the frame-wise distances. There are many possible ways ofde�ning the distance between two speech frames (see, e.g. (Rabiner & Juang 1993)), butfor concreteness, we may think of computing the Euclidean distance between two cepstralvectors. The task of aligning a template pattern to a speci�c utterance requires some care.
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Figure 5.3: Utterance A is time-aligned to utterance B.If the utterance and the template have the same number of frames, it is easy to pair themo� and add the pairwise-distances. However, because of variations in speaking rate, thismay not be the best thing to do, and because of the wide variability in the length ofutterances, it is usually not possible at all. A more subtle solution stems from the useof dynamic programming (Bellman 1957), which makes it possible to quickly �nd the bestpossible alignment, even if the two utterances have di�erent numbers of frames.The method of dynamic programming, as applied to template matching, makesuse of two simple data structures:1. a two-dimensional array C in which entry ci;j holds the cost of pairing the ith frameof the reference pattern with the jth frame of the actual utterance, and2. a two-dimensional array A in which entry ai;j holds the total cost of the best possiblealignment that ends with the pairing of frames i and j.Furthermore, there are two pieces of a-priori information that are used:1. the �rst frame of the utterance must be paired with the �rst frame of the template,



CHAPTER 5. SPEECH RECOGNITION 90and2. the last frame of the utterance must be paired with the last frame of the template.We will assume that the template hasm frames, and the utterance n frames. The process ofdynamic programming consists of starting with the �rst of these facts, and then methodically�guring out for each array position ai;j the least cost path from array position a1;1 to ai;j .We state the procedure below, with the assumption that c0;0 = 0; c0;j = 1; j > 0; ci;0 =1; i > 0; ties may be broken arbitrarily.ai;j = ci;j +min(ai�1;j ; ai;j�1; ai�1;j�1) i > 0; j > 0Once the ai;j have been computed in this fashion, the cost of the best possible alignmentis stored in am;n. Recognition simply consists of computing the cost of the best alignmentof the utterance to each of the reference patterns, and keeping track of the best. If desired,the actual path can be reconstructed by storing a small amount of extra information as thealgorithm proceeds. The alignment of an utterance to a template is illustrated in Figure5.3. The use of template-based systems for continuous word recognition is somewhat morecomplicated, but proceeds along basically the same lines (Ney 1984).Template-based recognizers formed the basis of many early speech recognition sys-tems, but su�er from the problem that it is not possible to decompose a training utteranceinto sub-utterance level units. Note that this de�ciency is apparent only in the trainingphase, when no sub-utterance level templates are available to begin with. For example,given a string of connected words as its input, a template-based system that does not al-ready have word models is unable to segment the utterance into its component words. Thismeans that the words in the training phase must be spoken in isolation, and connected wordmodels derived by concatenating isolated word templates; this results in a poor model ofinter-word coarticulatory e�ects. Again, this di�culty occurs only during training; once aset of atomic templates is available, long utterances can be segmented into these atomic unitsin an optimal way (Ney 1984). An additional problem arises when there are several qualita-tively di�erent acoustic features associated with each frame, and a single distance measuremust be de�ned that weights them all appropriately. These problems make template-basedrecognizers attractive only for simple isolated-word command-and-control type applications;for example, they are currently used in many speaker-dependent voice-dialing systems.



CHAPTER 5. SPEECH RECOGNITION 91Statistical Pattern RecognitionStatistically-based ASR systems are based on the notion that an utterance is repre-sented by some sequence of acoustic features a that derives from some underlying sequenceof words w, and that the two can be probabilistically related. More speci�cally, the goal ofa statistically based ASR system is to �ndargmaxw P (wja):It is often bene�cial to rewrite this using Bayes' rule asargmaxw P (w)P (ajw)P (a) = argmaxw P (w)P (ajw):The reason for doing this is that it breaks the problem into two subproblems, each ofwhich can be tackled independently. The �rst is the problem of computing the probabilityof a sequence of words, P (w); this can be done by constructing a language model thatspeci�es the probability of strings of words in a language. Examples of language modelsinclude stochastic context free grammars, and bigram and trigrammodels (Allen 1995). Thesecond problem consists of computing the probability of an observed sequence of acousticfeatures, given an assumed word sequence: P (ajw). This can be done with a generativemodel that explains how acoustics are generated for a given word sequence. Althoughthis decomposition is fairly standard, it it by no means the only way of constructing aprobabilistic model; as we will see, neural-net based systems decompose the problem in asomewhat di�erent way. In the following sections, we will examine several important ASRmethodologies in more detail; since they are all based on probabilistic modeling, we deferthe speci�cs of training and recognition to those sections.5.2 Standard TechniquesIn the following sections, we describe in more detail how the temporal modelingtechniques introduced in Chapter 2 can be applied to the speech recognition task. Sincethe generalization to connected word recognition is in all cases straightforward, we focus,for simplicity, on isolated word recognition.
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Transition Probabilities

Emission Probabilities

AH

ZKB IH AO
Pronunciation Model of

"Because"

/AH/

Acoustic Emission

Acoustic Model forProbabilityFigure 5.4: An HMM for the word \because." The transition matrix is de�ned graphicallyby the solid arcs; if there is no arc between two states, the transition probability is 0. Thesmall shaded nodes represent arti�cial initial and �nal states.5.2.1 Hidden Markov ModelsIn this section, we elaborate the use of hidden Markov models in ASR. As wehave seen, an HMM consists of a set of states with associated transition and emissionprobabilities. HMMs are easily applied to ASR by associating the states with sub-wordphonetic states, and associating the emissions with sounds. This is illustrated in Figure 5.4.Since P (w) is computed with a language model outside the scope of the HMM, weneed only worry about computing P (ajw). (And since we are considering isolated words,we may replace w by w.) From Section 2.2, this corresponds to:P (ajw) = Xq P (q; ajw)= Xq P (qjw)P (ajq; w)� Xq P (q1jw)P (a1jq1; w) nYi=2P (qijqi�1; w)P (aijqi; w):In words, this corresponds to the sum over all the paths through the HMM of the probabilityof the path multiplied by the probability of the acoustics given the path.In the training phase, the required transition and emission probabilities are deter-mined, and in the recognition phase, each possible word hypothesis is evaluated.



CHAPTER 5. SPEECH RECOGNITION 935.2.2 Neural NetworksNeural-net based systems also relate the acoustics to subword phonetic units col-lected together in graphical word models, but they are distinctive because they use a com-pletely di�erent factorization of P (wja) (Bourlard & Morgan 1994; Hennebert et al. 1997).The factorization is as follows:P (wja) = Xq P (q;wja)= Xq P (qja)P (wjq; a)� Xq P (qja)P (wjq)The main novelty is that the state sequence is conditioned on the observation sequencerather than vice-versa; furthermore, a NN-based system estimates P (qja) with a neuralnet. We will discuss this in more detail in the following two sections, and pause here onlyto note that the evaluation of P (wjq) is somewhat tricky.The factor P (wjq) is more complicated than anything that occurred in the HMMspeci�cation, because it must carry the load of a language model, and is additionally con-ditioned on a state sequence. One way of dealing with this is through Bayes rule:P (wjq) = P (w)P (qjw)P (q)This reduces the problem to computing the probability of the word sequence with a lan-guage model as before, and computing the probability of the state sequence given the wordsequence as before, and computing a prior for the state sequence. This can be approximatedby P (q) = Qi P (qi), with P (qi) estimated from Viterbi decodings of the training data. The�nal speci�cation of the scheme is (Hennebert et al. 1997):P (wja) =Xq P (w)P (qja) P (qjw)Qi P (qi)Note that if it is assumed that there are no homonyms, then for isolated words with equalpriors, we have: P (wja) /Xq P (qja):



CHAPTER 5. SPEECH RECOGNITION 94MLPs One way of estimating P (qja) is with an MLP. The most common assumptionthat is made (Hennebert et al. 1997) is thatP (qja) =Yi P (qijai�k::ai+k):The probability of a state sequence is the product of factors, each of which is conditionedon a small amount of acoustic context. Typically, k might be 4, so that the probability ofa phonetic state at time t is a function of about 9 frames of surrounding speech. The taskis thus to estimate a distribution over phones from a small number of speech frames.This can be done with an MLP in which the output layer has a node to representeach phonetic unit. Since sigmoidal activation functions naturally lie in the range [0 : : :1],the output of unit i can be taken to be the probability of phone i. In a properly trainednetwork, it will also be the case that the output activations sum to 1 (Bourlard & Morgan1994). In order to train an MLP-based system, there must be a set of training patternsconsisting of1. the input frames of speech and2. a desired output distribution over phones.Such a training set can be obtained in the following way:1. For each training utterance, compute the marginal distribution over phones for eachframe, using the current network parameters. This requires the use of a procedureanalogous to the forward-backward algorithm in HMMs (Hennebert et al. 1997).2. Create a training examples from each frame so labeled.The complete procedure for training an HMM-based system consists of alternating betweencreating labeled training examples with the current network parameters, and re-trainingthe MLP with the new (self-generated) examples.Since the training procedure for MLP-based systems is somewhat more compli-cated than that of HMMs, one might wonder why they should be used. There are threecompelling reasons:



CHAPTER 5. SPEECH RECOGNITION 951. The probability of a phone can be conditioned on a large amount of acoustic context.This potentially gives neural-net based systems an edge in modeling coarticulatorye�ects.2. The training procedure directly maximizes P (wja) in a discriminative way. Thisis in contrast to maximum likelihood based methods which maximize P (ajw) as asurrogate.3. No assumptions of conditional independence between di�erent acoustic features arerequired.Recurrent NNsRTR-NNs provide another way of estimating P (qja). Again, the main potentialbene�t is in modeling acoustic and articulatory context. Here, however, it is not necessary toprovide the context explicitly with each frame. Since the network has a long-term memoryof its own, it can implicitly keep track of important previously seen features. Descriptionsof these types of systems can be found in (Robinson & Fallside 1991; Robinson & Fallside1988).5.2.3 Kalman FiltersAs we have seen, Kalman �lters are ideally suited to tracking the motion of anobject in a multidimensional space. To adapt the methodology to speech recognition, onecan simply treat the acoustic feature-vector as an object, and track its trajectory throughacoustic-feature space. In order to model subword phonetic units, the idea is to create aseparate Kalman �lter for each unit, and tune it so that trajectories that are typical of thephone receive a high probability according to the model.If hand-segmented utterances are available, then the procedure is relatively simple:each phone model can be trained on acoustic trajectories known to be associated withit. Otherwise, a two-stage procedure is necessary in which the current phone models areused to generate a segmentation, and then the model parameters are retrained using thispartitioning. Note the similarity to the procedures used for neural nets; the only di�erenceis that phone probabilities are estimated using a Kalman �lter rather than a neural net.
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Kalman Filter
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for Phone N
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P(Phone 2 | Acoustics)

P(Phone N | Acoustics)

Acoustics
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Figure 5.5: A Kalman �ltering approach to ASR, loosely adapted fromAnderson and Moore,1979. The probability of a phone qi at time t is recursively calculated from the acousticinput at, and all prior acoustic input, at�11 by P (qijat1) = P (atjat�11 ;qi)P (qijat�11 )PNj=1 P (atjat�11 ;qj)P (qjjat�11 ) . All therequired quantities are readily available.Figure 5.5 illustrates the way that phone probabilities are computed from the acoustic input.Somewhat di�erent schemes have actually been tested. In (Digalakis et al. 1993),a procedure for normalizing segment lengths is used in conjunction with Kalman �lteringto model phonemes from pre-segmented data; the authors report good results. In (Kennyet al. 1990), an approach is used in which the hidden state is related to the observationvector by the identity matrix, and several frames of the past are used to predict the present.The authors applied their scheme to connected word recognition, and report that their bestresults came from a more conventional HMM.



CHAPTER 5. SPEECH RECOGNITION 975.3 Outstanding ProblemsIn the preceding sections, we have reviewed several standard techniques for ASR.Although they all perform well in many circumstances, there are some generally acceptedproblems (Rabiner & Juang 1993; Deller et al. 1993; Young 1996; Makhoul & Schwartz1995):� Coarticulation. This can be handled with biphones, triphones, diphones, syllables, orword-dependent phone models, but there are associated problems:1. None of these methods pays attention to the speci�cs of an actual utterance. Inother words, they all embody a-priori information that can be stated without ref-erence to any speci�c acoustic observations. Hence, they miss utterance-speci�ccues.2. There is a large increase in the number of parameters, and complex estimationtechniques must be used.� Sensitivity to speaking style. The expected pronunciations and acoustics of words area�ected both by dynamic factors as speaking rate, and static factors such as gender,age, and accent.� Sensitivity to the acoustic environment. Current systems can be catastrophicallya�ected by even mildly noisy conditions, for example soft background music or roomreverberation.Much current research in ASR focuses on ways of overcoming these problems, and thefollowing chapter will address the issues with DBNs.



98
Chapter 6Speech Recognition with DBNsThis chapter describes the use of dynamic Bayesian networks in speech recognition,and shows how they can be structured to address the outstanding problems outlined in theprevious chapter. Although many papers, e.g. (Smyth et al. 1996; Ghahramani & Jordan1995) have mentioned the possibility, the details of implementing a working system havenot been previously addressed. In order to apply DBNs to ASR, it is necessary to developa technique for combining subword phonetic models into whole word and multiple-wordmodels, and the chapter begins by describing the process of model composition with DBNs.This is done in such a way as to allow for parameter tying between multiple occurrences ofthe same phone model, e�cient computation, and the generality of word models structuredlike arbitrary directed graphs. After describing the basic technology required for ASR withDBNs, the chapter continues with a description of several important DBN structures.6.1 Model Composition with DBNs6.1.1 MotivationWe have seen that standard approaches to speech recognition concatenate smallermodels into larger ones: sub-phonemic units into phonemes, phonemes into words, andwords into sentence structures. This procedure is by no means exclusive to speech recogni-tion; many other temporal processes evolve through a series of distinct stages, each of whichis best represented by a separate model. For example, the process of writing a word can



CHAPTER 6. SPEECH RECOGNITION WITH DBNS 99be decomposed into the sequential formation of its letters. Television broadcasting can bedecomposed into programming and advertising segments, and driving can be decomposedinto sequences of lane-changing, accelerating, braking, and similar maneuvers. When mod-eling these processes, it is convenient to create submodels for each stage, and to model theentire process as a composition of these atomic parts. By factoring a complex model into acombination of simpler ones, composition achieves a combinatorial reduction in the numberof models that need to be learned.Model composition raises two crucial but independent issues. The �rst is the spec-i�cation of legal submodel sequences. In this chapter, we consider the use of stochastic�nite-state automata (SFSAs) to describe a probability distribution over possible submodelsequences. This is a fairly standard choice in areas such as speech and handwriting recog-nition. The second issue is submodel representation, for which we use Bayesian networks tospecify the behavior of each submodel.6.1.2 Encoding an SFSA with a DBNWhy Model Composition with DBNs is Di�cultThe di�culty in concatenating DBN models is best illustrated with an example.Suppose the word \no" is uttered, and there are separate models for the phonemes /n/and /ow/. The top of Figure 6.1 shows the simplest possible such submodels. There isa hidden state variable representing articulator positions, and a variable representing thesound observed at each point in time. The state CPTs specify articulator dynamics, andthe observation CPTs link the articulator positions to the sounds made. Each submodelcan be duplicated for an arbitrary number of timesteps.Now consider constructing a composite model for a speci�c �xed-length utteranceof the word \no." This is shown at the bottom of Figure 6.1. A naive concatenationof the two models would have to explicitly partition the model into a �xed-length /n/pre�x followed by a �xed-length /ow/ su�x. In practice, however, such segmentations areunavailable. Therefore, when doing inference or learning, all reasonable partitionings ofan observation sequence between the models must be considered, and possibly weightedaccording to some distribution. Since the number of partitionings grows exponentially withthe number of submodels, this is a demanding task that must be solved in an e�cient way.
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which articulator model?

Complete ‘no’ model

acoustic observations

articulator state

acoustic emission model

articulator state

acoustic observations

acoustic emission model

articulator motion for /n/ articulator motion for /ow/

Figure 6.1: Concatenating submodels. Naive submodel concatenation requires specifyingwhich state-evolution model to use at each point in time.In the following sections we show how to construct a DBN that represents the distributionover partitionings speci�ed by an arbitrary SFSA.Encoding an SFSAThis work was �rst presented in (Zweig & Russell 1997). Consider the SFSAshown at the top of Figure 6.2. The nodes in this diagram represent states, and there aretransition probabilities associated with the arcs. The initial and �nal states are shaded. Weinterpret the initial state to represent the history of the system prior to the �rst point intime that has an observation associated with it. The �nal state represents the future of thesystem after the last point for which there is an observation. The states in the automatonof relevance to the observation sequence are the unshaded nodes in Figure 6.2. We referto the initial state as sI , to the �nal state as sF , and to an arbitrary state i as si. Theprobability of a transition from state sg to state sh is denoted by Psgsh .The probability of a length k path s1s2 : : : sk through the automaton is givenby PsIs1Ps1s2 : : :Psk�1skPsksF . The DBN at the bottom of Figure 6.2 represents paths oflength k through this structure in a somewhat di�erent way. Each state variable in theDBN represents the position in the SFSA at a speci�c time. The DBN state variablesM1 : : :Mk have a distinct value for each state in the automaton, and there is a one-to-onemapping between paths of length k through the automaton and assignments of values to thevariables in the DBN. So, for example, the path 1; 3; 4; 4; 7 through the SFSA corresponds
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M2 MkM1

Initial state
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72

End-of-sequence observation
EOS

Deterministic state variables

Stochastic transition variables

Final state

Figure 6.2: An SFSA and a DBN network representation for �xed-length observation se-quences. Note that in the automaton the arcs represent transition probabilities while inthe Bayesian network they represent conditional independence relations. The initial and�nal states of the SFSA are shaded. The shaded node in the DBN represents an arti�cialobservation; the CPT of this variable will encode the length of the observation sequence.to the assignments M1 = 1;M2 = 3;M3 = 4;M4 = 4;M5 = 7.The DBN transition variable encodes which arc is taken out of the SFSA stateat any particular time. The number of values the transition variable can take is equal tothe maximum outdegree of any of the states in the SFSA. The probability distribution overtransition values is determined by the state value at that point in time, and will be usedto encode the appropriate transition probabilities. For all the time slices after the �rst,the probability distribution over states at time t + 1 is simply a deterministic function ofthe state and transition variable values at time t; it encodes the fact that if we know theSFSA state at time t, and the SFSA arc taken at that time, then we know the SFSA stateat time t + 1. The probability distribution over state values in the �rst time-slice is non-deterministic, and re
ects the distribution over successors to the SFSA initial state. Theshaded DBN node represents a binary-valued variable whose value is always observed to be1. The CPT of this \end-of-sequence observation" will encode the fact that the observationsequence is k steps long.The transition probabilities associated with the arcs in the automaton are re
ectedin the CPTs associated with the transition variables in the DBN. Denote the transitionvariable at time i by T i. We will denote the index of the arc leading from state sg to statesh by ashsg , e.g. if the second arc out of sg leads to sh, then ashsg = 2. If the probability of



CHAPTER 6. SPEECH RECOGNITION WITH DBNS 102transitioning from state sg to state sh in the automaton is Psgsh , then P (T t = ashsg jM t =sg) = Psgsh in the CPT associated with T t. Note that this relation does not depend on t,and therefore a single CPT can be shared by all instances of the transition variable. Thesame is true for state variables from M2 on. Assignments to transition variables that donot correspond to any arc, i.e. those whose value exceeds the state's outdegree, receive 0probability.All paths through the SFSA must start in one of the successors of the initialstate sI , and end with a transition to the �nal state sF . Suppose the SFSA states arenumbered 1 : : :n, exclusive of the initial and �nal states. By setting the prior distributionon M1 to P (M1 = sg) = PsIsg , the constraint on initial states is satis�ed. By setting theconditional probability on the end-of-sequence observation EOS to P (EOS = 1jMk = sg 2predecessors(sF ); T k = asFsg ) = 1, and P (EOS = 1jMk = sg =2 predecessors(sF )) = 0,we ensure that any assignment of values to the variables which does not terminate with atransition to the �nal state is assigned a probability of 0. Note that sF has a sel
oop; wede�ne predecessors(sF ) to exclude sF itself. This will ensure that 0 probability is assignedto DBN variable assignments that end by cycling in sF . We summarize with the followingTheorem.Theorem 6.1 Every assignment of values to the variables in the DBN either:1. corresponds to a legal path through the SFSA and is assigned a probability equal to theprobability of the path in the SFSA, or2. corresponds to an illegal path in the SFSA and is assigned a probability of 0.Proof. Let the DBN consist of k time-slices. First assume the assignment corresponds toan illegal path. It must be illegal because one or more of the following are true:1. M1 = sg; sg =2 successors(sI).2. There is an assignment M i = sg;M i+1 = sh for which there is no transition arc inthe SFSA.3. Mk = sg; sg =2 predecessors(sF ).4. Mk = sg; sg 2 predecessors(sF ); T k 6= asFsg .



CHAPTER 6. SPEECH RECOGNITION WITH DBNS 103These cases will be assigned 0 probability because by construction1. P (M1 = sg =2 successors(sI )) = 0.2. P (T i = kjM i = sg) = 0; k > outdegree(sg).3. P (EOS = 1jMk = sg =2 predecessors(sF )) = 0.4. P (EOS = 1jMk = sg ; T k 6= asFsg ) = 0.Now assume the assignment of values corresponds to a legal path. Let the pathbe s1s2 : : : sk�1sk. The assignment to the Bayesian network variables is:M1 = s1; T 1 = as2s1 ; M2 = s2; : : : ;Mk�1 = sk�1; T k�1 = asksk�1 ;Mk = sk; T k = asFsk :The probability assigned by the DBN has the factors:P (M1 = s1) = PsIs1 ; P (T1 = as2s1 jM1 = s1) = Ps1s2 ; : : : ;P (Tk�1 = asksk�1 jMk�1 = sk�1) = Psk�1sk ; P (Tk = asFsk jMk = sk) = PsksFand all other factors are 1. The probability assigned by the SFSA is the product of exactlythe same factors, and is therefore identical.Although it is possible to encode the same information without using transitionvariables - in CPTs associated with stochastic state variables - the use of an explicit transi-tion variable is usually much more e�cient. This is because not all transitions are possiblein the SFSA, and the combination of explicit transition variables with deterministic statevariables compactly encodes the possibilities. This is particularly true when the maximumoutdegree is small compared to the number of states.Model CompositionFigure 6.3 illustrates the most general way in which model composition is achieved.The submodel-index variable speci�es which submodel to use at each point in time. Thereis also a transition variable, as in the previous section; together we call these variables thecontrol layer. The constraints on legal sequences of submodels are encoded in the CPTs ofthis layer, as described previously. The submodel state layer represents the hidden variablesin the DBN submodels. By conditioning the submodel state variables on the submodel-indexvariable in the control layer, the desired switching behavior between models is achieved.
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control layer: 

submodel-index variable

transition variable

end-of-sequence observation

submodel state layer

observation layerFigure 6.3: A DBN structured for model composition. The submodel-index variable speci�eswhich submodel to use at each point in time.This result can be stated somewhat more precisely as follows. Let yt denote anassignment of values to the submodel observation and state variables at time t, and let mtdenote an assignment of a value to the submodel index variable at time t. The combinationof a SFSA together with a set of DBN submodels speci�es a probability distribution oversequences of y values: the probability of a particular sequence of y values is given by theweighted sum over all possible submodel sequences of the probability that each submodelsequence generates the given sequence of y values:P (y1 : : :yk) = Xm1:::mk P (m1 : : :mk)P (y1 : : :ykjm1 : : :mk)By the Markov property of both the SFSA and the DBN submodels, we then haveP (y1 : : :yk) = Xm1:::mk P (m1 : : :mk)P (y1jm1)P (y2jy1; m2) � � �P (ykjyk�1; mk)The �rst factor in each term corresponds to the probability of a particular paththrough the SFSA and is determined by the CPTs of the control layer. The remainingfactors correspond to the probability of the speci�ed behavior of the submodel variables,conditioned on the submodel sequence. These factors are determined by the CPTs of thesubmodel state and observation layers.Parameter TyingIn many situations, it is convenient to require that the transition behavior of twodi�erent states be the same, but for some reason the two states are not identical, and
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Transition variableFigure 6.4: Mapping states into equivalence sets with respect to transition probabilities.The variables are labeled with one possible assignment of values. States 1 and 3 both mapinto the same transition equivalence set.
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Transition variable

Acoustic equivalence-set Transition equivalence-setFigure 6.5: Mapping states into multiple equivalence classes. There is a transition equiva-lence class, and an acoustic one. The states behave di�erently with respect to the two.must be distinguished. Essentially, we wish to group the states into equivalence sets basedon their transition behavior, and tie the transition parameters of all the members of anequivalence set. It is straightforward to deal with this requirement in a DBN by addinganother variable that represents the equivalence class to which a particular state belongs.The approach is illustrated in Figure 6.4. The value of the state variable maps into aparticular equivalence set, and this is explicitly represented by the value of the equivalenceset variable. The probability distribution over actual transition values is conditioned on thevalue of this equivalence set, rather than on the value of the state directly.This approach can be extended to situations in which there are several importantqualities associated with each state, and each state maps into a separate equivalence set withrespect to each of these properties. For example, in speech recognition we wish to associatea durational distribution with a state, which is a function of its transition probabilities, anda distribution over acoustic emissions. A structure that allows for arbitrary parameter tyingwith respect to these two qualities is shown in Figure 6.5. In the remainder of our work,
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(Phone)Figure 6.6: The control structure used in this work. A state maps into a phone label, andthis value will determine both durational and acoustic properties.however, we will assume that states belong to the same equivalence sets with respect to bothacoustic and durational qualities. More speci�cally, the states correspond to phones, and weassume that all the occurrences of a particular phone behave the same with respect to bothdurational and acoustic qualities. This leads to the control structure used in subsequentexperiments, which is shown in Figure 6.6.This approach to parameter tying is signi�cantly di�erent from that used in HMMs.Parameter tying in an HMM system occurs somewhere in the implementation, in an imper-ative manner. In the DBN framework, it is achieved by manipulating the same represen-tational units (variables and conditional probabilities) that are used to express every otherconcept.Null States and Language ModelsThe SFSAs we have been dealing with have dummy initial and �nal states; themost straightforward way of concatenating SFSA models is to connect the �nal state of oneto the initial states of its possible successors. This is useful in speech recognition when theSFSAs represent pronunciation models for individual words, and a multi-word utterancemust be processed. A simple bigram language model results from connecting the �nal stateof each word to the initial state of every other word, and setting the transition probabilityto the fraction of the time the second word follows the �rst.Note that no observations are associated with SFSA initial and �nal states. Whenmodeling concatenated SFSA models with DBNs, it is necessary to \skip over" the dummystates. This can be done with a DBN structured as in Figure 6.7. Dummy state skipping is



CHAPTER 6. SPEECH RECOGNITION WITH DBNS 107
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Figure 6.7: Modeling null states with a DBN. At the top is a portion of two concatenatedSFSAs, showing the �nal state of one connected to the initial state of the next. At thebottom is a DBN with two auxiliary state and transition variables per timeslice. Theseallow the null states to be skipped. The state and transition variables from a single timesliceare boxed with the dashed line.accomplished by associating three state and transition variables with each frame i. (Denotethese by S1i ; S2i ; S3i ; T 1i ; T 2i ; T 3i .) Only the �rst state variable is linked to the observations.T 1i indicates the arc out of S1i , and the combination of these variables determines S2i asbefore. If S2i is a normal state, T 2i takes the arbitrary value 1, and S3i copies S2i . Otherwise,S2i is a null state, and T 2i assumes a value according to the distribution over arcs out of thatstate (which re
ects the bigram probabilities), and S3i is determined stochastically. Theprocess repeats again with S3i and T 3i to determine the value of S1i+1.A more complicated SFSA structured to represent a trigram language model isshown in Figure 6.8. In this case, the DBN scheme must be extended to accommodatethree dummy states in a row.A Complete Speech ModelFigure 6.9 illustrates an example of a DBN that is structured for model compositionin speech recognition in such a way as to be equivalent to a standard HMM. For clarity,we explicitly distinguish between CPTs that encode deterministic relationships and thosewhich encode stochastic relationships. Table 6.1 summarizes the properties of each of thevariables.
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Null-StateFigure 6.8: SFSA structure structured to re
ect a trigram language model. The shadedcircles represent dummy states; there is one for each pair of words. The rectangles representwhole word models (each with its own initial and �nal state). The total number of boxesis equal to the cube of the vocabulary size: there is a box for each word preceded byevery possible two-word combination. Since the combination of the last two words with thecurrent word uniquely determines the two-word context for the next word, the arcs leadingout of the word models have transition probabilities of 1. The trigram probabilities areassociated with the arcs from the dummy states into the word models. To avoid clutter, aonly subset of the possible arcs are drawn.
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Figure 6.9: A DBN representation of a simple HMM. Nodes with �xed CPTs are �xed ona per-example basis.
Node Type Deterministic CPTs Example-Speci�c CPTs Learned CPTsTransition N N YPosition Y Y NPhoneme Y Y NAcoustic Obs. N N YTable 6.1: The properties of the di�erent variables. In this work, we use a chain-structuredpronunciation model, so the value of the initial state is uniquely determined. This allowsall occurrences of the index variable to be deterministic. The CPTs that are not learnedare adjusted on an utterance-by-utterance basis.



CHAPTER 6. SPEECH RECOGNITION WITH DBNS 1106.1.3 Discussion: Write Networks not Code?Essentially, what we have done in this chapter is to encode a dynamic program-ming algorithm into a network structure and its associated conditional probabilities. In theprocess of executing the standard procedures for probabilistic inference, the Bayesian net-work implicitly executes the desired program. This is extremely di�erent from conventionalapproaches, where special purpose code is written for every occasion. It also sheds light onthe importance of e�ciently processing deterministic relationships between variables: sincewe are encoding a deterministic program, it is not surprising that deterministic variablesplay a central role.Since a one-to-one correspondence could theoretically be made between the vari-ables in a DBN and the circuits in a computer, there is apparently no limit on the kindsof behaviors that can be induced. Although expressive obscurity and computational ine�-ciency make it undesirable to exercise this capability, it can be extremely useful for limitedtasks.6.2 Model Structures for ASRWe now turn to the speci�c network structures required to address the problemsmentioned in Chapter 5. Because DBNs can track arbitrary sets of variables, they are anideal tool for creating precise models of the various phenomena.6.2.1 Articulatory ModelingFigure 6.10 illustrates a DBN structure that can explicitly model articulatorymotion. It is the same as that in Figure 6.9, except that the connection from phone toobservation is mediated by articulatory variables. The CPTs associated with the articulatorvariables describe both linguistic knowledge about the target positions of the articulators forthe various phonetic units, and additionally the basic physics of the vocal apparatus; theseCPTs explicitly model the way in which the constraints imposed by this physical model(e.g. inertia) modulate the target positions. The CPTs associated with the observationvariables describe the sounds generated by particular physical con�gurations of the vocalapparatus. The precise topology and initial parameter estimates for these connections
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rbaunalunalFigure 6.10: An articulatory DBN structured for speech recognition. The tongue movesfrom the alveolar ridge to the back of the mouth; the lips move from an unrounded to arounded con�guration. The properties of each node are shown to the right.embody a phonological theory.Enforcing Model SemanticsIt is one thing to de�ne a model that has the capability to track articulatory mo-tion, and another to ensure that after \training" the variables will actually have the desiredmeaning. There are several ways that the correct model semantics can be encouraged:1. Train with data in which articulatory positions are available from actual measure-ments. These sorts of measurements can be made using magnetic coils (Hogden et al.1996), X-rays (Papcun et al. 1992), or radar (Holzrichter et al. 1996).2. Initialize the network parameters to re
ect prior linguistic knowledge. For example,Figure 6.11 relates the position of the tongue to the di�erent vowel sounds.3. Use Dirichlet priors to encode prior linguistic knowledge. This is discussed more fullybelow.Ideally, articulatory models should be trained with known articulator positions;this is the only way of guaranteeing that the trained model will accurately re
ect the artic-ulators. Note that even if articulatory data is only available during training, and not duringtesting, a bene�t can still be expected, because of more accurate parameter estimation. In
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OWFigure 6.11: Tongue position for di�erent vowels, adapted from Deller et al., 1993.practice, the standard speech recognition databases do not have this information, and theuse of Dirichlet priors (Heckerman 1995) is probably the next best approach.Recall from Section 3.8.2 that parameter estimation is done is by counting thenumber of times an event of interest occurs, and estimating the count if necessary. Forexample, the conditional probability of a voicing variable having the value 1 (true) giventhat the speaker is in the state of pronouncing /ER/ would be estimated by counting thenumber of speech frames in which both assertions are true, and dividing by the total numberof frames labeled /ER/. The concept of Dirichlet priors is simply to augment the actualcounts with �ctitious counts. So, for example, to re
ect the prior knowledge that /ER/ isvoiced, the tally of speech frames that are simultaneously labeled /ER/ and \voiced" mightbe initialized to 10,000 rather than 0. The magnitude of the �ctitious counts (in relation tothe actual counts) determines the con�dence with which the prior information is expressed.Articulatory HMMs: A ComparisonThere has been signi�cant previous work incorporating articulatory models intoHMMs (Deng & Erler 1992; Erler & Deng 1993; Deng & Sun 1994; Erler & Freeman 1996;Deng 1996), and a comparison with the DBN approach highlights many of the advantagesof DBNs. Starting in the early 1990s, Deng and Erler have explored HMM extensionsthat explicitly model articulator motion. The basic approach is simple to explain. First,



CHAPTER 6. SPEECH RECOGNITION WITH DBNS 113a deterministic mapping between phonetic units and articulator positions is established.Typically, the positions of �ve articulators are used. Each articulator is assumed to be inone of a discrete number of positions. The overall state of the system is thus de�ned bythe cross-product of values assigned to the articulators. An HMM-state space is de�ned inwhich there is a distinct state for each possible articulatory con�guration.When a training word is presented (or a recognition word-hypothesis evaluated)the phonetic transcription of the word is mapped into a sequence of articulatory targets, onefor each phoneme in the transcription. This de�nes a set of legal paths through the HMMgrid. Then a series of phonological rules is applied to expand the set of legal paths throughthe grid. This expansion can express coarticulatory e�ects by modifying the expected targetpositions in a context-dependent way. Once the �nal set of legal paths is identi�ed, trainingor recognition can proceed with standard techniques.The DBN approach di�ers in the following important ways:1. It is a particular instantiation of a general-purpose tool. Hence it is easy to modifyto address other phenomena.2. There is a stochastic - not deterministic - mapping between phonetic units and artic-ulator targets.3. This mapping can be learned, and need not be hand-coded.4. The rules governing acceptable articulator motion are stochastic rather than deter-ministic.5. The conditional probabilities governing articulator motion can be learned.6. Prior knowledge is expressed with statistical priors, rather than rules.7. The system represents a uniform application of statistical pattern recognition, ratherthan a combination of hand-coded rules with probabilistic inference.6.2.2 Modeling Speaking StyleSpeaker-Type
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PhoneFigure 6.13: A DBN structured to model speaking-rate.Figure 6.13 illustrates a simple way in which speaking rate can be modeled witha DBN. The auxiliary variable in this case represents the speaker's speaking rate, and thetransition variables are conditioned on it. The intention is that when the speaker is talkingquickly, transitions will be more likely. In recent work, (Morgan & Fosler-Lussier 1998),reliable procedures for estimating speaking rate directly from acoustic observations havebeen developed. If these measures are available, they can be incorporated into the networkas shown in Figure 6.14.It is also known that rate-of-speech has a more complex e�ect than simply chang-ing transition probabilities. In (Fosler-Lussier & Morgan 1998), it is shown that, for agiven word, the expected sequence of phonemes changes with speaking rate. Moreover,(Mirghafori et al. 1995; Siegler & Stern 1995) shows that the expected acoustics of a givenphoneme vary with speaking rate. The �rst of these e�ects can be handled by representingword pronunciations with a more elaborate SFSA in which the possible insertions, dele-tions, and substitutions are explicitly represented. By conditioning the transition variableon the rate-of-speech estimator, the probability of these modi�cations can be appropriatelyadjusted. The second of these e�ects can be addressed by conditioning the observations onthe rate variable.6.2.3 Noise ModelingExplicit noise models can be constructed with DBNs, in a manner similar to thatpresented in (Varga & Moore 1990; Gales & Young 1992) in the context of HMMS. This isillustrated in Figure 6.15. In its original formulation, scheme consists of three basic parts:
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Rate MeasureFigure 6.14: A DBN structured to model speaking-rate, with observations that are highlycorrelated with rate.1. An HMM to model speech.2. An HMM to model noise.3. A model of how speech and noise sounds combine into the sound that is actuallyheard.In (Varga & Moore 1990; Gales & Young 1992), the two HMM models are trained sepa-rately on examples of pure speech and pure noise, and the model for sound combination isanalytical. The DBN model shown in Figure 6.15 can be used in the same way, or it canbe trained on a single noisy observation stream.6.2.4 Perceptual and Combined ModelsAs a �nal example of the versatility of the DBN approach, Figure 6.16 shows amodel that combines generative and perceptual aspects. The distinguishing feature of thismodel is that it maintains a representation of both the speaker's intention and the listener'sperception, and encourages them to coincide. For clarity, the index, transition, and phonevariables for both the speaker and the listener are combined into a single state variablefor each person. The generative part of the model consists of the speaker's phonetic statea�ecting his articulators and causing sound production. The perceptual part of the modelconsists of the sound a�ecting the listener's perceptual apparatus and causing a sequenceof phones to be recognized. The speaker's intention and the listener's perception are linkedthrough a consistency observation which has a constant value and is used to encode the
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CHAPTER 6. SPEECH RECOGNITION WITH DBNS 118fact that intention and perception ought to be identical. This can be done in a rigid wayby setting the conditional probability of the observed consistency value given its two inputsto 0 in the case of inconsistency. A more 
exible model of mistakes can also be encodedby using a less extreme probability distribution for readily confusable phones. Finally, it isworth noting that a consistency model can also be learned, rather than hard-coded.6.3 DiscussionIn the preceding sections, we have seen that DBNs can be adapted to address therequirements of automatic speech recognition, and that they can model many of the impor-tant factors a�ecting the speech recognition process. We conclude with a brief summary ofthe advantages:� Arbitrary sets of variables can be associated with each timeslice. This enables a highlyexpressive representational framework.� There are e�cient, general-purpose algorithms for doing inference, and no special-purpose algorithms need be derived for handling extensions to HMMs such as articu-lator models.� Sharing variables between submodels leads to a natural way of describing transitionalbehavior, which is important for modeling coarticulation.� Statistical e�ciency. DBNs are factored representations of a probability distribution,and may have exponentially fewer parameters than unfactored representations suchas standard HMMs. Hence these parameters can be estimated more accurately witha �xed amount of data (Zweig 1996).� Computational e�ciency. Gains in statistical e�ciency are often mirrored computa-tionally.
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Chapter 7Speech Recognition ExperimentsThis chapter presents experimental results for a fully implemented speech recog-nition system based on DBNs. Early on, computational limitations forced a choice betweenexperimenting on a fairly small database of digits or alphabet-letters, with the ability totest relatively complex network structures, or experimenting on a more challenging databasewith simpler network structures. In order to get more meaningful results, we chose the lat-ter, and selected a large-vocabulary multi-speaker database of isolated words to use as atestbed. The database is challenging enough that results are signi�cant (unlike databasesof digits or a few command words), yet because it has isolated words, it avoids many issuesthat complicate any continuous-speech ASR system. In short, the database is just complexenough to test some basic issues relating to the use of factored state representations in ASR.Some of the results presented in this chapter appeared in (Zweig & Russell 1998).7.1 DatabaseThis chapter presents results for the Phonebook database (Pitrelli et al. 1995).Despite its name, the database does not contain entries from a phonebook; instead, itconsists of a collection of words chosen to exhibit all the coarticulatory e�ects found in theEnglish language. Researchers at NYNEX compiled the list of words, and then contractedwith an outside organization to obtain actual utterances. These were collected over thetelephone, and thus contain a variety of transmission distortions. The database is dividedinto subsets, and the words in one of these subsets are reproduced in Table 7.1.



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 120achieved apex arsenic ashtray ashwellawe barleycorn beeswax belgium bi�bloodletting boyish breathes broadview cashwayschadwick cheesecloth colorfast compromise confessioncowling craigs disrespectful echoes eggheadexhaustion festival formalization grisly handloomshaymarket highman humdinger humphreys immobilizingimpolite indictments inscribe instincts ivylavender lawmakers majorities masks mckanemutually mysteriously nonstandard noose nothingnessoverambitious penguins perm plowing porchpostmark rustle salesmen sluggishness soggysorceress spokeswoman staying subgroups sulfuricswordcraft theory undeterred unleashes unnaturalvulgarity watchful windowless windshield youngmanTable 7.1: Typical words in the Phonebook database.Word utterances were collected from a group of American speakers who were \bal-anced for gender, and demographically representative of geographic location, ..., income, age(over 18 years), education, and socio-economic status." (Pitrelli et al. 1995) Each speakerwas asked to read 75 or 76 words, and the utterances were then screened for acceptablepronunciation; therefore, there are somewhat fewer than 75 words per speaker on average.7.2 Acoustic ProcessingThe utterances were processed with relatively conventional acoustic processingalong the lines presented in Section 5.1.1. Initial and �nal silence was removed using theendpoints provided with the database. Then the utterances were divided into 25ms windowsand MFCCs were calculated. The analysis windows overlapped by 2/3.Smoothed MFCC derivatives (Rabiner & Juang 1993) were computed, and threedata streams were created: one for the MFCCs, one for the derivatives, and one for thecombination of C0 and delta-C0 (which were omitted from the �rst two streams). Meancepstral-subtraction (Mammone et al. 1996) was performed for cepstral coe�cients C1�C10,and speaker normalization (Lee 1989) was done for C0. The �rst process removes the e�ectsof telephone transmission characteristics, and the second subtracts the maximum C0 value



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 121in an utterance from each frame, in order to make the values comparable across speakers.The data streams were vector-quantized to eight bits (256 values). The MFCCsand delta-MFCCs were quantized in separate codebooks. C0 and delta-C0 were quantizedto four bits each, and then concatenated to form a single eight-bit stream.7.3 Phonetic AlphabetsResults are presented for DBNmodels using both context-independent and context-dependent phonetic units. The Phonebook database provides phoneme-level transcriptions,and these formed the basis of both kinds of alphabet. To keep the number of parametersreasonable, and in common with other work (Dupont et al. 1997), we did not use the 3-waystress distinction for vowels. Additionally, occurrences of /N/, were replaced by /n/; /N/occurs only 24 times in the database, and is not on the o�cial list of phonemes (Pitrelliet al. 1995). The phoneme /L/ is on the o�cial list, but never occurs in the data. The sizeof the basic phoneme alphabet was thus 41. Two additional phonetic units were used torepresent initial and �nal silence.7.3.1 Context Independent AlphabetIn the case of context-independent units, i.e. simple phonemes, each phoneme wasreplaced by a k-state left-to-right phone model. Most of the experiments report resultsfor 4-state phone models; these have an initial and �nal state, and two interior states.Experimentation shows this to be a good number. In all cases, one-state models were usedto represent silence.7.3.2 Context Dependent AlphabetTo create a context-dependent alphabet, we used a variation on diphones (Schwartzet al. 1980). The basic idea is to create two new units for each phoneme in a transcription:one for the initial part of the phoneme in the left-context of the preceding phoneme, andone for the �nal part of the phoneme in the right-context of the following phoneme. Thus,for example, =k ae t= becomes(sil k)(k ae)(k ae)(ae t)(ae t)(t sil):



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 122This scheme has the advantage of addressing both left and right contexts, like triphones,while only squaring - rather than cubing - the number of potential phonetic units.To prevent overtraining, a context-dependent unit was used only if it occurreda threshold number of times in the training data. Units that did not meet this criterionwere replaced with context-independent units. We used thresholds of 250 and 125, whichresulted in alphabets with sizes of 336 and 666 respectively, including a full set of context-independent units.We found it bene�cial to double the occurrence of each of the units in a contextdependent transcription. Thus, the total number of phones is four times the original numberof phonemes, the same number that results from four-state context-independent phonememodels. Repeating phonetic units has the e�ect of changing the minimum and expectedstate durations.It is important to realize that context as expressed in a context-dependent alphabetis signi�cantly di�erent from that represented by a hidden context variable in a DBN.Context of the kind expressed in a context-dependent alphabet is based on an idealized andinvariant pronunciation template; a word model based on context-dependent phones can bewritten down before ever seeing a sound wave, and therefore represents a-priori knowledge.The context-variable represents context as manifested in a speci�c utterance.7.4 Experimental Procedure7.4.1 Training, Tuning, and TestingThe database was divided into separate portions for training, tuning, and testing.All decisions concerning network structures and alphabets were made by training a systemon the training data, and testing it on the tuning data. Decisions were not made on thebasis of performance on the actual test data.The training data consisted of the utterances found in the *a, *h, *m, *q, and*t subdirectories of the Phonebook distribution; the tuning utterances were from the *oand *y directories, and the test utterances from the *d and *r directories. This is the samepartitioning used in (Dupont et al. 1997). This resulted in 19; 421 training utterances, 7; 291tuning utterances and 6; 598 test utterances, with no overlap between the speakers or words
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Figure 7.1: The acoustic models for four of the network topologies tested. The index andtransition variables are omitted. The dotted lines indicate conditioning on the previousframe.in any of the partitions.The words in the Phonebook vocabulary are divided into 75 and 76-word groups,and the recognition task consists of identifying each test word from among the other wordsin its subset. Hence, random guessing would result in a recognition rate of under 2%.7.4.2 Models TestedA baseline DBN was constructed to emulate an unfactored HMM. DBNs with oneor more auxiliary state variables were then designed to answer the following questions:1. What is the e�ect of modeling correlations between observations within a single times-lice? Speci�cally,(a) What is the e�ect of modeling these correlations in a phone-independent way?This question was addressed with the \Correlation" network of Figure 7.1. Thisnetwork is only capable of modeling intra-frame observation correlations in themost basic way.



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 124(b) What is the e�ect of modeling these correlations in a phone-dependent way? Thisquestion was addressed with the phone-dependent \PD-Correlation" networkof Figure 7.1. This network can directly model phone-dependent intra-framecorrelations among the acoustic features.2. What is the e�ect of modeling temporal continuity? Speci�cally,(a) What is the e�ect of modeling temporal continuity in the auxiliary chain in aphone-independent way? This question was addressed with the \Chain" net-work of Figure 7.1. This network results from the addition of temporal linksto the context variable of the correlation network, and can directly representphone-independent temporal correlations. The network was initialized to re
ectcontinuity in the value of the context variable.(b) What is the e�ect of modeling temporal continuity in the auxiliary chain in aphone-dependent way? This was addressed with the \articulator" network ofFigure 7.1. In this network, the context variable depends on both the phoneticstate and its own past value. This can directly represent phone-dependent artic-ulatory target positions and inertial constraints. The network was initialized tore
ect voicing.3. How does the use of a context-dependent alphabet compare to context-modeling withan auxiliary variable? This was addressed by using a context-dependent alphabet ina network with no auxiliary variable. Additionally, we tested the combination of acontext-dependent alphabet with a context variable.4. What is the e�ect of increasing the number of values in the auxiliary chain, and howdoes increasing this number compare to increasing the number of context variables?This question was answered by making the proposed changes to the chain-network.5. What is the e�ect of using an unfactored state representation to represent the sameprocess? To answer this question, a DBN was used to emulate an HMM with anunfactored representation.6. What is the e�ect of doing unsupervised clustering? This question was answered bytesting the network shown in Figure 6.12.



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 125Network Parameters Error RateBaseline-HMM 127k 4.8%Correlation 254k 3.7%PD-Correlation 254k 4.2%Chain 254k 3.6%Articulator 255k 3.4%Table 7.2: Test set word error rate for systems using the basic phoneme alphabet. All thesystems had slightly di�erent numbers of parameters. The standard error is approximately0.25%. Results from Zweig & Russell, 1998.7.5 Results with a Single Auxiliary VariableAnswers to the �rst three questions are presented in this section. Table 7.2 showsthe word-error rates with the basic phoneme alphabet, for the network structures shown inFigure 7.1. The results for the DBNs with a context variable are consistently better thanwithout a context variable. A large improvement results simply from modeling within-framecorrelations, but for both the Correlation and the PD-Correlation networks, a further im-provement results from the addition of temporal-continuity links. The Articulator networkprovided the best performance.In terms of absolute error-rates, these results compare favorably with those re-ported in (Dupont et al. 1997). That paper reports an error rate of 4:1% for an ANN-HMMhybrid using the Phonebook transcriptions, and the same training and test sets. Worseresults are reported for a conventional Gaussian-mixture HMM system. However, withphonetic transcriptions based on the CMU dictionary, (Dupont et al. 1997) achieved signif-icantly improved results. Comparison with this work provides a useful check on the overallrecognition rate, but it should be remembered that a vector-quantized system is beingcompared with a continuous-observation system. Thus di�erences are di�cult to interpret.7.5.1 Context Dependent AlphabetError rates with the context-dependent alphabets are reported in Table 7.3. Theseresults improve signi�cantly on the context-independent results, and (as expected) con�rmthe bene�ts of using a context-dependent alphabet. As discussed previously, context asrepresented in an alphabet is di�erent from context as represented in a DBN with a context



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 126Network Parameters Error RateCDA-HMM 257k 3.2%CDA-Articulator 515k 2.7%CDA-HMM 510k 3.1%Table 7.3: Test set word error rates for systems using context dependent alphabets. The�rst two results use an alphabet with 336 units, and the last result uses an alphabet with666 units. The standard error is approximately 0.20%. Results from Zweig & Russell, 1998.
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ContextFigure 7.2: Network with two context variables.variable. Therefore it makes sense to combine the two strategies, and this in fact producedthe best overall results. Adding an extra context variable doubled the number of parameters,but as the last line in Table 7.3 indicates, doubling this number by using a bigger alphabetis not as e�ective.7.6 Results With Two Auxiliary VariablesIn order to evaluate the use of multiple context chains, the network shown in Table7.2 was tested. Both of the context variables were binary. For comparison, a network witha single context variable with 3 and 4 values was tested. To cut down on memory usageand running time, and to save on the amount of disk-space needed to store conditionalprobabilities, 3-state phones were used in this set of experiments. The results are shown inTable 7.4.These results indicate that increasing the amount of context state improves recog-nition performance. In addition, factoring the context state is bene�cial. The results aresomewhat worse than with the four-state phone models, which indicates that the combina-tion of greater precision and longer minimum durations a�orded by the four-state models



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 127Network Parameters Error RateBinary-Chain 191k 4.1%Trinary-Chain 287k 4.0%Quaternary-Chain 383k 3.8%Double-Chain 383k 3.6%Table 7.4: Test results with multi-valued and multi-chain context variables; the standarderror is approximately 0.25%. The double-chain network used binary variables, and thushad a total of 4 possible context values.
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StatesFigure 7.3: Top: a four-state HMM phone model. Bottom: the same model with a binarycontext distinction. There are now two states for each of the previous states, correspondingto the di�erent combinations of phonetic and contextual state.is important.7.7 Cross-Product HMMIn the conventional HMM framework, the e�ect of a context variable can by sim-ulated by using a more complex �nite state automaton. Figure 7.3 illustrates this strategyfor a binary context distinction. The idea is to create a distinct state for every possiblecombination of state and context. As shown at the bottom of Figure 7.3, the transitionstructure must be made signi�cantly more complex, and the number of transition param-eters is increased much more than in a DBN with a context variable. For example, thenumber of independent context and transition parameters in the articulatory DBN is threetimes the number of phones. In a cross-product HMM, it is six times the number of phones.This di�erence increases rapidly as the number of context variables and values increases. A



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 128States per Phone Context Values Parameters Initialization Error Rate4 2 255 Continuity 3.54 2 255 Voicing 3.23 4 386 Continuity 3.3Table 7.5: Results for cross-product HMMs. Due to computational limitations, three statesper phone were used in combination with the four-valued context distinction.second fact to keep in mind is that the cross-product representation requires multiple initialand �nal states | one for each context value. This is because the context value must beretained across phonetic boundaries when the individual phone models are concatenated toform word models. Standard HMM packages, e.g. (Young et al. 1997), do not have thisability. Results for a cross-product HMM with two di�erent kinds of initialization arepresented in Table 7.5. (More precisely, the results were generated with a DBN structuredto be equivalent to a cross-product HMM.) The �rst kind of initialization was similar tothat used in the Chain-DBN, and re
ected continuity in the context variable value. Thesecond kind re
ected voicing, and is analogous to that used in the Articulator-DBN. Forcomparison with the double-chain network, we also tested a cross-product HMM with fourpossible context values; this network is an unfactored representation of the double-chainstructure shown in Figure 7.2. The results for the cross-product HMM are actually slightlybetter than for the unfactored representation; the EM training procedure was able to makee�ective use of the extra parameters.These results suggest that small amounts of acoustic and articulatory context canbe modeled e�ectively with a cross-product HMM. From an engineering standpoint, this isan attractive, since it requires comparatively minor changes to the phone-models of existingHMM systems. Nevertheless, there are signi�cant drawbacks to this approach; the mostimportant of these is that it does not scale well: the number of transition parameters growslike the square of the number of context values. It is also in
exible, and would be di�-cult to modify to address di�erent sets of variables and di�erent conditional independenceassumptions.



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 1297.8 Clustering ResultsThis section presents results for a network doing unsupervised clustering. Thenetwork structure is presented in Figure 6.12. A binary-valued context variable was used,with the restriction that its value not change over the course of an utterance. This wasenforced by using a stochastic context variable in the �rst timeslice, and then using adeterministic context variable from the second timeslice on to copy the value determinedin the �rst frame. The network was trained as usual, and then during testing the likeliestvalue for the cluster variable was determined.There are at least two dimensions along which one might expect clustering tooccur: the type of speaker (e.g. male vs. female, adult vs. child), and the type of word(e.g. consonant-initial vs. vowel initial). 1 The degree to which such clustering occurs canbe measured by looking at the degree to which utterances with a particular characteristicare classi�ed together in a single cluster. Figures 7.4 and 7.5 show that both speaker andword clustering are observed. Since there are more cross-validation utterances than testutterances, the histograms are based on that subset (no tuning was involved).Figure 7.4 shows the consistency with which utterances from a single speakerwere classi�ed together, and what would be expected at random. Clearly, utterances fromindividual speakers are being grouped together with high frequency.Figure 7.5 shows the same information for particular words. The fact that theoccurrences of a single word tend to be clustered together indicates that word characteristics,as well as speaker characteristics, are being modeled by the auxiliary variable.In terms of overall error-rate, the clustering technique did not do as well as theother augmented networks; the test-set error rate of 4.5% was midway between the 4.8%rate of the baseline network and the 3.6% score for the chain network. This is expected,since the cluster-network has more state, and therefore modeling power, than the baselinenetwork, but not as much expressiveness as the chain-network, where the context variablecan \
ip-
op" between values.It is possible to make sense of the value assigned to the cluster variable, both interms of speaker-type and word-type. The mutual information between the cluster variableand the gender of the speaker is 0.24 bits, indicating a strong correlation between cluster and1Thanks to Je� Bilmes for pointing out the duality between speakers and words.



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 130
0

10

20

30

40

50

60

70

50 55 60 65 70 75 80 85 90 95 100

N
um

be
r 

of
 S

pe
ak

er
s

Percent Cluster Consistency for a Speaker

"cluster"
"random"

Figure 7.4: The frequency with which utterances from a single speaker were assigned to thesame cluster. For example, about 15 speakers has their utterances clustered together with85% consistency. On average, there are 68 utterances per speaker.gender. To determine the word-characteristics associated with the two clusters, we examinedthe words that were very consistently assigned to a particular cluster. These are shown inFigure 7.6. One of the clusters is characterized by words beginning in liquid consonants,while the other is characterized by words ending in liquid consonants. The cluster withwords beginning in liquid consonants also happens to be associated with female speakers;the cluster with terminal liquid consonants is associated with male speakers. Note, however,that since each word was spoken by approximately as many men as women, word-clusteringcomes at the expense of gender-clustering.7.9 Discussion7.9.1 ImprovementsIn every case that an auxiliary variable was used, there was a performance increase.Moreover, increasing the modeling power of the network by increasing the amount of context
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CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 133state produced further improvements. This indicates that context modeling with auxiliarystate information is an e�ective way of decreasing speech-recognition error rates.The context variable was able to capture several di�erent phenomena, rangingfrom simple correlations between the observations within a single frame to gender andword-speci�c characteristics. In general, networks in which the context variables were linkedacross time did better than corresponding networks without temporal links. This is unsur-prising because neither acoustic nor articulatory properties are expected to change rapidlyover time; this is expected for the articulators because of physical inertia, and for acous-tics both because they are generated by articulators, and because the acoustic features aregenerated from overlapping frames of speech.A context-sensitive alphabet was an e�ective way of improving performance, buthere too an auxiliary variable was bene�cial. This makes sense because context-dependentalphabets encode prior knowledge about coarticulatory e�ects, but do not pay attention tothe particulars of any speci�c utterance. An auxiliary variable has the ability to encodeinformation on a case-by-case basis.7.9.2 What Does it Mean?In order to understand the meaning of the context variable, we examined its cor-relation with the di�erent acoustic features, and found that it is highly correlated with thecombined C0 and delta-C0 observation stream. This relation is graphed for four di�erentnetwork structures in Figure 7.6. Roughly speaking, C0 is indicative of the overall energyin an acoustic frame. The maximum value in an utterance is subtracted, so the value isnever greater than 0. Assuming that each frequency bin contributed an equal amount ofenergy, the C0 range corresponds to an energy range of 50db.This �gure shows that despite similar word-error rates, the di�erent network struc-tures worked by learning di�erent kinds of patterns in the data. 2A second important pattern that emerges is that in the networks with time-continuity arcs, the context variable is characterized by a high degree of continuity. Todemonstrate that the networks will tend to learn continuity, an experiment was made inwhich the articulator network was initialized to re
ect voicing in a very extreme way: the2Figure revised 7/98.
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Figure 7.6: Probability that the context variable has the value 1 as a function of C0 anddelta-C0.



CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 135probability of a context value of 1 was set almost to 1 (regardless of its previous value) forvoiced phones, and almost to 0 for unvoiced phones. The EM procedure was then applied,and in the learned parameters, the striking characteristic is that the context value is almostalways unlikely to change. This is consistent with a physical model of a slowly changinginertial process. The initial and learned parameters are shown in Figures 7.7 and 7.8. Forthe results presented in previous sections, the context variable was initialized with lessextreme values; this decreased the number of training iterations, and gave slightly betterperformance.Although Figures 7.7 and 7.8 demonstrate that the context variable displays thecontinuity which is expected from something that models a physical object, we have been un-able to associate it with any speci�c articulator. In particular, the �gures illustrate that theconditional probabilities after training show no clear correlation with the voiced/unvoiceddistinction between phones. The EM training procedure has apparently taken advantageof all the degrees of freedom available to it to maximize the data-probability, resulting inparameters that re
ect a combination of many underlying factors. Training with data inwhich the articulator positions are known will likely lead to simpler interpretations of thelearned parameters.From the previous discussion of the context variable's acoustic correlates, it is clearthat the di�erent networks learned di�erent patterns in the data. One way of measuringthis is to see how similar the errors made by the di�erent networks are. This is shownfor several of the networks in Table 7.7. This indicates that the Correlation and PD-Correlation networks are relatively similar, as are the Chain and Articulator networks. Thebiggest di�erence is between networks using a basic phoneme alphabet and those using acontext-dependent alphabet.7.9.3 PerspectiveAn important tradeo� which is often discussed in the speech recognition literatureis between error-rates and the number of parameters used; this is shown in Figure 7.9 forthe networks studied in this chapter. The correlation between the number of parametersused and the error rate is striking, and in this context, the use of Bayesian networks can beunderstood as a directed and intelligent way of increasing the number of model parameters.
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CHAPTER 7. SPEECH RECOGNITION EXPERIMENTS 137Network Corr. PD-Corr. Chain Art. CDA-257 CDA-Art CDA-510Base 65 69 49 50 35 32 29Corr. 68 55 55 37 34 32PD-Corr. 51 50 38 34 32Chain 56 44 38 32Art. 41 38 33CDA-257 53 32CDA-Art 44Table 7.7: Percent similarity in the errors made by pairs of recognizers. If A and B are thesets of words the systems respectively got wrong, similarity is de�ned as 100 jA\BjjA[Bj.
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Chapter 8Conclusion and Future Work8.1 A Roadmap for the FutureThis thesis has demonstrated that Bayesian network based ASR systems can bebuilt and expected to give good performance; the following sections point out some promis-ing directions for future work. The discussion is divided into two parts: �rst a section onpurely technological issues, and then a section on what the technology might be used for.8.1.1 Technological EnhancementsContinuous Valued ObservationsMost current ASR systems use real valued acoustic feature vectors, and they typ-ically model the distribution over observations with a mixture of Gaussians. It is relativelyeasy to incorporate real-valued variables into a Bayesian network, provided that the vari-ables are always observed and have only discrete parents. This is the case, for example, ina DBN set up to emulate an HMM: the discrete phonetic state variable is the parent of theobservation variable.In this case, it su�ces to model the likelihood of an observation with a single Gaus-sian: the e�ect of mixtures can be obtained by adding an extra discrete \mixture" variableas one of the observation's parents. Depending on the value of this mixture variable, oneof several Gaussians will be selected. Under these circumstances, the programming modi-



CHAPTER 8. CONCLUSION AND FUTURE WORK 139�cations simply require using a Gaussian to compute the likelihood of an observation, andcompiling su�cient statistics to reestimate the Gaussian mean and covariances. The caseswhere the real valued variables are hidden, or have real-valued parents, or are themselves theparents of discrete variables are more di�cult; see (Murphy 1998) for a review of inferenceand learning with continuous variables.Atemporal VariablesSeveral of the schemes we have discussed have used variables whose value does notchange over time. For example, speaker accent and gender do not change during the courseof a conversation. The structures proposed to model such phenomena deal with the problemby repeating a variable through every timeslice in the network, and then use deterministicconstraints to ensure that it does not change its value. This is somewhat awkward, andcould be better dealt with by introducing the concept of an atemporal variable into therepresentational framework.Continuous SpeechThis thesis has dealt only with isolated word recognition, and clearly continuousrecognition is an important extension. As discussed in section 3.7, this is most easilydone by using chain-structured clique trees, which are nevertheless more computationallye�cient than a cross-product HMM. The next step in applying DBNs to continuous speechrecognition would be to construct such a system. The frontier algorithm of (Zweig 1996)might form the basis for this work. Alternatively, the more complex backbone decodingprocedure could be used.8.1.2 Modeling StrategiesMany of the modeling techniques described in Section 6 have not yet been tried,and should be explored in the future. Rather than repeating them, however, this sectionwill focus on a few areas that have either gone unstressed or undiscussed.



CHAPTER 8. CONCLUSION AND FUTURE WORK 140Use Articulatory DataClearly the most important step in constructing realistic articulatory models willbe to train the models using the actual positions, as determined by X-rays, NMR, ultra-sound, magnetic coils, radar, or some other imaging technique. This is not an easy stephowever, and even assuming that data is available, several important issues must be re-solved:� Should the data be discretized? If so, how? If not, it will be necessary to workwith a hybrid Bayesian network, and the problems of mixing continuous and discretevariables must be resolved.� What features are relevant? Positions? Velocities? Accelerations?� Given a set of articulatory features or positions, how should the distribution overexpected acoustics be modeled? This is especially di�cult when the variables arecontinuous and the distribution must be represented functionally.� What characteristics are invariant across a wide variety of speakers? How should thedata be processed to generate speaker-independent features?Clustering Phonetic UnitsOne way of creating context dependent units, say left-context biphones, is to createa new phone for each phoneme in the left-context of every possible preceding phoneme.Many current speech recognition systems re�ne this kind of technique by grouping togethercontextual phonemes with similar phonetic features (Young et al. 1997). For example, onemight simply use a simple binary distinction based on whether the preceding phoneme isnasalized. While this kind of analysis requires the use of a-priori linguistic knowledge, itis also possible to derive context dependent units through a data-driven clustering process(Lee 1989; Young et al. 1997).A similar procedure can be encoded in a Bayesian network. Suppose one maintainsin each timeslice a variable representing not just the current phone, but also the precedingand following phones. (This information is readily available if linear word-models are used.)One can then link this triplet of phones to a single hidden variable that itself has relatively
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Figure 8.1: Network structure for automatic induction of context dependent units.few values, and condition the observations on this hidden variable. In the process of EMlearning, the network will be forced to learn a compact encoding of the triplet of availablephones, thus automatically deriving a context-dependent alphabet. The network structurefor this is shown in Figure 8.1.Pronunciation VariantsAs discussed in Section 6, the work of (Fosler-Lussier & Morgan 1998; Mirghaforiet al. 1995) shows that pronunciations can vary according to speaking rate. By conditioningthe phone variable both on position in the word model, and a rate-of-speech measure, it willbe relatively straightforward to model phone-substitutions due to speaking-rate variability.8.2 ClosingOn the �rst page of his decade old classic, Kai-Fu Lee identi�ed the \Lack of asophisticated yet tractable model of speech" as a principle de�ciency of speech recognitionsystems (Lee 1989). This thesis has argued that the Bayesian network framework is ideallysuited to constructing just the kind of precise, expressive, and tractable models that are



CHAPTER 8. CONCLUSION AND FUTURE WORK 142needed. At a low-level, the thesis has shown how to structure Bayesian networks to ad-dress the technical problems of model composition and e�cient inference with deterministicvariables. Solving these problems is crucial to encoding in a DBN the distributions over pho-netic sequences that are typically represented in other systems with �nite state automata.This has not been done before with Bayesian networks, and allows both pronunciation andacoustic modeling to be done in a uni�ed framework.At a higher level, the thesis shows how to model a large collection of phenomenain the Bayesian network framework. These phenomena include articulatory models, rate-of-speech variability, speaker characteristics, perceptual models, and noise modeling. Theprinciple characteristic of the Bayesian network framework that gives it this 
exibility isthat the probabilistic models are expressed in terms of arbitrary sets of random variables.Thus, once the groundwork has been laid by writing a program for ASR with DBNs, a widevariety of model structures can be encoded and tested.A system for doing isolated word recognition in the Bayesian network frameworkhas been implemented, and experimental results indicate that a signi�cant improvementis possible by augmenting the phonetic state information with one or more auxiliary statevariables. This improvement is apparent both when a phonemic alphabet is used, and witha context-dependent alphabet. This suggests that the auxiliary variable is able to modelutterance-speci�c contextual e�ects that a context-dependent alphabet is insensitive to.
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