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Abstract

Likelihood Maximization Beamforming (LIMABEAM) is a microphone array process-

ing technique specially focused on speech recognition. Unlike other signal processing

techniques which clearly assume the beamformer and recognition system to be cas-

caded, LIMABEAM uses a closed-loop approach for beamformer optimization. This

allows the parameters of the beamformer to be chosen so that the likelihood of the

state sequence is maximized and, thus, classification improved. This is achieved by

means of an adaptive procedure for each input utterance to be recognized.

This report mainly focuses on a deeper understanding of LIMABEAM as well as

implementation related information. This is the result of reading Michael L. Seltzer’s

PhD thesis and informal e-mail exchange between him and the author.
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Chapter 1

Introduction

Most of the current microphone array processing techniques are thought of as an op-

timization problem. Typically, since the optimization procedure is performed at the

signal level, the related objective functions are also derived in this domain. This fact

may lead to processed waveforms which are not perceived by humans as enhanced,

since a mathematically feasible cost function to optimize might not be relevant to us

listeners. It is also not known what should be a relevant cost function, as it is not

clearly understood yet the way humans perceive speech and audio signals.

In speech recognition we are dealing with machines, instead of human beings.

This makes the process of automatic speech recognition a bit more understandable,

since the system itself has been designed by humans. In practice, though, a com-

plete understanding of the interaction among the modules in the speech recognizer

becomes unattainable. Thereby, speech recognition systems typically assume a cas-

cade approach. Here, speech information goes through a series of modules1 till the

systems outputs the corresponding hypotheses for the correct transcriptions.

LIMABEAM breaks the cascade hypothesis between the spatial processing and

the recognition modules. This way, information from the recognition engine is fed

1Preprocessing, feature extraction and classification.
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back for the the spatial processor to take advantage of it. Particularly, the speech

models contain valuable information for classification which is, in the end, the goal

of the recognizer.

Another important advantage of LIMABEAM is that no assumptions about inter-

fering signals, microphone lay-out, speaker-to-receiver impulse responses, etc... are

made. It is mainly a data-driven approach.



Chapter 2

Likelihood Maximization

Beamforming (LIMABEAM)

As typically used by array signal processing techniques, LIMABEAM uses the filter-

and-sum approach for beamforming. This means that the enhancement process itself

consists in filtering the speech signals prior to being summed up, i.e.,

y(n) =
M−1∑
m=0

P−1∑
p=0

hm(p)xm(n− p− τm) (2.0.1)

where y(n) is the output signal, hm(n) is the filter associated with channel m.

Note that xm(n) is delay-compensated by τm.

LIMABEAM tries to optimize the filter taps, hm(n), based on the likelihood cal-

culation for every input utterance. Figure 2.1 shows how beamforming and the recog-

nizer are integrated into the whole system.

Since the optimization procedure will be performed in an adaptive manner, con-

vergence properties are a major concern. Using a time-domain filtering approach such

as (2.0.1) can result in poor convergence properties due to, first, the large number

of parameters to be optimized and, second, the correlation properties between these

3
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Figure 2.1: Closed-loop interaction between LIMABEAM and the speech recognizer
(Taken from [1] page 4).

parameters as the filter is being adapted. Particularly, in noisy plus reverberant en-

vironments this might become a true downfall and might result in no convergence

at all. As it is well-known in the adaptive filtering field, sub-band approaches can

perform significantly better in these environments. Here, the input signal is analysed

by a set of filterbanks and an adaptive filter for each band is used, as shown in Figure

2.2. Note that both the input, x(n) and reference, d(n), signals must be analyzed by

the filterbank.

Figure 2.2: A typical sub-band adaptive filtering framework (Taken from [1] page 77).

There are two main advantages of using a sub-band approach. First, the fil-

terbank outputs are aimed and assumed to be independent (there might be some
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leakage due to the use of non-perfect filters). This means that the optimization can

be performed on each of the bands simultaneously. This way, there is no interaction

between optimized parameters as the optimization goes on. The second advantage is

that, if enough bands are assumed in the filterbank, each of the filterbank outputs

can be assumed to be narrowband. This can be specially beneficial since the noise,

for instance, can be considered as nearly white within that bandwidth. These are the

typical conditions where adaptive filtering performs best.

An efficient way to decompose the input signal into sub-bands is to use a DFT

filterbank for every input frame. Thus, the time-domain taps to be optimized be-

come complex-valued coefficients in the spectral domain. Using a 256-point DFT is

equivalent to optimizing a 256-tap filter in the time-domain. For this DFT approach1,

Y (k) =
M−1∑
m=0

H∗
m(k)Xm(k) (2.0.2)

To resynthesize the enhanced speech signal, the processed spectrum, Y (k), should

be inverse Fourier transformed by means of an IDFT and an overlap-and-add tech-

nique should be used to smooth the time-domain output. Nonetheless, since the next

step for the system will probably be to extract features from that processed spectrum,

time-domain resynthesis could be skipped for most of the types of features we’ll be

interested in. It will depend on how easy it is to interact with the speech recognizer.

For the SRI speech recognizer we are using at ICSI, I would think the easiest is to

resynthesize the time-domain output and let the SRI front-end be the one to extract

features, as it is more transparent and probably safer.

Although Seltzer himself proposed, in informal e-mail exchange (see Section A.1),

to go directly for the sub-band approach (S-LIMABEAM), there are relevant issues

1Note that here only one frame span filters are assumed, as opposed to the multi-frame approach
in [1] page 79
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regarding it, as he already pointed out in his dissertation. The independence assump-

tion between filterbank outputs turns more tricky, now. Assuming MFCC features,

f = D−1 log Mx (2.0.3)

, where f is the extracted feature for that particular frame, D−1 is the inverse Dis-

crete Cosine Transform transformation matrix, M is the mel-filterbank transforma-

tion matrix and x is the energy spectrum of the input frame, that is X(k) = |Y (k)|2,
each feature component in f is tied to ALL of the input frequency bins in x through

D−1, but also partially through M. Although using diagonal covariance matrices in

the HMM models leads to an independence assumption for the feature components,

this independence cannot be ported down to the parameters to be optimized. There-

fore, optimizing a certain filterbank spectral coefficient will affect other components

from other channels as well.



Appendix A

Further Information

A.1 E-mail exchange

Here you will find informal e-mail exchange between Michael Seltzer and the author,

in order to possibly clarify some of the aspects of LIMABEAM. Michael volunteered

to provide source code for LIMABEAM, although it is likely that it cannot be di-

rectly applied to the SRI speech recognizer. Nonetheless, it can be a guide to our

implementation.

Hi Marc,

Thanks for your mail. I’m glad you like my thesis. Good to know

that someone is reading it after all that effort :)

Anyway, those are all good questions. I’ve tried to answer them

inline below. Definitely feel free to ask me any other questions.

Also, I’d need to check with my advisor, but it’s possible that I

could share the code. You wouldn’t be able to use it directly

since it uses several libraries you probably don’t want to

integrate (like the CMU Sphinx III recognizer and my own personal

libraries I used in grad school). But, the main architecture might

7
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be useful. I’ve got a really full plate right now, so I probably

wouldn’t be able to package it up until after Eurospeech.

Good luck!

Please give my regards to Morgan and the rest of the ICSI folks!

Best, Mike

-----Original Message-----

From: Marc Ferras [mailto:ferras@ICSI.Berkeley.EDU] Sent: Tuesday,

August 23, 2005 5:11 PM To: Mike Seltzer Subject: Comments about

LIMABEAM...

Hello Michael,

I’m a visiting researcher at ICSI, working on multi-microphone

techniques for ASR. We are currently considering implementing your

LIMABEAM technique on our speech recognition system aimed at

improving WER on the meetings task.

I’ve been reading your thesis which, by the way, i sincerely think

it is really good piece of work. Since our aim is meetings speech

recognition, which typically contain only moderate reverberation,

my focus would be implementing the time-domain version, in an

unsupervised way. I have, though, several doubts about it, and

maybe you could give me your impressions about them:

<<MIKE>> I would actually recommend using the S-LIMABEAM method

with 1-tap per subband. It was always as good as the LIMABEAM
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method, you don’t need to worry about how many taps to you (20 vs.

30 vs. 40, etc - 1 tap is basically all of those things in one!),

and the convergence is significantly faster. I actually did some

experiments in the thesis with S-LIMABEAM with 1 tap on the ICSI

meeting, which I’m sure you’ve seen.

1. You are using a conjugate gradient descent approach for the

optimization procedure. Have you tried using LMS gardient descent,

instead? Going a bit further, is it very feasible to fall into

local minimums? Is that the reason why you used conjugate

gradient, or it is convergence speed, for the most part of it?

<<MIKE>> I used CG, mostly b/c I didn’t want to deal with

step-size and all that jazz. CG figures all that out on the fly

using approximations to the Hessian. I later found that another

quasi-Newton method, called BFGS optimization (also in NRinC) is

quite a bit faster, at a very small performance hit. Here are MSR,

other folks who do similar optimization problems have used these

methods, and then later settled on Stochastic Gradient Descent.

This method has actually worked the best for them. It requires

some tricks to get it to work though. I believe, for example, that

your input features have to be normalized to mean 0 and variance

1. Anyway, if you wanted I could look into this.

2. I see you used a parallel HMM to ease optimization on the log

mel spectra. I guess you eventually came up with this option after

trying it on cepstrum directly. Based on this, did you experience

serious problems optimizing over cepstrum features? Here, I mean

whether convergence was able to be achieved or not, and if that

was the reason to use two parallel HMM models.
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<<MIKE>> Yes, I was never able to get cepstrum optimization to

work directly, or else I would have dumped the log spectral

models. I had a hand-wavy explanation for why ceptrum wouldn’t

work but I was never really satisfied with it. Some folks at Univ

of Karlsruhe in Germany (Raab and McDonough) did some work based

on S-LIMABEAM, and interestingly, they got cepstrum to work but

not log spectrum. They used a different mic array architecture so

the results weren’t comparable.

3. The last concern is regarding computational cost and practical

implementation issues. I’ve seen that your implementation is x10

times real-time for 1 channel and upper for several channels. Did

you implement LIMABEAM as part of the speech recognition system

source code to get those times? Or was it a cascade of independent

binaries? That’s just to figure how it could be in my case.

<<MIKE>> No, it was a cascade of independent binaries. The time

did not include the recognition time. I used libraries from the

recognizer to get the functions for HMM model I/O and state

sequence I/O, but other than that, it was standalone code. Like I

said above, S-LIMABEAM is faster than LIMABEAM. Also, one thing

that would really speed things up I think is that for "academic"

reasons, I started every utterance from a reset D&S

initialization. However, if your utterances are in a sequence in

time (like in a meeting) then you could initialize your current

utterance with the converged parameters from the previous

utterance. Also, if you go with S-LIMABEAM, you can try some of

the parameter sharing techniques I proposed. Finally, for all of

this, I recommend the FFTW library ("Fastest FFT in the West").

It’s a free library that’s downloadable on the web, and does very

fast FFTs. Since this algorithm is definitely FFT-intensive, it
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was a big time savings.

Well, i would really appreciate your comments on this. If you have

any further comments which you think are relevant, I’d appreciate

them as well.

<<MIKE>> Two things: 1) I did time-alignment of the channels

before hand. For normal array configurations (not the 4 PZM mics),

this was shown not to be really necessary (see the LIMABEAM paper

in Sep 2004 issue of IEEE TSAP). 2) For unsupervised processing,

it was fairly critical to have "enough" speech data in each

utterance. My thesis shows that (somewhere there is a plot of

performance versus utterance length). And of course, you don’t

want this to be dominated by silence. Otherwise, since the

optimization is unconstrained, it will send everything to zero to

match the target silence. So it the utterance is 10 sec but only 1

sec is speech and 9 sec is silence, this is not good.

Thanks a lot in advance!

--Marc



Bibliography

[1] M. L. Seltzer, Microphone array processing for robust speech recognition, Ph.D.

thesis, Department of Electrical and Computer Engineering, 2003.

12


