
1

The design and use of reference data sets for testing
scientific software1

M. G. Cox* and P. M. Harris

Centre for Information Systems Engineering, National Physical Laboratory,
Teddington, Middlesex TW11 0LW, UK

*Fax: 0181 977 7091; E-mail: Maurice.Cox@npl.co.uk

June 26, 1998

Abstract

A general methodology for evaluating the accuracy of the results produced by scientific software
has been developed at the National Physical Laboratory. The basis of the approach is the design and use
of reference data sets and corresponding reference results to undertake black-box testing.

The approach enables reference data sets and results to be generated in a manner consistent with the
functional specification of the problem addressed by the software. The results returned by the software
for the reference data are compared objectively with the reference results. Quality metrics are used for
this purpose that account for the key aspects of the problem.

In this paper it is shown how reference data sets can be designed for testing software
implementations of solutions to a broad class of problems arising throughout science. It is shown how
these data sets can be used in practice and how the results provided by software under test can properly
be compared with reference results. The approach is illustrated with three examples: (i) mean and
standard deviation, (ii) straight-line fitting, and (iii) principal-components analysis. Software for such
problems is used routinely in many fields, including optical spectrometry.

1. Introduction

There is a growing need to ensure that software used by scientists is fit for purpose and especially that
the results it produces are correct, to within a prescribed accuracy, for the problems purportedly solved.
To this end the National Physical Laboratory has developed a general methodology which is applicable
to a range of scientific software. The basis of the approach is the design and use of reference data sets
and corresponding reference results to undertake black-box testing.

The approach allows for reference data sets and results to be generated in a manner consistent with the
functional specification of the problem addressed by the software. In addition, data sets corresponding
to problems with various “degrees of difficulty’’, or with application-specific properties, may be
produced. The comparison of the results returned by the test software with the reference results is made
objective by the use of quality metrics that account for the absolute differences between the test and
reference results, the computational precision of the underlying hardware, and the “degree of
difficulty’’ of the data set.

1 Presented at the International Conference of Optical Spectrometry: Applications and Instrumentation into the
21st Century, Royal Holloway College, UK, 28 June - 2 July 1998. To appear in the journal Analytica Chimica
Acta.

2

The methodology has been applied in the National Physical Laboratory’s own software development,
and to test specific parts of proprietary software packages, including spreadsheets, in common use.

In this paper it is shown how reference data sets can be designed for testing software implementations
of solutions to a broad class of problems arising throughout science. It is shown how these data sets can
be used in practice and how the results provided by software under test can properly be compared with
reference results. The approach is illustrated with three examples: (i) mean and standard deviation, (ii)
straight-line regression, and (iii) principal-components analysis. Software for such problems is used
routinely in many fields, including optical spectrometry.

1.1 Why software fails or produces unreliable results

Software used in scientific disciplines can be unreliable because it implements numerical algorithms
that are unstable or not robust. Some of the reasons [1] for such failings are

1. failure to scale, translate, normalise or otherwise transform the input data appropriately before
solution (and to perform the inverse operation if necessary following solution)2,

2. the use of an unstable parametrisation3 of the problem,

3. the use of a solution process that exacerbates the inherent (natural) ill-conditioning of the problem4,
and

4. a poor choice of formula from a set of mathematically (but not numerically) equivalent forms.

1.2 Requirements for testing: unambiguous specification

Because detailed documentation on the algorithms employed within software implementations is often
unavailable and interaction with the software is limited to “data in, results out’’, it is necessary to use
some form of black-box testing to discern whether any particular item of software is fit for purpose.
Such testing can be carried out if there is a specification available of the task carried out by the
software. The availability of such a specification is assumed here. The specification may be simple, for
example, This software calculates the arithmetic mean and standard deviation of a prescribed set of
numerical values. Even in this simple case, the specification is required to be unambiguous. Hence, it is
stated that the arithmetic mean is of concern (rather than, say, the geometric or the harmonic mean). In
a more complicated case, such as regression, it would be necessary to state such aspects as (i) whether
the regression is carried out in a least-squares or in some other sense and (ii) whether the residuals (the
departures of the specified data points from the model) are measured “vertically’’ (i.e., in the
“direction’’ of the dependent variable), perpendicular to the response surface, or in some other way.

Moreover, it is also necessary to define the “set of numerical values’’, e.g., whether they form a column
vector or a row vector (possibly a contiguous set of cells in a row or column in a spreadsheet model) or
are defined by some other data structure.

If the specification is inconsistent with the task carried out by the software, testing in accordance with
the specification would yield the conclusion that the software was deficient, when in fact it might be
acceptable.

2 A simple instance of data transformation is “coding”, as used traditionally in many statistical studies. A data
value x is replaced by a value x' = Ax + B which has been scaled (by A) and translated (by B) such that all such x-
values lie in a normalised range such as -1 to +1.
3 Problem parametrisation is considered in Section 2.3
4 The condition of a problem is a measure of the sensitivity of the solution to changes in the “input data”. A well-
conditioned problem has the property that a small change to the input data results in a correspondingly small
change in the solution (when solved using an optimally-stable algorithm; see Section 3.1), whereas for an ill-
conditioned problem the results would change appreciably. A poor algorithm can introduce the effects of ill-
conditioning, even if not present in the problem. Moreover, it can worsen any ill-conditioning effects already
present.

3

1.3 Black-box testing and reference data sets

Although scientific software is very widely used, it is rarely tested in an objective and impartial manner.
Some approaches for such testing have been developed, however. These address the individual software
modules called directly by scientists or as part of software packages used in science [2, 3, 4]. Even
when the state of the art has developed to the extent that integrated systems can be tested properly, it
will remain necessary to test individual modules, because of their importance in themselves, and their
considerable use by software packages. Integrated-systems testing concentrates on the interfaces
between modules and such careful testing in conjunction with individual module tests constitutes a key
part of an overall test.

The concern here is with reference data sets for the black-box testing of scientific software. Such testing
involves submitting reference data sets to software under test, the test software, and the resulting output,
the test results, is compared with known reference results. For the application of this approach, it is
necessary to be able to generate reference pairs, i.e., reference data sets and the corresponding
reference results.

Section 2 of this paper addresses some of the main considerations in designing reference data sets and
Section 3 the use of these data sets. Section 4 is concerned with the production of reference data sets in
the important case of least-squares regression. Section 5 presents examples of application. These are (i)
mean and standard deviation (the problem of determining which can be posed as fitting a constant
function to data), (ii) straight-line regression (the “next-hardest’’ problem following fitting a constant),
and (iii) principal-components analysis. Section 6 contains concluding remarks.

Some technical terms are used in this paper which may not be familiar to the intended audience.
Informal definitions of these terms are included as footnotes.

2. Design of reference data sets

Some of the main considerations in designing reference data sets for checking the fitness for purpose of
software are

1. the identification of possible deficiencies in the test software, such as severe rounding-error effects,
subtractive cancellation5 and overflow6 in the computation,

2. the incorporation of known properties in the data sets, such as the “degree of difficulty’’7 of the
associated problem, and

3. the need to mimic actual measurement data sets, i.e., the construction of data sets for which the
reference results are known and which are “close to’’ the data sets used in a particular application
area.

In principle, the approach outlined here is capable of application to a very general class of problems,
viz., the determination of a minimum of a general function of any number of variables. Here, however,
the more modest class of problems of least-squares regression8 is considered. This class contains the
problem of computing the arithmetic mean and standard deviation of a data set.

5 An example of subtractive cancellation is given in Section 5.1
6 Overflow is the consequence of performing an arithmetic operation such that the result is too large (in
magnitude) to be held within the arithmetic system employed. Similarly, underflow can arise; the result is too
small to be represented and is replaced by zero or an approximation.
7 The degree of difficulty of a problem is closely related to condition (Section 1.1) and also incorporates the effect
of problem scaling (Section 3.1).
8 Least-squares regression is the fitting of a model to data using the method of least squares.

4

2.1 Fitness for purpose

Software can at least in part be checked that it is fit for purpose by ensuring that it performs properly
for reference data sets that are representative of the application. It can further be so checked by
including data sets designed to reveal the extent to which the software can yield sufficiently accurate
solutions. For both these purposes it is highly desirable that the data sets possess certain properties. One
valuable property is that the problems identified by the data sets possess known solutions.

Regression software can be deficient in diverse ways, such as an inability to deal accurately with
observational data containing a significant noise component, large numbers of observations, or certain
distributions of points. Suitable tests can be devised to help reveal such deficiencies.

2.2 Design based on prior knowledge of solution

The approach adopted at the National Physical Laboratory to the design of reference data sets is based
on the characterisation of the solution to the problem addressed by the software. For example, a
necessary condition [5] for a solution of a nonlinear least-squares problem is that JTe = 0. Here e is the
vector of residuals and J is the Jacobian matrix, both evaluated at the solution. (J is the rectangular
matrix of partial derivatives of the algebraic expressions for the residuals with respect to the problem
parameters, evaluated for each data point.) Note that JTJ is the normal matrix, i.e., the matrix occurring
in the normal-equations approach [6, p237] to regression.

Reference data sets are constructed, using a data generator, to have known solutions, i.e., solutions
specified a priori. The use of data generators is illustrated in Section 4.1.

There is an alternative approach to employing a data generator, viz., to use reference software. Such
software is software written to an extremely high standard to solve the problem given in the functional
specification. It is akin to a primary standard in measurement, such as a kilogram mass to which
secondary standards are compared for calibration purposes. It has been stated [3], however, that
reference software is very demanding to provide. At the National Physical Laboratory we have found
that the effort required to produce a data generator can be a small fraction of that to produce reference
software. The reason is that the production of a data generator tends to be a much more compact
operation, with fewer numerical pitfalls, and hence its testing overhead is significantly less than that of
reference software for the forward calculation (i.e., of determining reference results from reference data
sets).

There is a further significant advantage of the use of data generators over that of reference software.
The latter can of course be used to furnish the solution corresponding to any data set within its domain
of applicability9. However, in the case of the former, required specific properties can be built in, e.g., in
polynomial regression a data set for which a particular high-degree polynomial would be required.

Finally, real measurement data sets often have certain properties that in total can be quite difficult to
characterise. However, data sets can be devised which are “close’’ to such data sets and which
correspond to known solutions [7].

2.3 Problem parametrisation

Problem parametrisation can readily be demonstrated using a straight line. A straight line can be
expressed in a variety of ways, including

y a a x= +1 2 , (1)

where a1 is the y-axis intercept and a2 is the gradient, and

y a a x c= + −1 2 (), (2)

9 The domain of applicability of an item of software is the set of inputs that the software has been designed to
accept and for which it should produce reliable results.

5

where a2 is the gradient as before, but a1 now represents the intercept with the line x = c, the value of c
being at choice, rather than with x = 0, the y-axis. Parametrisation (2) is clearly a generalisation of (1).
This generality can be used to advantage in designing an algorithm for straight-line fitting, by selecting
a value for c that yields desirable properties. The choice of c as the arithmetic mean of the data abscissa
xi has several such properties [2, p120].

There is an alternative to re-parametrisation in this case, viz., data shifting. If the data abscissa values xi

are replaced before fitting by xi - c, the form (1) then obtains.

The type of testing considered here can implicitly identify whether it is likely that a sensible
parametrisation has or has not been used (or equivalently whether a suitable data transformation has
been adopted).

Problem parametrisation can raise a difficulty for the software tester. If there is no widely recognised or
“canonical” parametrisation, either the values of the parameters corresponding to the actual
parametrisation used by the software must be compared with reference values based on the same
parametrisation, or some subsidiary or derived quantities must be assessed. The former means that the
software tester must be in a position to prepare reference solutions for possibly a wide range of different
parametrisations, thus increasing the cost of the test. This is the solution adopted by the International
Standards Organisation [8] in its work on preparing a standard for testing software implementations of a
class of nonlinear regression algorithms used in industrial inspection. The latter implies that some
invariant, e.g., canonical, form must be determined and, moreover, careful analysis carried out to ensure
that the test on these quantities implies an acceptable result for the primary parameters. However,
within the area of regression, the residuals of a correctly computed solution are invariant to the
parametrisation and are often suitable for testing purposes. Section 4.1 considers the use of residuals in
testing straight-line regression software.

3. Use of reference data sets

This section treats the factors influencing the comparison of reference results and test results, and
indicates the quality metrics used for this purpose. For further details, see [2].

Major factors affecting the comparison of test and reference results are the computational precision η of
the arithmetic used to produce the test results10, the numerical precision of the reference data sets, the
degree of difficulty K (including the scale) of the problem, and the problem parameterisation. The
effects of η and K are considered here, assuming that problem-scale effects have been incorporated into
K and that reference results are known to adequate accuracy for comparison purposes. Further
information concerning these factors and their influence and other effects such as input-output is
available [2, 9].

3.1 Quality metrics

After the test software has been applied to each reference data set, (at least) three quality metrics which
indicate how the test software has performed on that data set can be determined [2]:

1. The difference between the test and reference results, an absolute measure of departure,

2. The number of figures of agreement, a relative measure of departure, and

3. A performance measure depending on the major factors above.

The use of the third metric is considered here. It is indicated below how it is determined and used in
practice.

Express the reference results and test results as vectors of floating-point numbers. Let d = b(test) - b(ref),
where b(test) denotes the test results and b(ref) the reference results. d(b) = RMS(d) is used here to
measure this difference, where RMS(x) = ||x||2/√n denotes the root-mean-square value of an n-vector x.

6

For each data set the problem degree of difficulty K is determined such that d(b) can sensibly be
compared with a tolerance equal to Kη. (The determination of K would normally be carried out by a
numerical analyst.) Thus, K depends on the problem condition and scale11. The quantity d(b)/(Kη) will
then have the property that it is of order unity for software that performs near-optimally and is possibly
very large for poorly-performing software.

The performance measure P(b) is defined by

P
d

K
() log

()
.b

b= +
�
��

�
��10 1

η
(3)

It indicates the number of figures of accuracy lost by the test software over and above what software
based on an optimally stable algorithm12 would produce, being near zero if b(test) and b(ref) agree as
closely as could be expected, and having a value of about k if the agreement is k figures less than this. A
related performance measure is used in testing software for evaluating special functions [4].

4. Production of reference data sets

This section is concerned with the use of data generators to produce reference data sets in regression
and related areas, leading to the null-space approach to data generation (based on solution
characterisation). It also covers graded data sets and performance profiles. The approach is applicable
to all aspects of least-squares model fitting with physical or empirical models, data with constant or
non-constant variance, and data with or without correlated errors. Here, we only consider the simplest
case.

4.1 Reference software and data generators

A reference pair, i.e., a reference data set and the corresponding reference results, may be produced in
two ways (Section 2.2):

1. Start with a reference data set and apply reference software (as, e.g., in [10]) to it to produce the
corresponding reference results.

2. Start with some reference results and apply a data generator to them to produce a corresponding
reference data set.

For problems with a unique solution there is one set of reference results corresponding to a given
reference data set. Conversely, for given reference results there is in general an infinite number of
corresponding reference data sets. This latter property can be used to considerable advantage in
generating reference data sets, both in terms of forming data sets having selected degrees of difficulty,
and in determining data sets which mimic actual data sets from applications. As a simple example, there
is a unique sample standard deviation s for a given sample of two or more numbers, whereas given s
there are infinitely many data sets having this value as their standard deviation. We return to this
example in Sections 4.2 and 5.1.

Null-space methods [9, 7] provide a facility for generating families or classes of data sets. When any of
these sets is submitted to correctly working software, nominally the same solution is produced in each
case. Moreover, this solution is identical to a known solution. A further advantage of null-space
methods is that they can be used to characterise the space of reference data sets having the given
solution. In particular, a sequence of data sets from this space can be extracted having a range of
degrees of difficulty that proves to be invaluable for software testing.

10 For the very commonly used floating-point arithmetic, η is the smallest positive representable number u such
that the value 1 + u, computed using the arithmetic, exceeds unity. For the many floating-point processors which
today employ IEEE arithmetic, η = 2 –52 ≈ 2 × 10-16, corresponding to approximately 16-digit working.
11 The scale of a problem is taken into account through the dimensions, physical or otherwise, of the results. It is
essential that the expression of the same results in different units, such as kilograms or micrograms, does not
adversely influence the perception of the behaviour of the software.
12 An optimally-stable algorithm would produce as much accuracy as is possible in solving the problem defined by
the specification and the data set, using the available computational precision.

7

The null-space approach is now illustrated for the linear least-squares model y = Ja + e, where J
denotes the observation (Jacobian) matrix, y the observation vector, a the vector of model parameters
and e the vector of residuals. For example, if the data to be fitted is {(xi, yi)}, i = 1,…, m, and the model
is the straight line with parametrisation (1), then

J

x

x

x

y

y

y

e

e

e

a

a

m m m

=

�

!

"

$

####
=

�

!

"

$

####
=

�

!

"

$

####
=

�
!

"
$#

1

1

1

1

2

1

2

1

2 1

2M M M M
, , , .y e a

Now the least squares solution is characterised by JTe = 0 [6]. This equation implies two conditions,
one that

ei
i

m

=
=
∑ 0

1

,

i.e., the sum of the residuals is zero, and the other that

x ei i
i

m

=
=
∑ 0

1

,

i.e., the first moment (with respect to the abscissa values) of the residuals is zero. Let N be a basis for
the null space of JT, i.e., JTN = 0.13 Then, for a vector r = Nu, for any choice of vector u, the
replacement of y by y + r will leave the solution vector a unchanged. This result can be seen as
follows. The condition JTe = 0 and the model y = Ja + e imply the normal equations JTJa = JTy. But,
from the definition of the null space, JTr = JTNu = (JTN)u = 0. Thus, from any one data set any number
of further data sets having the same solution can readily be constructed by choosing vectors u.

The problem of reference software has hence essentially been “replaced” by that of a reference
implementation of “null”, which is at the heart of data generation for all regression problems. The null
space of a general matrix J can be calculated very reliably using the singular-value decomposition [6,
p602]. One such implementation is the QXOO function in Matlab [11]. Additionally, it is possible to check
the accuracy of the generated data sets by forming JTe and assessing the closeness of ||JTe||2 to zero,
relative to the value of ||JT||2 ||e||2. This check is generic and does not require the availability of software
to solve the particular problem considered.

4.2 Arithmetic mean and standard deviation

The arithmetic mean and standard deviation of a set of numbers are considered as an illustrative
example in Section 5.1, but here we indicate how the above concepts may be applied in this simple
case. This example is closely related to the above straight-line model, since determining the mean of a
set of numbers is equivalent to fitting them by a constant, and their standard deviation is identical to the
root-mean-square residual of the fit. Any two values having x as their mean are given by x ± λ for any
λ. (This is the only null-space perturbation possible in this case.) Further, any two values given by µ ±
s/√2 have s as their (sample) standard deviation for any value µ. Thus, by varying µ, for example,
different data sets of size two can be generated, where in each case the solution standard deviation is s.

13 This basis can be expressed as an independent set of vectors which together form N. This set is in general not
unique. It is usually determined to be orthogonal, i.e., the inner product of any two (different) vectors is zero. A
vector in the null space can be represented as a linear combination of these “null” vectors.

8

These data sets contain only two values, and in each case there are just two solution parameters, x and
s. Null-space methods [7] permit the above concept to be extended to any number of values. Moreover,
as intimated earlier, they permit not just simple problems such as that above to be handled, but also
extend to very complicated problems, even involving nonlinear optimization with constraints14.

In order to emphasise the importance of testing standard-deviation software, we comment that a
particular spreadsheet package loses 12 of the 14 decimal figures available when s = 0.1 and µ = 106,
whereas another loses just three figures. When µ is increased to 107, the first spreadsheet package
returns zero(!) as the answer (as a result of losing all figures), whereas the second delivers a value
differing from the true value by less than 10-9. Thus, µ (or λ) can be used as a performance parameter,
i.e., a varying parameter to investigate performance.

4.3 Graded data sets and performance profiles

Software used in scientific disciplines often has the property that it works well for certain data sets but
produces unacceptable results for other sets. There is therefore a danger that limited testing might not
reveal its deficiencies. An example is polynomial regression software, where the results of fitting a
polynomial of low degree can be perfectly acceptable, whereas those for higher degrees would be
contaminated by errors introduced by the solution algorithm. In Section 5.2 the simplest polynomial
(apart from the constant), the straight line, is again considered.

 The testing of software on a small number of data sets can provide valuable information about the
software, particularly if the sets are selected to be as disparate as possible in terms of their locations in
the space of possible data inputs. Such data sets provide “spot checks” of the test software, and are
useful in the sense that the software can be regarded as deficient if it fails to perform adequately on any
one of them. They are also useful for the software developer to test, e.g., particular paths through the
software. They are less effective for black-box testing where without additional information little can be
assumed about the algorithms that have been implemented. Data sets of this form have been used for a
number of years in testing software used in industrial inspection for fitting mathematical features such
as spheres, cylinders and cones to data acquired using co-ordinate measuring machines [12] and will
become more formally established when an ISO standard is published [8], and in chemometrics [2, 13].

Graded data sets can be used to help quantify the behaviour of scientific software. A sequence of data
sets is prepared, where each data set in the sequence represents a problem that in some sense is more
difficult than the previous member in the sequence. Such a suite of graded data sets is used to explore
one dimension of the problem addressed by the software. The resulting performance profile, the graph
of the values of P against the degree of difficulty K (or some related performance parameter), can
provide valuable information about the software. If, for graded reference data sets (taken in order), the
values of the resulting performance measure P(b) have a tendency to increase, it is likely that an
unstable method has been employed. (Performance profiles in a somewhat different setting have also
been studied by Lyness [14].) The performance profile can be expressed as a series of points (or the set
of straight-line segments joining them). By introducing variability into each data set for each value of
the performance parameter, e.g., by using random numbers in a controlled way to simulate
observational error, the performance profile will become a swathe of “replicated’’ points, which can be
advantageous in the fair comparison of rival algorithms. Examples of performance profiles are given in
the following section.

5. Examples of application

We give three examples of application, the first two of which arise in virtually all fields of science, and
the third in areas such as optical spectrometry and analytical chemistry. Although these examples are
elementary, they are sufficient to illustrate the key aspects of software testing using the presented
methodology.

14 Constrained non-linear optimization is the problem of minimizing a mathematical function of a number of
variables subject to a set of mathematical equalities and inequalities involving these variables [5].

9

5.1 The sample arithmetic mean and standard deviation

The arithmetic mean of m numbers xi, i = 1, …, m, is defined by

x
m

xi
i

m

=
=
∑1

1

. (4)

Apart from exceptional cases, most software for computing x from given xi will produce a result that
has a relative accuracy approaching the computational precision η and hence be acceptable in all
application areas. The quality of software for computing the standard deviation is in comparison very
varied across implementations. In fact, for some implementations, the software degrades rapidly in its
performance for a sequence of graded data sets. The sample standard deviation s is given (stably) by

s
m

x xi
i

m

=
−

−
%
&K
'K

(
)K
*K=

∑1

1
2

1

1 2

() ,

/

(5)

where x is the arithmetic mean defined in (4). Some software uses the mathematically equivalent (but
unstable) form

s
m

x mxi
i

m

=
−

−
%
&K
'K

(
)K
*K=

∑1

1
2 2

1

1 2

() .

/

(6)

It has the property that it suffers from subtractive cancellation for data sets with small coefficient of
variation s/ x .

For instance, if the values of xi are [0.98, 0.99, 1.00, 1.01, 1.02], x = 1.00, xii

2∑ = 5.0010, mx 2 =

5.0000, and hence three to four significant figures are lost due to subtractive cancellation in forming

x mxii

2 2∑ − = 5.0010 - 5.0000 = 0.0010. In some cases, e.g., a series of accurate replicate weighings

of a standard kilogram to within 1mg, xii

2∑ will be equal to mx 2 to all figures held on the computer.

It is even possible that the computed value of xii

2∑ will be (marginally) less than that of mx 2 due to

the rounding errors occurred in forming these quantities.

In the former case, s is computed as zero (even though the xi are not all identical). In the latter case,

some software packages internally replace the computed value of x mxii

2 2∑ − by zero in order to

avoid a failure due to an attempt to take the square root of a negative number. Such cases are not
pathological. In a comparison [13] of various software packages and electronic calculators, not one of
the eight tested on weighing data produced the correct value of s to two correct figures, although a
perfectly acceptable value would have been obtained by the use of formula (5).

Consider a basic data set defined by X0 = [µ - nh, µ - (n - 1)h, …, µ + nh]. The arithmetic mean and
standard deviation of this data set are µ and s = h{(n + 1/2)(n + 1)/3}1/2, respectively. A family of
graded data sets can be derived from this set by adding an increasing sequence of values: Xk = X0 + qk, k
= 1, …, N, for some q > 1. The mean and standard deviation of Xk are µ + qk and s, respectively.
Graded data sets were so constructed using µ = 3.172, h = 0.1, q = 1.5, n = 12 and N = 60. A value of
the degree of difficulty K was calculated in each case as the inverse coefficient of variation x s/ [2].
Software implementations of the above two formulae were applied to these data sets and a performance
profile determined. See Figure 1.

10

It is observed in Figure 1 that the stable algorithm (points joined by straight-line segments to give an
essentially horizontal line) performs completely satisfactorily for problem degrees of difficulty K
spanning 10 decades. The unstable algorithm (points joined by straight-line segments to give a
generally increasing line) loses a number of decimal figures over and above that which would be lost by
a stable algorithm in a manner essentially proportional to log K. (This result is predicted by a detailed
floating-point error analysis of formula (6).) A performance profile for standard-deviation software
similar in behaviour to the generally rising line in Figure 1 could be taken as an indication that the
unstable formula (6) (or a comparable formula) had been used. It is to be noted that, for almost 20% of
the 60 cases, the results produced by the unstable algorithm are as accurate as those for the stable
algorithm. This demonstration of the fact that an unstable algorithm is (almost randomly) capable of
providing good results is a reason why minimal checking of a piece of software is unsatisfactory.

 There are counterparts of this result for many other mathematical and statistical calculations.

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

log10(performance parameter)

P
er

fo
rm

an
ce

 m
ea

su
re

Figure 1: Performance profile for sample standard deviation against inverse coefficient of variation
calculated using a stable algorithm (generally-horizontal line) and an unstable algorithm (generally-
increasing line).

5.2 Straight-line regression

Polynomial-regression software can be deficient in a number of respects. Prime causes [2] are

1. The parametrisation of the polynomial (i.e., the choice of basis functions (monomials, Chebyshev
polynomials15, etc.) for representing the polynomial),

2. The scaling or normalisation of the problem data, and

3. The algorithm used to solve the linear algebraic equations defining the polynomial coefficients.

15 The monomial representation of a polynomial p(x) is a0 + a1 x + a2 x

2 + …. Chebyshev polynomials provide
another way of expressing p(x), viz., a0 T0(x) + a1 T1(x) + a2T2(x) + …, for different coefficients. Here, Tj(x) is a
polynomial of degree j in x, given by T0(x) = 1, T1(x) = x, Tj(x) = 2x Tj-1(x) - Tj-2(x), j > 1 [15].

11

Failure to scale or normalise the data sensibly or a poor choice of parametrisation can cause the
resulting equations defining the parameters of the polynomial to be unnecessarily ill-conditioned. A
poor choice of algorithm to solve this system can also induce additional ill-conditioning (which would
have been avoided by using a stable algorithm). Since the straight line is a special case of a polynomial
the above causes can also apply, although the first cause does not because in this case the Chebyshev
polynomials and the monomials are identical.

For a chosen value of m, a basic data set {(xi, yi)} 1
m was devised by generating values yi lying exactly

on a straight line at m equispaced points xi in [-1, 1]. Null-space methods were then used to perturb
these values to simulate random noise. The actual test detailed below applied to m = 41 but, to illustrate
the null-space approach, the case m = 3 is considered first.

The x-values in the case m = 3 are -1, 0 and +1. The corresponding Jacobian matrix (see Section 4.1) is

J =
−�

!

"

$
###

1 1

1 0

1 1

,

and, as can easily be verified by forming JTN, the corresponding null-space matrix is

N = −
�

!

"

$
###

1

6

1

2

1

.

Now, for any specific given straight line, generate the three y-values corresponding to these values of x.
If the line is

y x= +5 2 , (7)

the y-values would be 3, 5 and 7. From the theory, any vector that can be written as a linear
combination of the columns of N can be added to the vector of y-values, and the least-squares straight
line for these perturbed values would be identical to the original line (7). In this simple case the null
matrix is a vector, so any multiple, λ√6 say, of the null-space vector can be added to the y vector to give

ynew =
+

−
+

�

!

"

$
###

3

5 2

7

λ
λ
λ

.

A small value of λ can be used to simulate a small-residual problem and a large value a large-residual
problem. The significance of this statement is that some software can perform less well for large-
residual problems and graded data sets spanning a wide range of λ can be helpful in identifying the
point at which, for practical purposes, accuracy starts to be lost. It is to be noted that for nonlinear least-
squares problems, for which iterative methods of solution, such as Gauss-Newton and its variants [5],
are employed, the convergence rates of these methods are affected by the size of the residuals. Thus the
performance (in terms of execution time, accuracy of solution, ability to converge to the required
solution, etc.) of such algorithms with respect to this “size” can be examined. For straight-line
regression, a more important effect is the data normalisation. In this regard, the performance of test
software to the choice of origin for the x-values can be investigated. If a constant is added to the x-
values, the solution mathematically will be trivially changed (Section 2.3): the gradient will be
unaffected, but the intercept term, if the parametrisation (1) is used, will change. The change in the
intercept value is proportional to the constant translation of the x-values. The residuals are of course
unaffected.

12

Two items of straight-line regression software were applied to a data set containing m = 41 points and
performance measure P based on (3) applied to the residuals of the fitted function determined in each
case. The resulting performance profiles (P against degree of difficulty K equal to the distance of the
data set from the origin) are shown in Figure 2. The generally-lower line was obtained by joining the
points representing the results for software based on a stable algorithm, A, which uses a normalised
variable, and the resulting overdetermined linear system solved using QR decomposition [6, p239] (a
stable algorithm for linear-least-squares problems). The generally-higher line corresponds to values
obtained from the use of a less stable algorithm, B, which uses the untransformed variable and forms
and solves the normal equations.

Note that Algorithm A performed near-optimally, the software based on Algorithm B steadily losing
accuracy as K increased.

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

log(performance parameter)

P
er

fo
rm

an
ce

 m
ea

su
re

Figure 2: Performance profile for two items of straight-line-regression software when used to fit 41
equispaced data points. Generally-lower line: Algorithm A (normalised data, QR decomposition);
generally-upper line: Algorithm B (unnormalised data, formation and solution of the normal equations).

5.3 Principal-components analysis

In building a good calibration model in analytical chemistry, a key step is to predict concentration
levels of the analyte of interest, by assembling a representative range of samples [16]. Principal-
components analysis (PCA) is a tool that assists in determining this model. It is valuable because of its
ability to reduce the number of variables in a model to the minimum number that provide the required
information. Mathematically, the PCA problem is as follows. Given an n × p observation matrix X,
determine a number, l < p, say, of linear combinations yj of the columns xj of X such that the yj are
uncorrelated and have maximal variance amongst all such linear combinations. The yj are the columns
of the matrix Y obtained from X by the column transformation Y = XVl, where Vl is a p × l matrix whose
columns are the normalized eigenvectors associated with the l most significant eigenvalues λi of the
normal matrix H = XTX [17].

13

There are two predominant algorithms for solving the PCA problem. One involves forming H = XTX
explicitly and employing eigendecomposition software: H = VDVT [6, p391]. Here, D is the diagonal
matrix of order p whose diagonal entries are the eigenvalues of H and V is the (orthogonal) matrix of
order p whose columns are the corresponding eigenvectors. (Advantage can be taken algorithmically of
the fact that H is symmetric.) The other algorithm forms the singular-value decomposition (SVD) [6,
p69] of X: X = USVT, where S is the diagonal matrix of order p whose diagonal entries are the singular
values of X, V is a matrix of order p containing the corresponding right singular vectors and U is an
orthogonal matrix of order n.

The above multiple use of the symbol V is deliberately suggestive. Mathematically, the V obtained in
both decompositions is the same and D = S2. These results are immediately obtained from the fact that
X = USVT implies that H = XTX = VS2VT, since U is orthogonal. Moreover, V = Vp.

Numerically, the SVD is preferable to eigendecomposition because the latter can be expected to lose
more figures than the former, consequent on working with H rather than directly with X. If, furthermore,
X (and hence H) has close singular values, both eigendecomposition and the SVD will inevitably suffer
further loss of accuracy, which could be disastrous for the former method. If X has close singular
values, this additional loss can be considerable.

To illustrate, we use an example from [2]. Consider a 9 × 6 matrix X which is

0.00748716773088 0.00951114748716 -0.00608079406884 0.00581067039528 0.00567196848036 0.11339287808508

-0.00748906373088 -0.00951136948716 -0.00608477206884 -0.00581454639528 -0.00567513048036 -0.11339216408508

-0.05738659687008 -0.07292893560156 0.04663290299444 -0.04455478863048 -0.04349024388276 -0.86934423525228

0.03279479065440 0.04167680143580 -0.02664530634420 0.03809106397640 0.02537218640180 0.56763902242540

-0.06688083740832 -0.08499449762724 0.05434015785676 -0.05229965383992 0.03425494607796 -0.63899102008212

-0.00156648314112 -0.00199116289184 0.00127055445216 0.00150296491328 -0.02113433072864 -0.09729521564192

0.12725435222496 0.16171937288172 -0.10339259357028 0.09880000151976 0.09643864176612 1.92767550024636

-0.06237958442400 -0.07927420239300 0.05068264390700 -0.04843137329400 -0.04727384400300 -0.94493897070900

0.05738921767008 0.07293226620156 -0.04662803239444 0.04455686343048 0.04349193648276 0.86934385305228

to 14 decimal places. Because of the way in which the data was generated the corresponding matrix of
eigenvectors is exactly

0.5392 -0.5856 0.3744 -0.3648 -0.2976 0.0672
0.5392 0.2558 0.4758 -0.4636 -0.3782 0.0854

V = 0.3744 0.4758 0.6958 0.2964 0.2418 -0.0546 .
-0.3648 -0.4636 0.2964 0.7112 -0.2356 0.0532
-0.2976 -0.3782 0.2418 -0.2356 0.8078 0.0434
0.0672 0.0854 -0.0546 0.0532 0.0434 0.9902

X has some close eigenvalues. The complete eigenvalue spectrum is (exactly)

[0.000009, 0.000036, 0.000049, 161.29000, 6756.84000, 7023030.01000].

Even the best-possible algorithm will lose a certain number of figures in determining V, since the
eigenvalues are close relative to their range; this is less true of the corresponding singular values.

We find that software implementing the SVD approach to PCA delivered a V-matrix which differed in
2-norm from the true V by 2 × 10-12. This result is close to best possible for the computational precision
η and the degree of difficulty K. For eigendecomposition-based software the V-matrix computed
differed in 2-norm from the true V by 2 × 10-7. Thus, it can be concluded that the use of an
eigendecomposition algorithm loses five more figures than does the SVD for this matrix. For other
matrices, the loss may be greater or less.

14

By determining a graded set of 9 × 6 matrices, i.e., a sequence whose condition numbers successively
increase, a performance profile as in the earlier examples can be produced. As before, if there is a
tendency for the performance measure to increase with the performance parameter, this is an indication
that an unstable algorithm (probably in this case based on an eigendecomposition) has been used, rather
than the SVD which would yield an essentially horizontal performance profile. The results so obtained
can be repeated with matrices of other dimensions to help confirm any conclusion drawn about the
quality of the test software.

6. Concluding remarks

This paper has indicated the nature of some of the work carried out at the National Physical Laboratory
on the use of reference data sets for testing software used in scientific applications. Emphasis has been
placed on the use of graded reference data sets to produce performance profiles of test software.
Examples of their use and benefits have been provided.

Further work in this area will be carried out under the Software Support for Metrology programme of
the UK Department of Trade and Industry (DTI). This programme includes the use of reference data
sets to test key mathematical functions embodied in widely-used spreadsheet systems and other
software packages.

Much of the technical work described here was carried out as part of the Valid Analytical Measurement
programme of the DTI and as a supplementary project supported by the National Measurement System
Policy Unit of the DTI.

Bernard Butler provided many valuable comments on the draft of this paper.

References

[1] M.G. Cox. Graded reference data sets and performance profiles for testing software used in
metrology. In P. Ciarlini, M. G. Cox, F. Pavese, and D. Richter, editors, Advanced Mathematical
Tools in Metrology III, pages 43-55, Singapore, 1997. World Scientific.

[2] B. P. Butler, M. G. Cox, S. L. R. Ellison, and W.A Hardcastle, editors Statistics Software
Qualification: Reference Data Sets. Royal Society of Chemistry, Cambridge, 1996.

[3] D. W. Lozier. A proposed software test service for special functions. In R.F. Boisvert, editor, The
Quality of Numerical Software: Assessment and Enhancement, pages 167-178, London, 1997.
Chapman and Hall.

[4] W. Van Snyder. Testing functions of one and two arguments. In R. F. Boisvert, editor, The
Quality of Numerical Software: Assessment and Enhancement, pages 155-166, London, 1997.
Chapman and Hall.

[5] P. E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, London, 1981.

[6] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press,
Baltimore, MD, USA, 1996.Third edition.

[7] M. G. Cox and A. B. Forbes. Strategies for testing form assessment software. Technical Report
DITC 211/92, National Physical Laboratory, Teddington, UK, 1992.

[8] ISO. ISO/DIS 10360-6. Geometrical product specifications (GPS) − acceptance test and
reverification test for coordinate measuring machines (CMM). Part 6: Computation of Gaussian
associated features, 1998. International Standards Organisation proposed draft standard.

[9] B.P. Butler, M.G. Cox, A.B. Forbes, S.A. Hannaby, and P.M. Harris. A methodology for testing
classes of approximation and optimisation software. In R. F. Boisvert, editor, The Quality of
Numerical Software: Assessment and Enhancement, pages 138-151, London, 1997. Chapman and
Hall.

15

[10] G. T. Anthony, H. M. Anthony, B. Bittner, B. P. Butler, M. G. Cox, R. Drieschner, R. Elligsen, A.
B. Forbes, H. Gross, S. A. Hannaby, P. M. Harris, and J. Kok. Reference software for finding
Chebyshev best-fit geometric elements. Precision Engineering, 19:28-36, 1996.

[11] The MathWorks. Matlab User’s Manual. MathWorks Inc., Natick, Mass., USA, 1992.

[12] R. Drieschner, B. Bittner, R. Elligsen, and F. Waeldele. Testing coordinate measuring machine
algorithms. Phase II.Technical Report BCR EUR 13417 EN, Commission of the European
Communities, 1991.

[13] S. L. R. Ellison, M. G. Cox, A. B. Forbes, B. P. Butler, S. A. Hannaby, P. M. Harris, and Susan
M. Hodson. Development of data sets for the validation of analytical instrumentation. J. AOAC
International, 77:777-781, 1994.

[14] J. N. Lyness. Performance profiles and software evaluation. In L. D. Fosdick, editor, Performance
Evaluation of Numerical Software, pages 51-58, Amsterdam, 1979. North-Holland.

[15] C. W. Clenshaw. Mathematical Tables Volume 5. Chebyshev Series for Mathematical Functions.
Her Majesty’s Stationery Office, 1962.

[16] P. Rees. Computing breathes new life into near infrared. Scientific Computing World, (38):18-19,
1998.

[17] R. G. Brereton. Chemometrics: Applications of Mathematics and Statistics to Laboratory Systems.
Ellis Horwood, Chichester, England, 1990.

