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Automatic Speech Recognition with an Adaptation
Model Motivated by Auditory Processing
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Abstract— The Mel-Frequency Cepstral Coefficient (MFCC) or
Perceptual Linear Prediction (PLP) feature extraction typically
used for automatic speech recognition (ASR) employ several
principles which have known counterparts in the cochlea and
auditory nerve: frequency decomposition, mel- or bark-warping
of the frequency axis, and compression of amplitudes. It seems
natural to ask if one can profitably employ a counterpart of
the next physiological processing step, synaptic adaptation. We
therefore incorporated a simplified model of short-term adapta-
tion into MFCC feature extraction. We evaluated the resulting
ASR performance on the AURORA 2 and AURORA 3 tasks, in
comparison to ordinary MFCCs, MFCCs processed by RASTA,
and MFCCs processed by cepstral mean subtraction (CMS), and
both in comparison to and in combination with Wiener filtering.
The results suggest that our approach offers a simple, causal
robustness strategy which is competitive with RASTA, CMS and
Wiener filtering and performs well in combination with Wiener
filtering. Compared to the structurally related RASTA, our
adaptation model provides superior performance on AURORA 2
and, if Wiener filtering is used prior to both approaches, on
AURORA 3 as well.

Index Terms— Neural adaptation, speech recognition, noise
robustness.
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I. INTRODUCTION

T HE accuracy of human speech recognition motivates the
application of information processing strategies found in

the human auditory system to automatic speech recognition
(ASR) [1], [2]. The most popular feature extraction methods
for ASR, Mel-Frequency Cepstral Coefficients (MFCC) and
Perceptual Linear Prediction (PLP), already employ several
principles which have known counterparts in the cochlea
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and auditory nerve: frequency decomposition, mel- or bark-
warping of the frequency axis, and compression of amplitudes.
It therefore seems natural to consider the next processing step
in the auditory periphery – synaptic adaptation in the auditory
nerve. Adaptation (also known as synaptic depression) is a
principal mechanism of neuronal information processing and is
ubiquitous in the brain [3], [4], [5]. It accentuates signal onsets
by following a high initial firing rate with a lower sustained
rate. Adaptation is strong in the auditory nerve, as has been
described in a number of measurements [3], [6], [7], [8].

Models of adaptation, or techniques resembling adaptation,
have successfully been used in ASR. Adaptation has apparent
similarities with the popular RASTA [9] technique. RASTA
processing of speech is a bandpass modulation filtering, op-
erating on the logarithmic spectrum. But whereas RASTA
processing completely suppresses DC modulation, the auditory
nerve shows a sustained firing rate to continuous stimuli.
Recovery from adaptation might be partially responsible for
temporal (forward) masking observed in psychoacoustic ex-
periments [10]. Strope and Alwan [11] developed a model
replicating psychoacoustic masking experiments with which
they demonstrated ASR performance improvements, especially
in noisy conditions. Seneff [12] included adaptation in her
model of the auditory periphery, which was found to perform
better in additive noise than a mel filter bank in [13]. Perdigão
and Sá [14] found the Seneff model to be susceptible to
noise (in contrast to the finding in [13]), but found that a
simplified model of synaptic adaptation generally improved
recognition scores. Tchorz and Kollmeier [15] used an audi-
tory model to evaluate various adaptation parameters on an
ASR task. They reported higher recognition scores in additive
noise for their model compared to mel-frequency cepstral
coefficients (MFCC) and attributed that mainly to their joint
adaptation/compression model.

Accumulated knowledge of the synaptic processes of inner
hair cells (e.g. [7]) has led to the evolution of fairly precise
models [16], [17]. In this work, we first review the physio-
logical facts and illustrate the effects of synaptic adaptation
using a detailed model of auditory processing in the inner ear
(Section II). We next derive a simplified model of adaptation
and integrate it into conventional mel-frequency cepstral co-
efficient (MFCC) feature extraction (Section III). We evaluate
the resulting ASR performance using the AURORA 2 and AU-
RORA 3 speech recognition tasks (Section IV and Section V),
in comparison to ordinary MFCCs, MFCCs processed by
RASTA, and MFCCs processed by cepstral mean subtraction
(CMS), and both in comparison to and in combination with
Wiener filtering.
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II. ADAPTATION PHYSIOLOGY AND DETAILED
MODELING

A. Synaptic adaptation

The receptor cells in the inner ear, known as inner hair cells
(see Fig. 1), transduce displacements of their hair bundles into
electrical potentials. Voltage-sensitive Ca2+ channels located
close to the synapses at the basal part of these cells open
upon depolarisation of the cell membrane. Ca2+ mediates the
fusion of neurotransmitter-filled synaptic vesicles with the cell
membrane. The neurotransmitter diffuses across the synaptic
cleft and binds to receptors on the post-synaptic membrane,
which depolarizes and triggers an action potential, which
propagates along the auditory nerve to the brain.

In the vicinity of each synapse is the “readily releaseable
pool” (RRP) of synaptic vesicles. If enough time has elapsed
since any stimulus at the corresponding basilar membrane lo-
cation, this pool will be filled. At the beginning of an acoustic
stimulus plenty of vesicles are available to fuse, causing a
strong initial auditory nerve response. As the RRP is refilled
at a lower rate than the initial vesicle fusion rate, it depletes.
Auditory nerve activity is thus depressed shortly after stimulus
onset during sustained stimuli. Adaptation in the auditory
nerve can be described by a proportional part and two decaying
exponentials [7] which are referred to as “rapid adaptation”
and “short-term adaptation”. Time constants1 measured in the
Mongolian gerbil were a few milliseconds for rapid adaptation
and roughly 40-60 ms for short-term adaptation [7]. In cats,
however, Chimento and Schreiner [18] found time constants
of short term adaptation were level-dependent and decreased
from 116 ms at 10 dB (above hearing threshold) to 73.5 ms at
30 dB. Spoor and Eggermont [19] estimated that human time
constants of recovery from adaptation are about a factor of four
longer compared to gerbil data; we therefore assumed a short-
term adaptation time constant of 240 ms. This time constant is
also motivated by the notion that higher levels in the auditory
pathway – with presumably longer adaptation time constants
than the auditory nerve – contribute to the temporal processing
of speech. The 240 ms time constant is consistent with other
auditory models that have been used as ASR front ends [15]
and with the high-pass corner frequency of RASTA [9]. The
corresponding high-pass corner frequency (0.66 Hz) is below
but close to the maximum of the modulation spectrum of
speech, which is between 2 to 8 Hz [1].

B. The effect of adaption in a detailed physiological model

In this section we use a detailed, physiologically motivated
model of auditory processing in the inner ear (described in
more detail in [22]) to show the effects of synaptic adaptation
in Fig. 2. This model consists of a nonlinear model of the
human cochlea [22] combined with an inner hair cell/synapse
model adopted from [16]. Fig. 2 illustrates the dynamics of
synaptic processing for a pure tone with added pink noise
(upper panels) and for the spoken letter “p” (lower panels; this

1All adaptation time constants τA mentioned here are defined as exponen-
tial decay constants. The corner frequency fc of a corresponding high-pass
filter can be derived from equation 2.
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Fig. 1. Inner hair cell with synapse (left) and a model of vesicle pool
dynamics adopted from [16]. The model consists of three pools (rectangular
boxes). Vesicle traffic is indicated with arrows. Only vesicles in the RRP
can fuse with the cell membrane and release their neurotransmitter into the
synaptic cleft. Fusion rate depends on Ca2+ concentration. Transmitter in the
cleft is partly recycled and partly lost. Transmitter which is recycled (reuptake)
has to be reprocessed (reprocessing store) and then is added (reprocess) to
the RRP. Additionally, there is refill by newly manufactured vesicles which
replaces lost transmitter.

is a male speaker with pitch frequency approximately 125 Hz).
Responses were derived from a channel with a characteristic
frequency slightly higher than 3 kHz.

The inner hair cell receptor potentials (first column) code
fine-grained temporal properties of the signal as well as the
signal envelope; the voicing of the speech signal is preserved.
To determine the poststimulus time histogram of a high
spontaneous rate (HSR) nerve fiber (second column), action
potentials from 1000 stimulus repetitions were counted in 1 ms
wide bins. Spontaneous transmitter release into the synaptic
cleft even with no stimulus present is responsible for the
spontaneous rate, which was 30 spikes/s for HSR fibers. The
response to the pure tone exhibits a large peak and then
decays to the sustained rate of about 200 spikes/s. The two
time constants of adaptation are clearly visible in response
to the pure tone, where the rapid adaptation dominates the
first 10 ms and the short-term adaptation and sustained rate
dominate the subsequent response. The size of the short-term
adaptation component compared to the steady-state response
is approximately 1:1 [7]. The rapid component is larger and
level dependent. In the speech sound, the rapid adaptation
component appears to primarily enhance voicing. After the
end of the signal, the ANF response is depressed and slowly
recovers.

III. A SIMPLIFIED ADAPTATION MODEL FOR ASR

For application in speech recognition we developed a sim-
plified adaptation model which we inserted into MFCC feature
extraction just after the calculation of logarithmic mel spectra.
Note that adaptation is a ubiquitous property of synapses; the
model used here is to motivate a simplified adaptation stage
that in fact may describe aspects of adaptation not only in the
auditory nerve, but also of processing stages at higher levels
along the auditory pathway.

Rapid adaptation enhances the temporal fine structure of
speech signals, but as this fine structure is removed by MFCC
feature extraction, we did not include rapid adaptation in our
simplified model. Our model of adaptation is implemented
by summing (with equal weights) a temporally high-pass
filtered version of the logarithmic mel spectra with the original
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Fig. 2. Upper panel: Modeled excitation caused by a 3 kHz tone burst (sound pressure: 70 dB(A), raise time: 5 ms) with pink noise added (SNR: 39 dB(A)).
Bottom panel: Response to the spoken letter “p” (ISOLET recording mtkm0-P2-t, sound pressure: 75 dB(A) (SNR: 41 dB(A)), fundamental frequency: 125 Hz,
third formant at approximately 3 kHz). The sound stimulus is plotted on top of the leftmost panel. Columns from left to right: receptor potential (RP) in the
detailed model, firing rate of HSR fibers (1000 repetitions, 1 ms time bins) in the detailed model, value of logarithmic mel-frequency channel without (black
line, scaled in dB) and with simplified adaptation (gray lines, scaled in model units). Adaptation responses are shown for time constants of 60 ms (dotted
line) and 240 ms (solid line). The mel-frequency channel was tuned to 3 kHz, the auditory model channel to a slightly higher frequency to avoid auditory
nerve saturation.

logarithmic mel spectra. We performed the temporal filtering
using a first-order IIR high pass filter which represents the
decaying exponential effect of short-term adaptation. The
transfer function of the high-pass filter is:

H(z) =
2fsτ − 2fsτz−1

1 + 2fsτ + (1 − 2fsτ) z−1
(1)

where fs = 100 Hz, the MFCC frame rate. We initialized the
filter’s memory to zero and, to avoid an initial transient, we
subtracted the first frame of logarithmic mel spectra from all
of the frames when applying this filter. Results for the 3 kHz
mel-frequency channel with and without added adaptation are
plotted in the rightmost column of Fig. 2. The figure illustrates
that the the original logarithmic mel-frequency value closely
resembles the envelope of the receptor potential, and the adap-
tation model replicates the effects of short-term adaptation.
Particularly for the speech stimulus, the trace of the adaptation
output replicates the envelope of the auditory nerve activity:
signal onsets are enhanced and the response decays during
stimulus duration.

Fig. 3 shows the effect of adaptation processing on the
logarithmic mel-frequency spectrogram for an utterance from
the AURORA 2 test set (spoken digit “two”; female speaker),
without noise (left column) and with car noise (right column).

IV. DESIGN OF AUTOMATIC SPEECH
RECOGNITION EXPERIMENTS

We evaluated the effect of our simplified adaptation model
on ASR performance using the AURORA 2 and AURORA 3
speech recognition tasks, using plain MFCC features as a
baseline. For comparison, we also evaluated the effect of other
robustness methods: RASTA and cepstral mean subtraction,
which can be viewed as related temporal filtering techniques,
and Wiener filtering, which is designed specifically for additive
noise.

A. Feature extraction

1) Baseline MFCC features: We used the ETSI Distributed
Speech Recognition reference source code for MFCC (avail-
able from www.etsi.org) to calculate 13 cepstral coefficients
including C0. Delta and double-delta features were calculated
within HTK using two frames of past context and two frames
of future context. All other techniques for feature extraction
used in our experiments, including our simplified adaptation
model, were incorporated as additions onto this baseline.

2) RASTA: For RASTA filtering, we used a publicly avail-
able Matlab implementation of RASTA [23]. We inserted
the RASTA filter into the MFCC calculation just after the
calculation of logarithmic mel spectra.

The logarithmic domain in which our adaptation model and
RASTA operate is a natural domain for attempts to compensate
for convolutional distortions (since, ignoring the effects of
framing and mel filtering, convolution in time becomes multi-
plication in frequency, and this multiplication becomes an ad-
dition when a logarithm is taken). For distortion due to additive
noise, however, compensatory signal processing may be easier
in a linear domain. This perspective motivated the development
of the J-RASTA [9] variant of RASTA, in which the domain is
closer to logarithmic when levels of background noise are low
and closer to linear when levels of background noise are high.
Rather than evaluate J-RASTA, we chose to evaluate RASTA
preceded by Wiener filtering, as the performance of this can be
compared to the performance of cepstral mean subtraction and
our adaptation model themselves preceded by Wiener filtering.

3) Cepstral mean subtraction: We also tried cepstral mean
subtraction (CMS), in which the mean of the MFCC features
across frames is calculated and then subtracted from the fea-
tures. CMS, like RASTA, suppresses DC, but unlike RASTA
it suppresses only DC and it is noncausal. The noncausality
of the CMS technique can be a drawback in interactive ASR
applications (there are causal and nearly-causal variants but
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Fig. 3. Comparison of mel-spectrograms (b+e) and mel-spectrograms with adaptation (c+f) in response to the spoken digit “two” (AURORA 2, utterance
FCJ 2A) in clean condition (left column), and with 15 dB SNR car noise (right column).

we will not consider them here). On the other hand, RASTA
and our adaptation filter (described below) are left-context-
dependent, which could be a disadvantage in systems which,
unlike in this work, use context-independent acoustic modeling
[9], [24]. CMS was of interest to us because it is a common
ASR robustness technique and because it and RASTA are
sometimes viewed as competing alternatives (although they
may also be combined with each other, as in [25]). Further
discussion of CMS, along with an examination of improving
CMS performance through incorporating speech detection, can
be found in [26].

4) Wiener filter: Since the ASR tasks we used contain large
amounts of additive noise, we were interested in trying a
robustness method designed specifically for that distortion. We
used a Wiener filter implementation originally developed as
part of the Qualcomm-ICSI-OGI ASR front end described in
[25]2. This performs Wiener filtering with engineering mod-
ifications such as a noise over-estimation factor, smoothing
of the filter response, and a spectral floor. The noise power
spectrum estimate is initialized using the beginning frames of
the input waveform before the start of speech, and updated
using later frames which are judged as non-speech according
to a frame energy test. We ran the Wiener filter prior to
all other feature extraction, as a pre-processing stage which
created noise-reduced waveforms.

B. Recognition tasks and recognizer back end

We used the AURORA 2 and AURORA 3 speech recog-
nition tasks. AURORA 2 [27] is based on the TIDIGITS

2An archive containing additional description of the Wiener
filter along with software for it can be downloaded at
http://www.icsi.berkeley.edu/Speech/papers/gelbart-ms/pointers
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Fig. 4. ASR performance of MFCC in combination with the adaptation model
(MFCC+A), and with Wiener filtering and adaptation (MFCC+WF+A) as a
function of adaptation time constant. Results are given as relative improvement
of word error rates (relative to plain MFCC for MFCC+A and to Wiener
filtered MFCC features for MFCC+WF+A).

database (connected digits spoken by both male and female
speakers), bandpass filtered to telephone bandwidth, with eight
different noise types artificially added at SNRs from -5 dB
to 20 dB. This task has a standardized ASR back end: a
hidden Markov model (HMM) recognizer implemented with
Cambridge’s HTK tools. The acoustic modeling uses word-
level digit models with 16 states per word, a three-state pause
model, and a one-state short pause model which is identical to
the middle state of the pause model. Each state is described
by a diagonal-covariance Gaussian mixture model. We used
the “complex” version of the back end, defined by Asela
Gunawardana, in which there are 20 Gaussians per word state
and 36 Gaussians per pause state. There are two training
conditions in AURORA 2: clean training where no noise was
added and multi-condition training with four different noise
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types added at various SNR levels. There are three test sets:
set A uses the same noise types that are used in the multi-
condition training, set B uses noise types not found in training,
and set C uses noise types not found in training and is
also filtered to simulate a channel mismatch. We report our
performance separately for each training condition as word
recognition accuracies (in percent) averaged over the three test
sets and SNRs from 0 dB to 20 dB.

In order to evaluate performance on real-world data, and
to judge the generalization of our results, we also used the
AURORA 3 task, previously used by [25] and [28] among
others. AURORA 3 involves recognition of connected dig-
its strings recorded in in-car environments under various
driving conditions, using both close-talking and hands-free
microphones. The recordings are a subset of SpeechDat-Car
[29]3. A standardized HTK back end configuration is used,
using word-level digit models with 16 states per word and
three Gaussians per state, a three-state pause model with six
Gaussians per state, and a one-state short pause model which
is identical to the middle state of the pause model. There
are three different training/testing conditions for AURORA 3.
In the well-matched condition, 70% of the data (including
both microphone types and all driving conditions) are used
as training data, and the remaining 30% are used as test
data. In the medium-mismatched condition, only the hands-
free recordings are used, with the less noisy driving conditions
used for training data and the remainder used for test data. In
the highly-mismatched case, the close-talking recordings from
all driving conditions are used as training data, and the hands-
free recordings from all but the quietest condition are used for
the test set.

We present recognition scores averaged over four languages
(German, Danish, Finnish and Spanish). When averaging
across the different mismatch conditions, we followed the
usual convention for AURORA 3 and weighted the high-
mismatch, medium-mismatch, and well-matched conditions by
0.25, 0.35, and 0.4 respectively.4

The speech data and back end configuration files for the
AURORA 2 and AURORA 3 tasks are available from ELDA5.

V. ASR RESULTS AND DISCUSSION

A. The effect of the adaptation time constant

As discussed in section II-A, adaptation time constant in
humans might differ considerably from values measured in
animals. Also, adaptation at higher processing levels in the
human auditory system with longer time constants might be
important for speech processing, and indeed the parameters
of adaptation in the human auditory system are not neces-
sarily optimal for ASR. We have therefore evaluated a range
of adaptation time constants for ASR. Figure 4 summarizes

3More information can be found online at http://www.speechdat.org
4More detailed AURORA 2 and AURORA 3 performance

breakdowns than included here can be found online at
http://www.icsi.berkeley.edu/Speech/papers/TSAP-Adaptation. We may
use the same location in the future to inform our readers about new
developments in our work.

5The Evaluations and Languages resources Distribution Agency,
www.elda.org

TABLE I

RECOGNITION ACCURACIES (%) FOR THE AURORA 2 TASK.

Training MFCC MFCC MFCC MFCC

cond. + A + RASTA + CMS

Unprocessed clean 56.4 76.5 64.5 69.5

speech multi 89.3 91.2 89.9 92.5

Wiener clean 78.9 80.1 72.6 76.7

filtered speech multi 91.4 92.3 90.8 93.2

A indicates adaptation filtering and CMS cepstral mean subtraction.

AURORA 2 speech recognition results (expressed as relative
word error rates compared to a front end without the adap-
tation processing) as a function of adaptation time constants.
Adaptation time constants in the range found in gerbils and
guinea pigs (40-60 ms) improve recognition scores, but longer
time constants provide larger benefits. For the case of clean
training with Wiener filtering, the figure shows that the best
time constant is 80 ms, but for the other three cases the best
time constant lies between 200 ms and 300 ms. We therefore
chose an adaptation time constant of 240 ms for all other ASR
experiments. This value is four times as large as in gerbils, just
as estimated for humans by [19]. Our AURORA 3 experiments
provide a generalization test for this choice of time constant.

The adaptation attenuates low frequencies in the modulation
spectrum. A given adaptation time constant τA corresponds to
a high-pass filter with a corner frequency fc of:

fc =
1

2πτA
(2)

Arai et al. [21] found that the 1–16 Hz portion of the
modulation spectrum is important for human speech intelli-
gibility. Thus, our time constant of 240 ms, corresponding to
a corner frequency of 0.66 Hz, is consistent with their results.
Notably, the adaptation time constant is also in accordance
with psychoacoustic time constants. As already pointed out
by Zwicker, forward masking can last up to 200 ms and the
time constant effective in simultaneous masking is also 200 ms
[20].

B. AURORA 2 feature extraction performance comparison

The performance of the simple adaptation model is plotted
in Figure 5 as a function of SNR, while results averaged
over SNR are summarized in Table I. The largest improve-
ment occurred when changing from clean to multi-condition
training; for plain MFCC the relative improvement in word
error rate (WER) was 75.6%. Wiener filtering gave 51.6%
/ 18.9% relative WER improvement over plain MFCC for
clean- and multi-condition training, respectively. Adding the
adaptation model (indicated with +A) improves performance
by a lesser but still significant amount: 46.1% / 17.0% relative
WER improvement over plain MFCC. Given the much lower
computational cost of our adaptation model compared to
Wiener filtering, this improvement is impressive. Of special
interest is that combining adaptation processing with Wiener
filtering provides a 5.6% / 10.5% relative improvement in
WER over Wiener filtering alone. With and without Wiener
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TABLE II

RECOGNITION ACCURACIES (%) FOR THE AURORA 3 TASK.

Mismatch MFCC MFCC MFCC MFCC

case + A + RASTA + CMS

Well 91.0 92.5 89.5 91.3

Unprocessed Medium 70.2 73.9 76.3 79.5

speech High 48.4 63.7 67.4 59.2

Average 73.1 78.8 79.3 79.2

Wiener Well 92.3 93.4 90.3 93.6

filtered Medium 68.1 78.6 78.2 82.6

speech High 63.0 77.2 76.9 74.2

Average 76.5 84.2 82.7 84.9

filtering, the adaptation model outperforms RASTA and CMS
for clean training, while for multicondition training it outper-
forms RASTA and is outperformed by CMS.
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Fig. 5. Recognition accuracy in noise using MFCC based features only,
MFCC in combination with our adaptation model (MFCC+A), MFCC with
Wiener filtering (MFCC+WF) and MFCC with Wiener filtering and adaptation
(MFCC+A+WF).

C. AURORA 3 feature extraction performance comparison

Table II summarizes the results obtained on the AURORA 3
task. Without Wiener filtering, adaptation processing (indi-
cated with +A) improved average recognition accuracy from
73.1% to 78.8%, a relative improvement of 21.2% in the
word error rate (WER). RASTA and CMS processing both
slightly outperformed adaptation filtering in this case, provid-
ing relative improvements of 23.2% and 22.6% respectively.
For comparison, introducing Wiener filtering only yielded
12.8% relative WER improvement compared to plain MFCC
feature extraction. In the Finnish medium mismatch case,
there was, surprisingly, a 60% drop in relative WER from
the introduction of Wiener filtering (we have been told we
are not the only ones to observe this sort of behavior when
applying noise reduction to the Finnish task; Hans-Günter
Hirsch, personal communication. Without taking Finnish into
account, the relative WER improvement for Wiener filtering
was 19.9%.) Adding adaptation processing to Wiener filtering
resulted in a relative improvement of 32.7% (41.3% relative
to plain MFCC features). This was better than adding RASTA
processing, but worse than adding CMS to Wiener filtering.

Looking at the mismatch conditions individually, we see
that in the well-matched case adaptation filtering improved
recognition scores (16.9% / 14.4% relative improvement,
without and with Wiener filtering respectively), while RASTA
worsened them. Under high mismatch, adaptation filtering
improved recognition scores (29.6% / 38.4% relative improve-
ment), but was outperformed by RASTA processing without
noise reduction (36.8% / 37.5%). Since RASTA completely
suppresses DC modulation, one might have expected RASTA
to outperform adaptation in the high-mismatch condition, but
this is not the case if Wiener filtering is used first. In the
medium mismatched case, CMS clearly outperformed both
adaptation and RASTA processing.

It is notable that adaptation processing alone outperformed
Wiener filtering alone in all mismatch conditions and that the
combination of adaptation and Wiener filtering always yielded
better recognition scores than either method by itself.

VI. CONCLUSION

A number of auditory-based approaches for noise-robust
ASR have been proposed by different groups. They include
models of particular psychoacoustic or physiological effects
(e.g., temporal masking [11]), more comprehensive models
of “effective” sound processing [15], [30], and complex,
physiologically-based inner ear models [31], [14]. We chose to
model a single effect, synaptic adaptation. Compared to past
work we chose an approach of greater simplicity, modeling
adaptation with a single first-order IIR filter stage which is an
incremental addition to conventional MFCC feature extraction.
This simplicity reduces computational cost and reduces the
engineering effort required for integration into existing ASR
systems. This follows the tradition of employing auditory
principles in simple or stylized form represented in the very
popular MFCC and PLP feature extraction methods. (Given
the superb performance of human speech recognition, we do
also see great merit in research on detailed auditory modeling
for ASR, and indeed are pursuing it ourselves [32].)

Using the AURORA 2 recognition task, we experimented
with the effect of the short-term adaptation time constant in
our model, and found a time constant of 240 ms appropriate,
which is consistent with estimates for adaptation in the human
auditory nerve [19]. With that time constant, incorporating our
model into MFCC calculation reduced AURORA 2 word error
rate by 46% relative for clean training and by 17% relative for
multicondition training. This was less than the improvement
from introducing Wiener filtering (51.6% / 18.9%), but still
notable considering the lower computational cost and imple-
mentation complexity of our adaptation model compared to
the Wiener filter. Furthermore, when combined with Wiener
filtering adaptation provided further WER reductions relative
to Wiener filtering alone.

On the AURORA 3 task, of the three methods evaluated,
adaptation was the only one to outperform Wiener filtering
in all mismatch conditions, and like CMS it consistently
improved recognition scores when combined with Wiener
filtering. Thus we see that our adaptation model is an effective
strategy for feature robustness. Considering this, and its useful
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properties of simplicity and causality, it seems its employment
in ASR systems deserves serious consideration.
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