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Abstrat
Kernel Optimization for Support Vetor Mahines: Appliation to SpeakerVeri�ationbyAndrew Oliver HathDotor of Philosophy in Engineering-Eletrial Engineering and Computer SienesUniversity of California, BerkeleyProfessor Nelson Morgan, ChairIn this dissertation, we examine the problem of kernel optimization for binary lassi�ationtasks where the training data are partitioned into multiple, disjoint lasses. The dissertationfouses spei�ally on the �eld of speaker veri�ation, whih an be framed as a one-versus-all (OVA) deision task involving a target speaker and a set of impostor speakers.The main result of this dissertation is a new framework for optimizing generalized linearkernels of the form, k(x1;x2) = xT1Rx2, where x1 and x2 are input feature vetors, andR is a positive semide�nite parameter matrix. Our framework is based on using �rst andseond-order statistis from eah lass (i.e., speaker) in the data to onstrut an upperbound on lassi�ation error in a linear lassi�er. Minimizing this bound leads diretly to anew, modi�ed formulation of the 1-norm, soft-margin support vetor mahine (SVM). Thismodi�ed formulation is idential to the onventional SVM developed by Vapnik, exeptthat it impliitly presribes a solution for the R parameter matrix in a generalized linearkernel. We refer to this new, modi�ed SVM formulation as the adaptive, multiluster SVM(AMC-SVM). Unlike most other kernel learning tehniques in the literature, the AMC-1



SVM uses information about lusters that reside within the given target and impostordata to obtain tighter bounds on lassi�ation error than those obtained in onventionalSVM-based approahes. This use of luster information makes the AMC-SVM partiularlywell-suited to tasks that involve binary lassi�ation of multilass data|for example, thespeaker veri�ation task|where eah lass (i.e., speaker) an be treated as a separateluster.In OVA training settings, we show that the AMC-SVM an, under ertain onditions,be formulated to yield a single, �xed kernel funtion that applies universally to any hoieof target speaker. Sine this kernel funtion is linear, we an implement it by applying asingle linear feature transformation to the input feature spae. This feature transformationperforms what we refer to as within-lass ovariane normalization (WCCN) on the inputfeature vetors. The dissertation desribes a set of experiments where WCCN yields largeredutions in lassi�ation error over other normalization tehniques on a state-of-the-artSVM-based speaker veri�ation system.
Professor Nelson MorganDissertation Committee Chair
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Chapter 1
Introdution

One of the entral problems in the study of support vetor mahines (SVMs) is kernelseletion|that is, the problem of hoosing or optimizing a kernel funtion for a partiulartask and dataset. In the following dissertation, we onsider the problem of kernel optimiza-tion for binary lassi�ation tasks where the training data are partitioned into multiple,disjoint lasses. We fous spei�ally on the �eld of speaker veri�ation, whih an beframed as a one-versus-all (OVA) deision task involving a target lass (i.e., speaker), andan impostor lass omposed of a pooled set of impostor speakers. The dissertation showshow information about individual lasses (i.e., speakers) in the data an be used to onstrutupper bounds on lassi�ation error. By minimizing these upper bounds, we obtain a newframework for training aÆne lassi�ers. This framework also leads to various tehniques fortraining kernel funtions for support vetor mahines. We desribe a set of experiments inwhih our approah yields substantial improvements in lassi�ation error when omparedwith other, existing tehniques for training kernel funtions.The main result of this dissertation is a general framework for performing binary lassi-�ation in multilass settings with aÆne deision funtions. This framework leads diretlyto a modi�ed formulation of both the hard-margin and the 1-norm soft-margin supportvetor mahines (SVMs). These modi�ed SVMs are idential to the onventional SVM1



formulation in Vapnik [1995℄, exept that they impliitly learn kernel funtions of the form,k(x1;x2) = xT1Rx2, where x1 and x2 are input feature vetors, and R is a positive semidef-inite matrix. We refer to kernel funtions of this form as generalized linear kernels.Under various onditions, our framework leads to generalized linear kernels of the formR = C�1W , where CW is the expeted within-lass ovariane matrix over all lasses (i.e.,speakers) in the training data. This parameterization applies universally to any hoieof target lass (i.e., speaker). Beause the kernel funtion is linear, we an implement itby applying a single linear feature transformation to the input feature spae. This featuretransformation performs what we refer to as within-lass ovariane normalization (WCCN)on the input feature vetors. In Chapters 6 and 8, we desribe a set of experiments whereWCCN yields large redutions in lassi�ation error over other normalization tehniques.The WCCN approah forms one of the main omponents of our dissertation.In Chapter 7, we derive a more general formulation of WCCN where the kernel funtionis adapted to the given hoie of target set and impostor set. We refer to this formulation asthe adaptive, multiluster SVM (AMC-SVM), sine it assigns a separate weight parameterto every lass (i.e., luster) in the training data. Unlike other kernel learning tehniques inthe literature (e.g., multiple kernel learning (Lankriet et al. [2004℄; Bah et al. [2004℄) andhyperkernels (Ong et al. [2003℄), the AMC-SVM uses information about lusters that residewithin the given target and impostor data to obtain tighter bounds on lassi�ation errorthan those obtained in onventional SVM-based approahes. This use of luster informationmakes the adaptive, multiluster SVM partiularly well-suited to tasks that involve binarylassi�ation in multilass settings|for example, the speaker veri�ation task, where eahlass (i.e., speaker) an be treated as a separate luster.The dissertation is organized as follows: We begin, in Chapter 2, by desribing thespeaker veri�ation task and by summarizing the urrent state-of-the-art in the �eld, par-tiularly as it applies to support vetor mahines. This is followed by a brief overview ofsupport vetor mahines (SVMs) in Chapter 3. Chapter 4 provides a brief summary of2



related work within the �eld of kernel optimization. Chapters 5 through 7 desribe the the-oretial framework behind WCCN and the adaptive multiluster SVM. These hapters alsodesribe a set of experiments where we ompare these tehniques with other state-of-the-arttehniques for training kernel funtions. Finally, we desribe a pratial proedure for ap-plying WCCN to high-dimensional datasets in Chapter 8. In this hapter, we also desribethe latest results obtained from using WCCN on an SVM-based speaker veri�ation task.The results show that WCCN yields signi�ant improvements over other state-of-the-arttehniques for performing kernel optimization on speaker veri�ation tasks.
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Chapter 2
Speaker Veri�ation

The following hapter gives a brief introdution to the �eld of speaker veri�ation. Thisinludes a desription of the various models and feature sets that are typially used to trainspeaker veri�ation systems. In the following setion, we begin with a general overview ofthe speaker veri�ation problem.2.1 Problem De�nitionUnlike speaker identi�ation, where the goal is to assoiate a given speeh utteranewith a spei� speaker, the goal in most NIST-de�ned speaker veri�ation tasks|whihare the tasks that we will onsider for this researh|is to determine whether or not agiven speeh utterane belongs to a given speaker. Thus, speaker veri�ation is a binarylassi�ation problem. We will fous on a set of NIST-de�ned tasks for performing text-independent speaker veri�ation, where the input speeh is not onstrained to any spei�set of words or phrases. In these tasks, the speaker veri�ation system is presented witha set of speeh utteranes or onversation sides. These onversation sides onstitute oneside of a two-way telephone onversation and are typially about 2.5 minutes in length.The speaker veri�ation system is presented with a limited number of onversation sides4



(usually between 1 and 8) from the given target speaker, along with a test onversationside, whih we refer to as the test segment or test utterane. The system is then asked todetermine whether or not the test utterane belongs to the target speaker. Typially, thespeaker veri�ation system is allowed to use any number of onversation sides taken fromso-alled impostor speakers|that is, speakers who don't appear in the test data or as targetspeakers|to failitate in making this deision. This pooled set of impostor onversationsides is referred to as the bakground data or as the impostor data.2.1.1 Prototypial SystemFigure 2.1 shows a high-level diagram of a prototypial speaker veri�ation system. Thesystem uses a set of target utteranes and a set of impostor or bakground utteranes totrain a one-versus-all (OVA) speaker model for speaker i. In the �gure, we use the notation,Xi to represent the set of training utteranes that belong to speaker i. These utteranesonstitute the \positive examples" for the given speaker. Similarly, we refer to all utteranesin Xj where j 6= i as the negative or impostor examples for speaker i. The system in Figure2.1 uses the target examples and the impostor examples for speaker i to train a speakermodel, whih we represent as the funtion fi. The speaker model performs a mapping froman L-dimensional input spae into the spae of real numbers:fi : RL ! R:We refer to the salar value fi(x) as the output sore obtained for utterane x on speakermodel i. This sore is used to form the output hypothesis ŷi(x), whih indiates whether ornot the system believes that x belongs to target speaker i. This hypothesis is determinedas follows: ŷi(x) = 8><>: 1; if fi(x) � 0;�1; if fi(x) < 0: (2.1)The term ŷi(x) represents the hypothesized binary label for x given target speaker i. Here,a value of 1 represents a \positive" deision, where x is deemed to belong to speaker i.5



Figure 2.1. High-level diagram of a typial speaker veri�ation system. Here, Xi representsthe set of training utteranes that belong to target speaker i. The funtions fi and yirepresent the orresponding speaker model and deision funtion.Conversely, a value of �1 represents a \negative" deision, where x is said to belong to theimpostor set. We use yi(x) to represent the true label of x given target speaker i:yi(x) = 8><>: 1; if x belongs to speaker i;�1; otherwise:If ŷi(x) is equal to yi(x), then we say that x has been orretly lassi�ed for the given targetspeaker i. Otherwise, we say that x has been mislassi�ed.Signals and Feature SetsGiven the many soures of speaker-spei� information within speeh (e.g., prosody,pith, word usage, speaking rate, et.), most state-of-the-art speaker veri�ation systemsrely on multiple signals and feature representations to enode eah onversation side orutterane. For example, a speaker veri�ation system might use a set of aousti features|that is, features based on short-time Fourier representations of the input aoustis (e.g.,Mel-frequeny epstral oeÆients (MFCCs) (Kajarekar et al. [2005b℄)|along with feature6



Figure 2.2. High-level diagram of a speaker veri�ation system that performs sore-levelsystem ombination.sets based on relative n-gram frequenies of words (Doddington [2001℄) and of phonemes(i.e., sub-word linguisti units) (Andrews et al. [2002℄; Campbell et al. [2003℄; Hath et al.[2005℄), and a fourth set of features based on prosodi events (Kajarekar et al. [2003℄),to represent eah onversation side. We will provide a more detailed desription of thesesignals and feature sets in Setion 2.2.In general, the goal in speaker veri�ation is to apture as muh speaker-spei� in-formation as possible within eah onversation side by using a diverse range of signals andfeature sets. In many ontemporary speaker veri�ation systems, these feature sets are usedto train a set of individual speaker models, where one speaker model is trained for everyfeature set. Eah speaker model generates its own output sores, and these sores are laterombined to generate a �nal output sore for a given utterane x. A system suh as thisis shown in Figure 2.2. In the above �gure, we use the notation, xj, to denote the featurevetor for utterane x drawn from signal (i.e., feature set) j. The system in Figure 2.2 trainsa set of funtions of the form, f ji : RLj ! R, where f ji represents the speaker model or-responding to target speaker i and feature set j. This speaker model maps feature vetors7



from some Lj-dimensional feature spae (i.e., the feature spae that orresponds to the jthfeature set) into a real-valued output sore. The output sores for a partiular test-targetpair|for example, the pair (x; i), where x represents a test utterane and i represents atarget speaker model|are then \ombined" in some way to arrive at a �nal output sore,fi(x). We will briey disuss tehniques for ombining sores in Setion 2.7. Finally, weuse the deision rule in (2.1) to obtain the output hypothesis, ŷi(x).The system shown in Figure 2.2 depits what we refer to as sore-level ombination,where the input signals and feature sets are ombined at the level of output sores. Systemssuh as this are quite ommon in the �eld of speaker veri�ation and often perform quitewell on system evaluations. For example, the two top-performing systems in the 2005 NISTSpeaker Reognition Evaluation both used a sore-level ombination strategy (Mirghaforiet al. [2005℄; Ferrer et al. [2005a℄). Sore-level ombination provides a onvenient meansof \ombining" feature sets in a single system, beause it treats all feature sets as thoughthey were independent of one-another, onditional on their output sores. The ost of thisonditional indepedene assumption is that the system in Figure 2.2 is inapable of modelinginterdependenies between signals that appear only at the feature level. Unless the signalsare truly independent onditional on their output sores, sore-level ombination an leadto redutions in lassi�ation auray below what might otherwise be ahievable.In this dissertation, we investigate tehniques for performing what we refer to as feature-level ombination, where various signals and feature sets are \ombined" into a single featurerepresentation prior to training speaker models. A system that performs feature-level om-bination is shown in Figure 2.3. In this system, the input feature sets are �rst fed into afeature normalization module, whih produes a single, ombined feature set at its output.This output feature set is then used to train a single speaker model. Here, the idea is todesign a feature normalization module that transforms and ombines the input feature setsin some optimal (or near optimal) way for the purpose of training speaker models. Thequestion of how to transform or ombine feature sets is entral to this dissertation and willbe disussed in muh greater detail in subsequent hapters.8



Figure 2.3. High-level diagram of a speaker veri�ation system that performs feature-levelsystem ombination.2.2 Classi�ation Paradigms for Speaker Veri�ationThe previous setion desribes the speaker veri�ation problem and provides a generaloverview of a typial speaker veri�ation system. In Setion 2.3 and in Setion 2.4, we dis-uss the two main lassi�ation paradigms used in ontemporary speaker veri�ation. Theseinlude Maximum Likelihood (ML) lassi�ation, whih involves modeling the onditionalprobability density funtion (pdf) of the utterane spae given either the target speaker orthe impostor speakers. Our disussion of ML lassi�ation will fous mainly on Gaussianmixture models (GMMs), whih are used to estimate pdfs. GMMs have traditionally beenamong the most widely-used tools for modeling speaker harateristis, and one of the mostsuessful for performing speaker veri�ation. We will also provide a brief overview of otherML lassi�ation tehniques that have played a signi�ant role in speaker veri�ation|forexample, hidden Markov models (HMMs) and n-gram models.Setion 2.4 is devoted to the more reent paradigm of SVM-based speaker veri�ation,where SVMs are used to train speaker models. In reent years, support vetor mahineshave beome one of the most important and widely-used lassi�ation tehniques within the9



�eld of speaker veri�ation. Setion 2.4 provides a high-level overview of the various featuresets (a.k.a. \systems") that have been developed for SVM-based speaker veri�ation. Adetailed desription of support vetor mahines is provided in Chapter 3.2.3 Maximum Likelihood Classi�ation for Speaker Veri�a-tionUntil reently, the �eld of speaker veri�ation has been largely dominated by maximumlikelihood (ML) tehniques for performing lassi�ation. The primary feature of these teh-niques is that they attempt to model the onditional probability density funtion (pdf) ofthe utterane spae for both the target speaker and the impostor speakers. In the MLframework, a given test example x is lassi�ed as belonging to the lass with the highestonditional pdf for x. We represent the onditional pdf of x as fxjyi, where yi 2 f�1; 1gdenotes the partiular model. By onvention, a value of 1 for yi denotes the model fortarget speaker i, and a value of �1 denotes the model for the impostor set. Given fxjyi foryi 2 f�1; 1g, we an form the log-likelihood ratio for x given target speaker i as follows:LLR(x ; i) , log� fxjyi=1(x)fxjyi=�1(x)�:In ML lassi�ation, the log-likelihood ratio for test utterane x given target speaker i istypially used to de�ne the orresponding output sore, fi(x):fi(x) , LLR(x ; i):Given the above assignment for fi(x), we note that if fi(x) is greater than zero, then MLlassi�ation yields the output hypothesis, ŷi(x) = 1. Similarly, if fi(x) is less than zero,then we have the hypothesis, ŷi(x) = �1. Thus, we an use the deision rule in (2.1) toobtain the output hypothesis, ŷi(x).
10



2.3.1 GMM-based Classi�ationThe most ommon form of ML estimation in speaker veri�ation involves using Gaus-sian mixture models (GMMs) to estimate the pdfs of the utterane spae. The GMM-basedapproah for speaker veri�ation is largely inherited from the �eld of automati speeh reog-nition, where GMMs are used to model pdfs for phonemes and for other speeh units. Inmost GMM-based systems, the input onversation sides are divided into short-time \frames"of speeh. These frames are typially about 30ms in length and are sampled at 10ms in-tervals. A set of mel-frequeny epstral oeÆients (MFCCs) are extrated for eah speehframe (Davis and Mermelstein [1980℄). For example, the state-of-the-art GMM system do-umented in Kajarekar et al. [2005b℄ extrats a total of 19 MFCCs for eah 30ms frame ofinput speeh. The MFCCs are onatenated with a set of so-alled delta features, whihrepresent the �rst and seond di�erenes between the MFCCs in the urrent frame andthose in the adjaent frames. Further details on feature extration for GMM-based speakerveri�ation an be found in Reynolds et al. [2000℄; Kajarekar et al. [2005b℄.After performing feature extration, the system in Kajarekar et al. [2005b℄ uses a GMMto model the unonditional pdf of x, whih we represents as fx. The unonditional pdf ofx is often referred to as the speaker-independent aousti model. Given the large numberof speakers in most speaker veri�ation training sets, fx is typially used as a universalestimate for the onditional pdf of the impostor set, fxjyi=�1. In other words, we use theapproximation, fxjyi=�1 � fx for all i. The onditional pdf of target speaker i is typiallyestimated by adapting the speaker-independent aousti model (i.e., fx) to the training datafor that speaker. We refer to this pdf as a speaker-dependent aousti model for speakeri. Common tehniques for performing adaptation inlude maximum a posterior (MAP)adaptation (Gauvain and Lee [1994℄) and maximum-likelihood linear regression (MLLR)(Leggetter and Woodland [1995℄). After obtaining fxjyi for y 2 f�1; 1g, we an use theequations presribed in the previous setion to ompute log-likelihood ratios and outputsores for target speaker i. 11



2.3.2 HMM-based Classi�ationGMM-based systems are typially among the top-performing systems on speaker veri-�ation tasks. However, GMMs are often ritiized for their inability to apture sequeneinformation in speeh. For example, sine words usually span many frames, GMMs tend tobe poorly suited for modeling di�erenes in word usage (idiolet) between speakers. Indeed,the GMM-based approah is often referred to as a \bag of frames," beause GMMs are in-variant to the sequene in whih frames appear in a onversation side. One way to addressthis issue is to use hidden Markov models (HMMs) to model the pdfs and onditional pdfsof the utterane spae. Unlike GMMs, HMMs inorporate sequene information into theirlikelihood estimates. HMMs are also, by far, the most widely-used tool for modeling speehwithin the �eld of automati speeh reognition (Rabiner and Juang [1993℄).HMMs typially work well on text-dependent speaker veri�ation tasks, where the speak-ers are instruted to read a given word or phrase (Rosenberg et al. [1990, 1991℄). HMMshave also ahieved some suess on text-independent tasks like the tasks that we onsider inthis dissertation. For example, Boakye and Peskin used word-onstrained HMMs to build atext-independent speaker veri�ation system in Boakye and Peskin [2004℄. This work playeda signi�ant role in ICSI's submission for the NIST 2005 speaker reognition evaluation, inwhih ICSI ahieved the seond-best results out of all partiipating sites on the so-alled\ommon ondition" (Mirghafori et al. [2005℄).2.3.3 N-gram ModelsAnother e�ort at moving beyond the standard GMM-based paradigm is to expliitlymodel sequenes of phones and/or words used by speakers. This line of researh was pio-neered by Doddington, who used ounts of word n-grams to model speaker-spei� patternsof word usage (Doddington [2001℄). In Doddington's paper, the ounts are obtained from theoutput of an automati speeh reognition (ASR) system. As in the GMM-based approah,Doddington's approah involves omputing the log-likelihood ratio (LLR) for every pair of12



test utterane and target speaker. Doddington used the following equation to ompute theLLR for test onversation side x and target speaker model k:LLR(x ; k) = MXi=1 p(dijx) log p(dijspkk)p(dijbkg) (2.2)Here, p(dijx), p(dijspkk), and p(dijbkg) refer to the prior probability (or equivalently, therelative frequeny) of word n-gram di within onversation side x, speaker model k, andwithin the bakground model, respetively. In priniple, this equation an be applied notonly to word n-grams, but to any n-gram unit|for example, n-grams based on speehphonemes. As in the GMM-based approah, the LLRs de�ned by the above equation areused as output sores in a speaker veri�ation system.An approah similar to Doddington's has also been used to model patterns of phonemeusage in speeh. This line of researh, whih is sometimes referred to as phoneti speakerreognition, was introdued by Andrews et al., who used relative frequenies of phone n-grams derived from a speeh reognizer to apture patterns in an individual's speeh (An-drews et al. [2001, 2002℄). This work was subsequently extended in various papers, suh asthe work of the \SuperSID" team at the JHU 2002 Summer Workshop (Jin et al. [2003℄;Navratil et al. [2003℄; Klusaek et al. [2003℄; Reynolds et al. [2003℄). In 2003, Campbell etal. used support vetor mahines (SVMs) to train phoneti speaker models (Campbell et al.[2003℄). Subsequent improvements to this paradigm are desribed by Hath et al. [2005℄.The n-gram models desribed here are typially less e�etive than GMM-based systems onspeaker veri�ation tasks. However, these models tend to yield signi�ant improvements inlassi�ation error when ombined with GMM systems (Hath et al. [2005℄).2.4 Speaker Veri�ation with Support Vetor MahinesUntil fairly reently, the GMM-based approah desribed in Setion 2.3 was widely re-garded as the standard in state-of-the-art speaker reognition tehnology. However, overthe past few years, the �eld of speaker reognition has essentially been transformed by sup-13



port vetor mahines (SVMs), whih now play an important role in most high-performanespeaker reognition systems. Support vetor mahines are spei�ally designed for binarylassi�ation tasks, and they tend to work partiularly well on tasks where the dimension-ality of the feature spae is large ompared with the total number of training examples.These properties make SVMs well-suited for speaker veri�ation tasks, where the inputfeature spaes are large (typially between 10000 to 100000 features), and the number oftraining examples is omparatively small (typially between one and eight target examplesand several thousand impostor examples).Most SVM-based speaker reognition systems train a separate SVM for every ombina-tion of target speaker and feature set. Typially, eah SVM is trained in a one-versus-all(OVA) setting, where the onversation sides of the target speaker are used as the positiveexamples and the onversation sides of the impostor speakers are used as the negative ex-amples. The SVM-based soring funtion for a given target speaker i is used to de�ne theorresponding speaker model, fi. In the following setions, we provide an overview of SVM-based speaker reognition and desribe some of the most widely-used feature sets withinthis �eld. A more in-depth introdution to SVMs is provided in Chapter 3. We also providean overview in Chapter 4 of the various feature transformations and kernel funtions usedin SVM-based speaker veri�ation.2.5 Feature Sets for SVM-based Speaker Veri�ationThe following setion provides a brief desription of some of the most ommonly-usedfeature sets in SVM-based speaker veri�ation.2.5.1 Cepstral FeaturesOne of the most widely-used feature sets in SVM-based speaker veri�ation is the so-alled epstral SVM system, whih was �rst introdued by Campbell [2001℄. (Note that we14



use the terms, \system" and \feature set," interhangeably in this setion). Cepstral SVMsystems are essentially the SVM-based ounterparts of the Gaussian mixture model (GMM)systems desribed in Setion 2.3. A typial epstral SVM system extrats �13 epstralfeatures per speeh frame. An intermediate set of features is then formed by omputingvarious derivatives of the epstral features, whih are transformed into a polynomial vetor,typially of degree 3 or less. The polynomial vetors are then averaged over an entireonversation side to arrive at the �nal feature representation (Campbell [2001℄). Moststate-of-the-art implementations of the epstral SVM have in exess of 10000 features perfeature vetor. In a omparison of SVM-based speaker veri�ation systems (i.e., featuresets), the lowest error rates are typially ahieved by epstral SVM systems and by MLLR-SVM systems, whih we desribe next.2.5.2 MLLR FeaturesMLLR-SVM systems use feature vetors omposed of transform oeÆients obtainedfrom a maximum-likelihood linear regression (MLLR) (Leggetter and Woodland [1995℄). TheMLLR approah involves training a linear transformation to map the means of a speaker-independent GMM into a new set of means for a given onversation side. This approah wasoriginally developed to transform speaker-independent aousti models (i.e., GMMs) intospeaker-dependent models for speeh reognition tasks. However, Stolke et al. reentlyshowed that MLLR an also be used to apture speaker-spei� information for performingspeaker veri�ation. The MLLR-SVM systems desribed in Stolke et al. [2005, 2006℄ useMLLR transform oeÆients to onstrut feature vetors for performing speaker veri�ationwith SVMs. A typial MLLR-SVM system may have in exess of 12000 features per featurevetor. The MLLR-SVM systems that have been reported so far in the literature have beenshown to yield superior results over most other feature sets. We note that MLLR-SVMsystems form the basis for many of the experiments that we report in Chapters 6 and 8.
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2.5.3 N-gram FeaturesAnother ommon paradigm in SVM-based speaker veri�ation is n-gram or ount-basedfeature extration, where eah feature represents the relative frequeny of some n-gram event(e.g., a word or a phoneme). Feature sets based on relative frequenies of n-grams werepreviously desribed in Setion 2.3.3 in the ontext of ML lassi�ation. In reent years,these feature sets have also played a signi�ant role in SVM-based speaker veri�ation.For example, a number of papers have been written on the use of relative frequenies ofphone (i.e., phoneme) n-grams as features for SVM-based speaker veri�ation (Campbellet al. [2003℄; Hath et al. [2005℄). Phone n-gram systems typially use anywhere from2000 to 50000 n-gram based features per feature vetor. SVM-based phone n-gram systemsonsistently outperform their ML-based ounterparts. However, phone n-grams have, so far,failed to ahieve the same level of lassi�ation auray as other SVM-based systems|mostnotably, the epstral and MLLR-SVM systems desribed in the previous subsetions. Phonen-gram systems have also failed to yield signi�ant improvements when ombined at thesore-level with state-of-the-art speaker veri�ation systems.Other types of n-gram systems inlude the word n-gram system desribed in Kajarekaret al. [2005a℄. This system forms the SVM-based analog of the word n-gram system de-veloped by Doddington [2001℄. As with phone n-grams, word n-grams tend to give betterresults in SVM-based systems than in ML-based systems. The word n-gram system de-sribed in Kajarekar et al. [2005a℄ performs poorly when tested as a stand-alone system,but yields signi�ant improvements when ombined at the sore-level with a state-of-the-artspeaker veri�ation system.Other notable feature representations inlude so-alled SNERF n-grams, whih modeln-gram frequenies of prosodi events at the syllable level (Shriberg et al. [2004℄; Kajarekaret al. [2003℄). These feature sets typially have over 30000 features per feature vetor, whereeah feature represents the frequeny of a partiular n-gram event. Although less e�etive inisolation than most \aousti" feature sets (e.g., epstral SVM and MLLR-SVM systems),16



SNERF n-grams tend to yield signi�ant improvements in overall auray when ombinedat the sore-level with other systems.2.6 Sore NormalizationWe an use the tehniques desribed in the preeding setions to train speaker modelsfor all target speakers in a given training set. In general, these speaker models will tend toprodue sores that disriminate between utteranes that belong to the given target speakerand utteranes that do not. However, beause the speaker models are trained independentlyof one-another, the resulting output sores may be biased. More importantly, the outputsores may have biases that di�er signi�antly onditional on the speaker model for whihthey were omputed. For example, the sores for the positive and negative trials of speakermodel i (i.e., the trials where test utteranes belong to speaker i and the trials where theydo not) may be entered around 0:5 and 0, respetively, while the sores for the positiveand negative trials of speaker model j are entered around 0 and �0:5. Similarly, an outputsore may be biased onditional on the test utterane for whih it was omputed. In eitherase, the resulting output sores will not be \aligned" properly|espeially if we plan to usea single, �xed sore threshold over all speaker models and test utteranes. To orret forthis, most speaker veri�ation systems apply various normalizations to the output sores.The two most ommon forms of sore normalization for speaker veri�ation are zero-normalization (ZNORM) (Reynolds [1997℄) and test-normalization (TNORM) (Auken-thaler et al. [2000℄). The ZNORM approah involves omputing impostor sores|thatis, sores for impostor or negative trials where the given test utterane does not belong tospeaker i|on some set of bakground data for every speaker model. The output sores arethen shifted and saled in suh a way that the impostor sores have a �xed sample meanand sample variane for every speaker model. The TNORM approah is similar to ZNORMexept that it normalizes the output sores aross test utteranes instead of aross models.TNORM an be applied to a given test utterane x by �rst soring x with a set of \impostor17



models" (i.e., speaker models that do not \belong" to x). This gives us a set of impostorsores for x. We then shift and sale all output sores obtained with x in suh a way thatthe impostor sores for x have a �xed sample mean and sample variane. The TNORM andZNORM approahes tend to yield signi�ant improvements in lassi�ation performane onmost speaker veri�ation tasks. Note that these tehniques an also be ombined|that iswe an apply ZNORM after TNORM or vie-versa|to perform sore normalization.2.7 System CombinationIn Setion 2.1.1, we briey desribed the problem of ombining multiple feature sets andinformation soures in a single speaker veri�ation system. This problem, whih we referto as system ombination, is typially handled by ombining various individual systems andfeature sets at the sore-level. A diagram of this type of system ombination is providedin Figure 2.2. In many state-of-the-art speaker veri�ation systems, the �nal output soresare omputed as a weighted sum of the sores of the individual systems:fi(x) =Xj �jf ji (x):Here, �j represents the weight of the jth subsystem|that is, the jth feature set. Varioustehniques an be used to train these weights. For example, many top-performing systemsuse a single-layer pereptron to train weights for the various subsystems (Kajarekar et al.[2005b℄; Mirghafori et al. [2005℄). Support vetor mahines (SVMs) have also reently beenused for this purpose (Garia-Romero et al. [2003℄). Other notable tehniques for performingsore-level ombination for speaker veri�ation are desribed in Ferrer et al. [2005b℄.The tehniques desribed above provide a onvenient and relatively straightforwardmeans of ombining feature sets (i.e., subsystems) into a single system. However, as de-sribed in Setion 2.1.1, one potential problem with sore-level ombination is that thefeature sets are assumed to be independent of one-another onditional on the output sores.In other words, the feature sets are only allowed to \interat" with eah other at the sore18



level, whih means that most task-relevant interdependenies between the feature sets|if they exist in the �rst plae|will be lost. Viewed from the perspetive of informationtheory, sore-level ombination an have the e�et of reduing the hannel apaity of thelassi�ation system, whih essentially plaes a lower bound on lassi�ation error.One of our goals in this thesis proposal is to address this problem by performing what werefer to as early ombination or feature-level ombination|that is, training speaker modelson one single ombined set of features rather than ombining feature sets at the level ofoutput sores. The onept of feature-level ombination is illustrated in Figure 2.3. In theontext of SVM-based lassi�ation, early ombination boils down to the question of howto selet or learn a single kernel that an handle features from multiple knowledge soures.This topi will be addressed in greater detail in subsequent hapters. First, we provide abrief introdution to support vetor mahines in Chapter 3.
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Chapter 3
Support Vetor Mahines

The following hapter provides an overview of the learning system known as the supportvetor mahine (SVM). We begin the hapter with some bakground on SVMs, inludinga brief introdution to the related onepts of strutural risk minimization, VC dimension,and optimal margin lassi�ers (Boser et al. [1992℄). This is followed in Setions 3.2 and3.3 with desriptions of the so-alled hard-margin and soft-margin SVMs. Throughout thishapter, we refer to various onepts from the �eld of onvex optimization. These oneptsinlude, for example, linear programs (LPs), quadrati programs (QPs), onvex duality, andthe notion of a onvex optimization problem. A thorough desription of these onepts anbe found in the book by Boyd and Vandenberghe [2004℄.3.1 BakgroundThe term support vetor mahine refers to a system for learning funtions of the form,f(x) = wT�(x)+b, where x represents an input vetor, w 2 RN and b 2 R represent trainedparameters, and � : X ! F represents a mapping from the input spae X to some featurespae F . Typial appliations of SVMs inlude regression, where f(x) is trained to map x tosome set of desired output values, and binary lassi�ation, where the set fx : f(x) = 0g is20



used to de�ne a separating hyperplane between two lasses in F . Support vetor mahinesare based on various onepts of statistial learning theory that have been developed overthe ourse of several deades by Vladimir Vapnik and his assoiates. These inlude theonept of strutural risk minimization, whih involves onstruting and minimizing upperbounds on the probability of mislassifying future data. We refer to the probability ofmislassi�ation as the risk for a given dataset and lassi�er. Strutural risk minimizationdi�ers signi�antly from the more onventional approah of empirial risk minimization,where lassi�ers are trained to minimize the empirial error inurred on a training set. (Inpratie, empirial risk minimization is often performed using gradient desent along with astopping riterion, where training is halted one the lassi�ation error stops dereasing on aross-vaidation dataset). Vapnik and his assoiates introdued various upper bounds on riskthat depend on both the empirial risk|that is, the error inurred on a given training set|and on various notions of the apaity of a learning system. Within the �eld of lassi�ation,the term apaity essentially refers to omplexity of a given family of deision boundaries.In general, greater apaity orresponds with greater modeling power. Thus, inreasedapaity an lead to redutions in the empirial risk. However, greater apaity an alsoinrease the risk of over�tting. A sensible strategy for training lassi�ers therefore involvesminimizing the empirial risk while also limiting the apaity (or vie-versa). This strategyforms the basi intuition behind strutural risk minimization and behind the support vetormahine.3.1.1 VC DimensionVapnik's upper bounds on risk lead to a partiular notion of model apaity alled theVapnik-Chervonenkis or \VC" dimension. The VC dimension of a family F of lassi�ers isde�ned as the maximum number N of non-olinear examples whih, for any set of labelsin f�1; 1gN , an be perfetly separated by a funtion in F . For example, let us de�ne Fto be the set of all possible hyperplanes in R2 . Any set of three non-olinear examples anbe separated by at least one funtion in F . However, the same is not true for any set of21



four examples. Thus, the VC dimension of F is three, in this ase. We an extrapolate thisexample to show that if F is omposed of all hyperplanes in Rn , then the VC dimension ofF is n+1. In general, we would like to minimize the VC dimension of F while at the sametime minimizing empirial risk. Vapnik and his olleagues use this strategy to motivate theonept of optimal margin lassi�ers (Boser et al. [1992℄), whih leads diretly to the hard-margin SVM. Given a set of labeled data, S = f(x1; y1); : : : ; (xN ; yN )g, where S is linearlyseparable, the optimal margin lassi�er for S is the hyperplane that is maximally distantfrom the nearest positive and negative examples. An example of an optimal margin lassi�eris shown in Figure 3.1. The �gure shows two lasses|a green lass and a yellow lass|along with a hyperplane that is equidistant from the nearest green and yellow examples.The minimum distane from the hyperplane to the nearest example represents what werefer to as the geometrial margin of the dataset (for simpliity, we will simply refer to thisquantity as the margin throughout the following setions).3.2 The Hard-Margin SVMIn this setion, we desribe a framework for obtaining the optimal margin lassi�er fora given dataset. This framework leads diretly to the the so-alled hard-margin SVM|theoriginal SVM formulation derived by Vladimir Vapnik and his olleagues. We begin byde�ning the aÆne funtion f : f(x) , wTx+ b:We refer to f as the soring funtion of the SVM. Here, x represents an input feature vetor,w represents a weight vetor, and b represents a bias term. The parameters of the SVM aregiven by w and b. Given the soring funtion f , we use the set fx : f(x) = 0g to de�ne aseparating hyperplane for performing lassi�ation. This is equivalent to using the deisionrule in equation (2.1) to arrive at lassi�ation hypotheses.Given f and given a set of labeled training data, S = f(x1; y1); : : : ; (xN ; yN )g, whereyi 2 f�1; 1g represents a binary lass label, we use the term �i(w; b) to represent the22



geometrial margin of example xi given parameters (w; b). This is de�ned as follows:�i(w; b) , yi(wTxi + b)jjwjj :If example xi is orretly lassi�ed by the hyperplane fx : f(x) = 0g, then �i(w; b) simplyrepresents the minimum Eulidian distane from xi to the hyperplane. Given �i(w; b), wede�ne �(w; b) as the minimum geometrial margin over all examples in S:�(w; b) , mini �i(w; b):The above quantity is ommonly referred to as the geometrial margin of S (Shoelkopf andSmola [2002℄).If the examples in S are linearly separable, then we an obtain the optimal marginlassi�er for S by solving the following optimization problem:maxw;b �(wi; b);= maxw;b mini �i(w; b):We an hange the maximization over mini �i(w; b) into a minimization over maxi 1�i(w;b) toobtain the following equivalent problem:maxw;b mini �i(w; b);= minw;b maxi jjwjjyi(wTxi + b) :The above problem is homogeneous in w under the onstraints, 1 � yi(wTx + b) for alli. (These onstraints stipulate that S must be linearly separable, whih is one of ourassumptions). Thus, we an restate the optimization problem shown above in the followingequivalent form: minw;b wTw (3.1)subjet to 1 � yi(wTxi + b); 8i:23



Figure 3.1. Example an optimal margin lassi�er (i.e., a hard-margin margin SVM ). Thedeision boundary is represented by the set of points fx : f(x) = 0g.The above problem forms what we refer to as the primal problem of the hard-margin SVM.An example of a hard-margin SVM is shown in Figure 3.1. We note that the hard-marginSVM in (3.1) has the form of a spei� type of onvex optimization problem alled aquadrati program (QP). Sine the problem is onvex, we an obtain a global solution to (3.1)by using standard gradient desent tehniques. We note however, that in pratie, the hard-margin SVM is typially solved by using interior point methods for funtion optimization.Further information on these methods and on other topis in the �eld of onvex optimizationan be found in Boyd and Vandenberghe [2004℄.The primal problem in (3.1) an be onverted to an equivalent dual problem, whih hasthe following form: max0���T y=0 2�T1� �T�yXTX�y�: (3.2)Here, we use 1 to represent a olumn vetor of N ones. The terms, y, �y, and X, are
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de�ned as follows: y , [y1; : : : ; yN ℄T ;[�y℄ij , ( yi; if i = j;0; if i 6= j;X , [x1; : : : ;xN ℄T :We also de�ne � , [�1; : : : ; �N ℄T . Here, �i represents a dual variable, whih we use toenfore the onstraints, 1 � yi(wTxi)+ b for all i. We note that the primal variable w doesnot expliitly appear in the dual formulation. However, w an be obtained from � throughthe following equation: w = NXi=1 �iyixi:The above solution for w follows from the derivation of the dual problem in (3.2). Substi-tuting this expression into the equation for f(x) gives usf(x) = NXi=1 �iyixTi x+ b: (3.3)After solving for the optimal values of � and w, whih we represent as �� and w�, we anuse the onstraints of the primal problem in (3.1) to obtain the following solution for thebias term b: b� = �12 � � maxyi=�1w�T x+minyi=1w�T x�3.2.1 The Kernel TrikIn this setion, we examine the so-alled \kernel trik" introdued by Vapnik and hisolleagues. The kernel trik allows us to impliitly map the x terms in an SVM from aso-alled input spae, X , into a new, potentially high-dimensional feature spae, F . Thismapping is implemented through a positive semide�nite funtion alled a kernel. The keyobservation behind the kernel trik is that the x terms only appear in the form of innerproduts in both the dual problem of (3.2) and in the soring funtion of (3.3). Thus, we25



an apply the feature mapping � : RL ! RM to the input feature vetors by replaingevery inner produt, xT1 x2, with the kernel funtion k:k(x1;x2) , �(x1)T�(x2):Here, L represents the dimensionality of the input spae X and M represents the dimen-sionality of the output feature spae F . Any funtion k that an be expressed in the aboveform for some feature mapping � an be used as a kernel. Equivalently, we say that k isa valid kernel if and only if k forms a positive semide�nite mapping on RL � RL . Thismeans that we an de�ne valid kernel funtions without knowing the exat form of theirorresponding feature mappings. We an also de�ne kernels that impliitly map the inputspae into high-dimensional, and even in�nite-dimensional feature spaes. One well-knownexample of this is the Gaussian kernel, whih is de�ned below:k(x1;x2) , exp�� jjx1 � x2jj2�2 �Here, � represents the so-alled width parameter of k. The Gaussian kernel impliitly mapsthe input feature vetors into an in�nite-dimensional feature spae F using a mapping whoseexat form is unknown (at least by me!).3.2.2 Generalized Linear KernelsSVMs always train linear or aÆne deision boundaries in the feature spae F (i.e., thespae to whih the input feature vetors are mapped by �). However, these same deisionboundaries an often be highly non-linear when viewed in the original input spae X . Thus,one of the main motivations behind using kernels like the Gaussian kernel is that they yieldnon-linear deision boundaries in the input spae, X . This an be useful for datasets wherethe lasses are not linearly separable. However, non-linear deision boundaries typiallyyield little or no bene�t over the standard linear or inner-produt kernel|that is a kernelof the form k(x1;x2) = xT1 x2|on tasks where the data are linearly separable (or at leastapproximately separable). We also note that the potential bene�ts of projeting data into26



a high-dimensional or in�nite-dimensional spae an be dubious when the input featurevetors already have high dimensionality, relative to the number of training examples. Forexample, in speaker veri�ation, the input feature vetors often have a dimensionality of20000 or more (this is true of the MLLR-SVM system desribed in Stolke et al. [2006℄;Hath et al. [2006℄; however, the total number of positive training examples is typiallysmall (between one and eight), and the total number of negative training examples is alsorelatively small|typially no more than 5000. Moreover, the distributions of these featurevetors appear to have a high degree of linear separability. For feature sets suh as this,we argue that it makes sense to onstrain f , and hene the deision boundary de�ned byfx : f(x) = 0g, to the set of all aÆne funtions in the original input spae, X . Based onthis argument, we will fous primarily on kernel funtions of the following general form:k(x1;x2) = xT1Rx2:Here, R represents a square, positive semide�nite parameter matrix. The above kernel animplement any linear feature mapping of the form�(x) = Ax;where A is a linear transformation matrix. Note that R = ATA in this ase. In thefollowing hapters, we will refer to funtions suh as k as generalized linear kernels. Chapter4 provides some bakground on training kernel funtions and kernel parameters, inludingvarious tehniques for training generalized linear kernels.3.3 The Soft-Margin SVMOne aveat of the hard-margin SVM is that it an only be applied to datasets thatare linearly separable in feature spae, F . In pratie, one might wish to have an SVMformulation that is guaranteed to yield a deision boundary for any hoie of dataset|evendatasets that are not linearly separable in the given feature spae. To aomplish this,Vapnik and his olleagues devised what is ommonly referred to as the soft-margin SVM.27



Figure 3.2. Example of a 1-norm soft-margin margin SVM. The deision boundary isrepresented by the set of points fx : f(x) = 0g.Throughout this dissertation, we will fous spei�ally on the 1-norm soft margin SVM,whih is perhaps the most well-known and widely-used among the various soft-margin SVMformulations. The primal problem of the 1-norm soft-margin SVM is given below. Forbrevity, we simply refer to this formulation as the \soft-margin SVM" throughout theremainder of this hapter: minw;b;� wTw+ CXi �i (3.4)subjet to 1� �i � yi(wTxi + b); 8i;0 � �i 8i:An example of a 1-norm soft-margin SVM is shown in Figure 3.2. The soft-margin SVMde�nes a set of slak variables, whih are represented as � , [�1; : : : ; �N ℄ in the aboveproblem. These variables allow for violations of the margin by relaxing the linear onstraints:1 � yi(wTxi + b) for all i. However, every violation also inurs a penalty (note the CPi �iterm in the objetive funtion). From the above optimization problem, we see that eahslak variable �i an be represented as�i = (1� yi(wTxi + b))+;� 1(yi(wTxi + b) < 0):28



Here, (x)+ , x � 1(x � 0), and 1(yi(wTxi + b) < 0) represents the 0 � 1 error funtion onexample xi. The above relationship shows that �i forms an upper bound on the event thatexample xi is mislassi�ed. We refer to this upper bound as the hinge-loss of example xi.As shown in (3.4) the soft-margin SVM attempts to maximize the margin of the deisionboundary by minimizing wTw, while also minimizing the total hinge-loss, Pi �i. Thetradeo� between maximizing the margin and minimizing hinge-loss is ontrolled by the Chyperparameter, whih is onstrained to be positive. In pratie, C is often tuned on aross-validation set. However, various tehniques for analytially tuning C have also beenproposed (Cristianini and Shawe-Taylor [2000℄). In Chapters 6 and 7, we derive a new,modi�ed formulation of the 1-norm soft-margin SVM where C is exatly spei�ed.The optimization problem in (3.4) has the following dual form:max0���C�T y=0 2�T1� �T�yXTX�y�: (3.5)We note that the above problem has the same form as the hard-margin dual in (3.2), exeptthat the �i terms are bounded above by C. The orresponding w vetor also has the sameform as in the hard-margin SVM. Given w, we an ompute the optimal (b; �) by solvingthe following linear program (LP):min�;b Xi �isubjet to 1� �i � yi(wTxi + b) 8i;0 � �i 8i:The soft-margin SVM will play a pivotal role in the following hapters.
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Chapter 4
Related Work in the Field ofKernel Optimization

Our goal, in this dissertation, is to examine the problem of kernel optimization forSVM-based speaker reognition, and more generally, for the problem of performing binarylassi�ation in multilass settings. In this hapter, we provide a brief summary of someof the more notable tehniques for performing kernel optimization from the literature. Thehapter overs a diverse set of tehniques, inluding tehniques that are not typially asso-iated with \kernel optimization." For example, we have inluded a desription of prinipalomponent analysis and linear disriminant analysis|tehniques that are typially asso-iated with topis suh as feature seletion, dimensionality redution, and linear analysis.More generally, these tehniques an be viewed as examples of linear feature transforma-tions. Hene, when applied to feature vetors in an SVM, these tehniques represent instan-tiations of a generalized linear kernel|that is, a kernel of the form, k(x1;x2) = xTRx2,where R is a positive semide�nite parameter matrix. The generalized linear kernel will playa pivotal role throughout this dissertation. We also desribe a number of kernel tehniquesand feature transformations that have been developed spei�ally for speaker veri�ation.For example, we provide a summary of the nuisane attribute projetion (NAP) tehnique30



desribed in Solomono� et al. [2004, 2005℄, and the n-gram frequeny kernel of Campbellet al. [2003℄. Among non-linear feature transformations, we over the rank-normalizationapproah desribed in Stolke et al. [2005℄. In Chapters 6 and 8, we ompare many ofthese tehniques with a new kernel approah that we refer to as within-lass ovarianenormalization (WCCN). This approah is derived in Chapters 5 and 6.In this hapter, and throughout the dissertation, we pay partiular attention to kerneltehniques and feature transformations that attempt to model information about lusters orlasses that reside within the data. Tehniques suh as this inlude linear disriminant anal-ysis (LDA) and the nuisane attribute projetion (NAP) tehnique desribed in Solomono�et al. [2004, 2005℄. We refer to these as supervised tehniques, beause they require thateah training example xi be assoiated with a user-de�ned label, yi. Here, yi 2 f1; : : : ; Jgan represent any of J lasses. Given this label information, a supervised kernel tehniquean train kernel funtions that disriminate between the various lasses. In the ase of LDA,NAP, and also the WCCN approah that we derive in Chapters 5 and 6, these approahesoften boil down to a single linear feature transformation that an be applied uniformly tothe input feature spae. In Chapter 7, we show how our WCCN approah an be adaptedto the partiular way in whih the lasses are partitioned|that is, the assignment of eahlass to either the target set or the impostor set. We refer to this adaptive form of WCCNas the adaptive, multiluster SVM (AMC-SVM).We also provide a brief desription of the so-alledminimax probability mahine (MPM),a kernelizable learning system developed in Lankriet et al. [2002℄. The design of the MPMdi�ers signi�antly from a onventional SVM. However, the MPM is of spei� interest to us,beause it inorporates information about the �rst and seond-order statistis of both thetarget and the impostor lasses into the training proedure. This use of per-lass statistismakes the MPM remarkably omparable to some of the kernel-based tehniques that wedevelop in Chapters 5 through 8. These tehniques use information about lusters in thedata to tighten the bounds on lassi�ation error in an SVM.31



4.1 Multiple-Kernel LearningOne of the most well-known kernel learning tehniques of the past few years is themultiple-kernel learning paradigm of Lankriet et al. [2004℄; Bah et al. [2004℄. Multiple-kernel learning involves training kernel funtions as weighted sums of other kernels:k(x1;x2) =Xi �iki(x1;x2):Here, ki represents a pre-de�ned kernel funtion, and �i represents the orresponding weightparameter for ki. In Lankriet et al. [2004℄; Bah et al. [2004℄, the authors show how tolearn k by minimizing the SVM dual problem in (3.5) with respet to �i for all i. Thisproblem an be posed as a semide�nite program (SDP), whih redues to a seond-orderone program (SOCP) when the �i parameters are onstrained to be nonnegative (Lankrietet al. [2004℄; Bah et al. [2004℄). The latter ase was reently reformulated in Sonnenburget al. [2005℄ as a semiin�nite linear program (LP). Further information about LPs, SOCPs,SDPs, and other onvex optimization problems an be found in Boyd and Vandenberghe[2004℄.In its most reent instantiations, the multiple kernel learning framework tends to betoo slow to learn weights for more than a relatively modest number of kernels and trainingexamples (see Bah et al. [2004℄; Sonnenburg et al. [2005℄ for the latest performane results).Multiple kernel learning also provides no guidane on the question of how to hoose a set ofbasis kernels|that is, the ki funtions. We also note that the implementations desribed inLankriet et al. [2004℄; Bah et al. [2004℄; Sonnenburg et al. [2005℄ are designed for generalbinary lassi�ation settings. These implementations make no attempt to use informationabout lusters that reside within the positive and negative lasses to obtain tighter boundson lassi�ation error. In Chapters 5 through 8, we show how these issues are at leastpartially addressed by two new kernel tehniques: within-lass ovariane normalization(WCCN) and the adaptive, multiluster SVM (AMC-SVM).
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4.2 HyperkernelsAnother well-known kernel optimization tehnique is the hyperkernels approah de-sribed in Ong et al. [2003℄, where the usual notion of a kernel is expanded to inlude a\kernel on kernels" (i.e., a hyperkernel). Hyperkernels impliitly perform kernel optimiza-tion from within a parameterized family of kernels (for instane, a family of Gaussian kernelsof varying width parameter, �). However, as with multiple kernel learning, the hyperkernelsapproah does not address the issue of how to hoose a family of kernels or how to exploitinformation about sublusters in the data to obtain tighter error bounds.4.3 Prinipal Component Analysis (PCA) and Linear Dis-riminant Analysis (LDA)In this setion, we disuss two lassial tehniques for performing linear feature sele-tion and dimensionality redution on an input feature spae: prinipal omponent analysis(PCA) and linear disriminant analysis (LDA). PCA and LDA are both implemented byperforming linear feature transformations on the input feature spae. Hene, when appliedto feature vetors in an SVM, these tehniques represent instantiations of a generalizedlinear kernel|that is, a kernel of the form, k(x1;x2) = xTRx2, where R is a positivesemide�nite parameter matrix.Prinipal omponent analysis (PCA) is a linear tehnique for reduing the dimensional-ity of an input feature spae while retaining the maximum amount of signal energy. Givenan input spae of dimensionality N , the goal in PCA is to obtain an orthonormal linearfeature transformation, f(x) = �Tx, where � is de�ned as an N � P matrix with P < N ,suh that � aptures the \diretions" of maximum energy in the original feature spae. We
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obtain � by solving the following optimization problem:max� trae(�TC�)subjet to �T � = I:Here, �i represents the ith olumn vetor of matrix �, andC represents the overall ovarianematrix of the input feature spae. The above problem is solved by �� = VP , where VP rep-resents the olumn matrix ontaining the top P eigenvetors of C|that is the eigenvetorswith the P -largest orresponding eigenvalues. In pratie, C an be estimated empiriallyas follows: Ĉ = 1N NXn=1(xn � �x)(xn � �x)T :Here, Ĉ represents the empirial ovariane matrix omputed from a set of N input trainingexamples. We use xn to represent the nth training example and �x to represent the overallmean of the data. The PCA approah is independent of any assoiated set of lass labels,fy1; : : : ; yNg, for the training data. Thus, we an view PCA as an unsupervised approahfor performing dimensionality redution.Unlike PCA, where the goal is to �nd orthogonal diretions in feature spae that retainmaximum signal energy, the goal in linear disriminant analysis (LDA) is to �nd orthogonaldiretions that are \optimal," in some sense, for disriminating between lasses. Here, the\optimality" of a given diretion is measured as the ratio of between-lass variane towithin-lass variane. We an ompute this ratio as follows:J(w) = wTCBwwTCWw :The quantity J(w) represents the ratio of between-lass variane to within-lass varianefor a given diretion, w, in feature spae. This quantity is traditionally referred to as theRayleigh oeÆient for diretionw. Given a feature spae omposed of J lasses, we use CBand CW to represent the between-lass ovariane matrix and the within-lass ovariane
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matrix over all lasses. These are de�ned as follows:CW , JXi=1 p(i)Ci;CB , JXi=1 p(i)(�xi � �x)(�xi � �x)T :Here, Ci and p(i) represent the ovariane matrix and the prior probability of the ith lass.The terms �xi and �x represent the mean of lass i and the overall mean of the data.The goal in LDA an be stated as follows: we would like to �nd the orthonormal linearfeature transformation, f(x) = �Tx, where � is de�ned as an N�P matrix with P < N , suhthat the Rayleigh oeÆient of eah diretion in the resulting feature spae is maximized.It an be shown that this problem is equivalent to maximizing the ratio of determinants of�TCB� to �TCW �: max� j�TCB�jj�TCW �j :Here, the optimal � has a losed-form solution given by �� = VP , where VP represents theolumn matrix ontaining the top P eigenvetors of CBC�1W |that is the eigenvetors withthe P -largest orresponding eigenvalues. A detailed disussion of LDA, inluding a set ofproofs for the main results, an be found in Fukunaga [1990℄.4.4 Adaptive Feature Saling and Relevene DeterminationOther notable tehniques for kernel optimization inlude the tehniques desribed inWeston et al. [2000℄ and Chapelle et al. [2002℄. In these papers, the authors use a set ofgeneralization bounds as objetive funtions for optimizing various kernel parameters. Forexample, in Chapelle et al. [2002℄, the authors use the radius-margin bound desribed inVapnik [1995℄, along with other bounds, as objetive funtions for simultaneously optimizingthe width parameter of a Gaussian kernel and the SVM hyperparameter C. The authors alsouse a similar approah to train per-feature saling fators for a standard, linear SVM. For an35



L-dimensional feature spae, this boils down to the problem of training � = [�1; : : : ; �L℄T ,where �i � 0 for all i 2 f1; : : : ; Lg in the following kernel funtion:k(x1;x2) = xT1 ��x2:Here, �� represents an L�L diagonal matrix, where ��ii = �i. The above kernel representsa speial ase of a generalized linear kernel, where the R parameter matrix is onstrainedto be diagonal. The problem of training � is often referred to as adaptive feature saling,relevene determination, or soft feature seletion. In Chapelle et al. [2002℄, the authorsiterate between maximizing the SVM dual problem with respet to � for some �xed valueof � (i.e., the standard SVM problem) and minimizing the given generalization bound|forexample, the radius-margin bound of Vapnik [1995℄|with respet to � for �xed �. Thelatter minimization is ahieved by performing gradient desent with respet to � on thegeneralization bound. In Grandvalet and Canu [2003℄, the authors propose a modi�edapproah, where the optimization over � is inorporated into the SVM dual problem. Theresult is an optimization proedure that only uses a single objetive funtion. As in Chapelleet al. [2002℄, this approah again leads to a slightly ompliated, iterative proedure forobtaining the optimized values of �. The authors of Grandvalet and Canu [2003℄ note thattheir approah is related to some suessful soft feature-seletion tehniques, suh as lassoand bridge (Hastie et al. [2001℄) and Automati Relevene Determination (ARD) (Neal[1996℄). Other approahes for performing adaptive feature saling are desribed in Bradleyand Mangasarian [1998℄; Jebara and Jaakkola [2000℄.The adaptive saling approahes desribed in Chapelle et al. [2002℄; Grandvalet andCanu [2003℄ provide a means of training a onstrained form of a generalized linear kernel(i.e., the R parameter matrix is onstrained to be diagonal). These approahes are tehni-ally supervised in the sense that they depend on the partitioning of the data into targetand impostor sets. However, as was the ase with multiple kernel learning and hyperkernelsthese approahes may be somewhat limited by the fat that they do not take informationabout lusters that reside within the data into aount when optimizing k. We also note36



that these approahes are generally not onvex, and that their minimization relies on gra-dient desent proedures that an be ompliated and ineÆient. In Chapters 5 through 8,we derive a framework for training unonstrained generalized linear kernels through onvexoptimization. These tehniques are supervised in that they use luster information to obtainbounds on lassi�ation error.4.5 The Minimax Probability MahineIn this setion, we briey desribe the so-alled minimax probability mahine (MPM),a kernelizable system for training aÆne deision boundaries for binary lassi�ation tasks(Lankriet et al. [2002℄). The deision boundary in an MPM is de�ned by fx : f(x) = 0g,where f has the same general form as in an SVM:f(x) = wTx+ b:As we will show, the MPM training formulation is di�erent than that of an SVM; thus, theMPM does not diretly �t into the SVM theme of this hapter. Nevertheless, the MPM is ofspei� interest to us, beause it inorporates information about the �rst and seond-orderstatistis of both the target and the impostor lasses into the training proedure. This useof per-lass statistis makes the MPM remarkably omparable to some of the kernel-basedtehniques that we develop in Chapters 5 through 8. These tehniques use informationabout lusters in the data to tighten the bounds on lassi�ation error in an SVM.Let (�xT ;CT ) represent the mean and ovariane matrix of a target lass, T , and let(�xI ;CI) represent the mean and ovariane matrix of an impostor lass, I. We would liketo train a deision boundary de�ned by fx : f(x) = 0g to separate these two lasses.Given (�xT ;CT ) and (�xI ;CI), the MPM trains the aÆne deision boundary that minimizesthe maximum probability of mislassi�ation over all distributions of xT and xI , where
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xT � (�xT ;CT ) and xI � (�xI ;CI). This an be expressed as follows:min�;w 6=0;b � (4.1)subjet to supxT �(�xT ;CT ) p(wTxT + b � 0) � �;supxI�(�xI ;CI) p(wTxI + b � 0) � �:Here, � represents the maximum rate of false-positives or false-negatives over all possibledistributions of xT and xI that have the given means and ovariane matries. A formalproof of this bound an be found in Marshall and Olkin [1960℄. In Lankriet et al. [2002℄,the authors show that the optimization over w an be restated as follows:minw pwTCTw+pwTCIw (4.2)subjet to wT (�xT � �xI) = 1:The optimization problem for the MPM is onvex and an be omputed by solving a seond-order one program (SOCP). Further details on the MPM an be found in Lankriet et al.[2002℄.4.6 Kernels and Feature Transformations for Speaker Veri�-ationIn this setion, we disuss some of the more ommon kernels and feature transformationsused in SVM-based speaker veri�ation. Beause the feature sets in SVM-based speakerveri�ation tend to have high dimensionality|the feature sets desribed in Setion 2.4an have anywhere from 10000 to 100000 (or even more) dimensions|and beause thesefeature sets often allow for a high-degree of linear separability between speakers, mostSVM-based speaker veri�ation systems use generalized linear kernels|that is, kernels ofthe form, k(x1;x2) = xT1Rx2, where R is a positive semide�nite parameter matrix. Wenote that the total number of distint parameters in a generalized linear is on the order of38



N2=2, where N is the dimensionality of the input feature spae. Thus, generalized linearkernels tend to o�er a high degree of modeling power when used in high-dimensional inputspaes. Unfortunately, this modeling power (or apaity as it was alled in Chapter 2) alsoinreases the risk of over�tting. In Chapters 5 through 8, we show how this risk an bemanaged by optimizing a set of bounds on lassi�ation error with respet to R. Thisleads to a framework where R is modeled as the inverse of a positively-weighted sum of Lovariane matries, where L is the total number of lasses or \lusters" in the data. Bymodeling R in this way, we e�etively redue the number of parameters of R from N2=2down to L. In this setion, we desribe various types of generalized linear kernels thathave been suessfully applied to speaker veri�ation. We also desribe the non-linear rank-normalization tehnique developed in Stolke et al. [2005℄ for normalizing feature vetorsprior to training SVM-based speaker models.4.6.1 Generalized Linear Disriminant Sequene KernelsOne well-known kernel for performing SVM-based speaker veri�ation is the so-alledgeneralized linear disriminant sequene kernel (GLDS) kernel of Campbell [2001, 2002℄.The GLDS kernel essentially orresponds with the parameterization, R = C�1, where Cis the overall ovariane matrix of the data. This hoie of R is not diretly tied to anypartiular bound on lassi�ation error. However, the authors show that this parameteri-zation performs a type of disriminative training on the kernel funtion, k(x1;x2), where\positive" kernel entries (i.e., the values of k(x1;x2) where x1 and x2 belong to the samelass) are disriminated from the so-alled \negative" entries, where x1 and x2 belong todi�erent lasses. The parameterization R = C�1 performs what we refer to as linear o-variane normalization. Another ommon hoie for R is R = diag(C)�1, where diag(C)represents the diagonal omponent of C. This parameterization performs what we refer toas per-feature variane normalization. In Chapter 6, we ompare these parameterizationswith our own parameterizations for R on various speaker veri�ation tasks.39



4.6.2 N-gram Frequeny KernelsAnother widely-used kernel funtion in speaker veri�ation is derived in Campbell et al.[2003℄. The kernel funtion in Campbell et al. [2003℄ is never atually given a name; hene,we will refer to it as the n-gram frequeny kernel, sine this name aptures the main ideabehind its intended appliation. Unlike the GLDS kernel, the n-gram frequeny kernelis spei�ally designed for feature vetors whose entries represent relative frequenies ofn-grams. The form of the n-gram frequeny kernel is given below:k(A;B) = MXi=1 p(dijonvSideA)pp(dijbkg) p(dijonvSideB)pp(dijbkg) (4.3)Here, p(dijonvSideA) and p(dijbkg) refer to the probability (i.e., relative frequeny) of n-gram di within onversation side A and within the bakground model, respetively. Theabove expression represents a kernelized version of the log-likelihood ratio of A given B, orvie-versa. We an also express the n-gram frequeny kernel in the form of a generalizedlinear kernel, where the feature vetor for onversation side A is de�ned as follows:xA , [p(d1jonvSideA); : : : ; p(dN jonvSideA)℄T :Under this interpretation, the R parameter matrix is diagonal, and [R℄ii = 1pp(dijbkg) .Thus, the n-gram frequeny kernel performs a type of per-feature saling on the inputfeature spae. Further details on this kernel an be found in Campbell et al. [2003℄. Wenote that within the �eld of speaker veri�ation, n-gram frequeny kernels are typiallyapplied to speeh units suh as phonemes and words obtained from an automati speehreognition system.4.6.3 Nuisane Attribute Projetion (NAP)Another widely-used kernel tehnique in the �eld of speaker veri�ation is the so-allednuisane attribute projetion (NAP) approah desribed in Solomono� et al. [2004, 2005℄.In its most ommonly-used form, NAP is simply a variation of LDA where the between-lass ovariane matrix is estimated as the identity matrix, I. Under this assumption, the40



P -dimensional LDA transformation matrix � is equal to � = VP , where the olumns ofVP represent the top P eigenvetors of C�1W . (Equivalently, VP represents the bottomP eigenvetors of CW .) The NAP approah represents one of the most widely-used teh-niques within the �eld of speaker veri�ation for training generalized linear kernels. A morethorough desription of NAP an be found in Solomono� et al. [2004, 2005℄.4.6.4 Rank-NormalizationAmong non-linear feature transformations for SVM-based speaker veri�ation, one ofthe most well-known and widely-used is the rank-normalization tehnique of Stolke et al.[2005℄. Rank-normalization uses the following feature transformation:�(xn) = 1N Nargmini=1 jxn � xn;ij:Here, xn is the nth feature in feature vetor x, and xn = fxn;1; : : : ; xn;Ng is a sortedlist of all instanes of xn in the training data (i.e., xn;1 � xn;2 � � � � � xn;N). Ranknormalization applies a non-linear mapping to the features in the training data so that theresulting features are uniformly distributed over the interval, [0; 1℄. In many ases, thisnormalization tehnique has been shown to yield signi�ant improvements over per-featurevariane normalization and over ovariane normalization in SVM-based speaker reognitionsystems (Stolke et al. [2005℄).
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Chapter 5
Error Bounds for Separable Data:A New Derivation of theHard-Margin SVM

In this hapter, we develop a new theoretial framework for training what we refer toas generalized linear kernels|that is, kernels of the form k(x1;x2) = xT1Rx2, where x1and x2 are vetors in the input spae, and R is a positive semide�nite matrix. The theoryin this hapter fouses spei�ally on binary lassi�ation tasks, where the positive andnegative examples are linearly separable within the input feature spae, X . We begin byonstruting a so-alled lass-independent upper bound on lassi�ation error, where alllasses in a given set (i.e., either the target set or the impostor set) are assigned the samebounding funtion on the event of a mislassi�ation. Minimizing this upper bound leadsto a learning system whose form is similar to the Minimax Probability Mahine (MPM)(Lankriet et al. [2002℄) summarized in Setion 4.5. The lass-independent bound an alsobe extrapolated to obtain a lass-dependent upper bound on lassi�ation error, wherethe bounding funtions are assigned on a per-lass basis. We will show that minimizing thelass-dependent upper bound leads to a new, modi�ed formulation of the hard-margin SVM.42



This modi�ed formulation presribes a generalized linear kernel where R is the inverse of aweighted sum of lass ovariane matries.The material in this hapter is organized as follows: Setion 5.1 provides a desrip-tion of our problem setting. Based on this setting, we onstrut a set of so-alled lass-independent upper bounds on lassi�ation error in Setion 5.2 and in Setion 5.3. Theselass-independent bounds are then extrapolated in Setion 5.4 to obtain a orrespondinglass-dependent bound. In Setion 5.4, we also show how the lass-dependent bound leadsto a new formulation of the hard-margin SVM and to an analytial form for theR parametermatrix in a generalized linear kernel.5.1 Problem SettingIn our problem setting, we are given a multilass dataset omposed ofM disjoint lasses,where the lasses are partitioned a priori into two disjoint sets: a target set, T , and animpostor set, I. We de�ne yi 2 f�1; 1g to be the so-alled set label for lass i. Classes thatbelong to the target set are assigned a label of 1 and lasses that belong to the impostorset are assigned a label of �1. Thus, the target and impostor sets are de�ned as follows:T = fi 2 1; : : : ;M j yi = 1g;I = fi 2 1; : : : ;M j yi = �1g:Given T and I, we would like to train a linear lassi�er that minimizes some measure ofbinary lassi�ation error on these two sets. To do this, we begin by de�ning the funtion,f , to be an aÆne soring funtion, whih we will use to de�ne a deision boundary betweenT and I: f(x) , vTx+ b:Here, x 2 RN represents an input feature vetor, v 2 RN represents a weight vetor, andb 2 R represents a bias term. Note that both v and b represent trainable parameters.Given f , all test examples where f(x) � 0 are lassi�ed as belonging to T , and all test43



Figure 5.1. Illustration of 0 � 1 error funtions. The �gure on the left shows the deisionboundary for a set of target examples and for a set of impostor examples. The orrespondingsore distributions and 0� 1 error funtions are shown on the right side of the �gure.examples where f(x) < 0 are lassi�ed as belonging to I. We an evaluate the lassi�ationperformane of f by de�ning the risk metri, R(f), asR(f) , Ej2I 1(f(xj) � 0) + Ej2T 1(f(xj) < 0);= p(f(xj) � 0 j j 2 I) + p(f(xj) < 0 j j 2 T ):In the above de�nition, 1(f(x) � 0) represents the so-alled 0 � 1 error funtion for theimpostor examples and 1(f(x) < 0) represents the 0 � 1 error funtion for the targetexamples. We use the shorthand, E j2I 1(f(xj) � 0), to denote the onditional expetation,E (f(xj) � 0 jj 2 I). These error funtions are illustrated in Figure 5.1, along with the soredistributions for a partiular target set and impostor set. Taking onditional expetationsover these error funtions gives us the expeted rate of false positives, p(f(xj) � 0 j j 2 I)and the expeted rate of false negatives, p(f(xj) < 0 j j 2 T ). Our goal is to minimize someupper bound on R(f) with respet to f|that is, with respet to v and b.
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5.1.1 Notation and Additional De�nitionsWe use the following notation: Let xi be a random draw from lass i, and let �xi be themean of xi: �xi , E xi:Here, the expetation, E xi, is taken over all vetors in lass i. We de�ne Ci to be thewithin-lass ovariane matrix for lass i:Cj , E (xj � �xj)(xj � �xj)T 8j:We also de�ne CT to be the expeted within-lass ovariane matrix over all lasses in thetarget set and CI to be the expeted within-lass ovariane matrix over all lasses in theimpostor set: CT , Ej2T Cj;CI , Ej2I Cj:The overall ovariane matrix and the expeted within-lass ovariane matrix overall alllasses are represented by the symbols, C and CW :C , Ej2fT ;Ig (xj � �x)(xj � �x)T ;CW , Ej2fT ;Ig Cj:To simplify our notation in the following setions, we de�ne p̂j to be the probability of lassj onditioned on the given set (i.e., either the target set, T , or the impostor set, I):p̂j ,8><>: p(j)Pk2T p(k) if j 2 T ;p(j)Pk2I p(k) if j 2 I:5.2 Bounding FuntionsIn this setion, we onstrut a set of upper bounds on the risk funtion, R(f) for thease where the target lass means are linearly separable from the impostor lass means45



(i.e., f�xjgj2T is linearly separable from f�xjgj2I). We will use these bounds to deriveoptimized solutions for R in the generalized linear kernel, k(x1;x2) = xT1Rx2. To simplifythese bounds, we assume throughout the following setions that eah lass is symmetriallydistributed about its mean. This is formally de�ned as follows:De�nition 1. A random variable x 2 RL is \symmetrially distributed about its mean" ifthe following ondition holds.p(x� �x = �) = p(x� �x = ��) 8(x;�) 2 RL � RL :Beause f(x) is an aÆne funtion of x, one an easily show that if x is symmetriallydistributed about its mean, then f(x) is also symmetrially distributed about its mean. Wewill use this fat throughout the following hapter to onstrut upper bounds on lassi�a-tion error for binary deision tasks.5.3 Class-Independent BoundWe use the setting of Setion 5.1 to onstrut three upper bounds on R(f) for the asewhere the target lass means are linearly separable from the impostor lass means. The�rst of these bounds is \lass-independent," in the sense that the bounding funtion fora given example, xj , is the same for all j in set T and also for all j in I. To derive theupper bound on R(f), we begin by de�ning an upper bound on the zero-one loss funtion,1(f(xj) > 0), for impostor examples.Theorem 1. Given the soring funtion f(x) = vTx+ b, if f(�xI) < 0, then the followinginequality holds for all j in I.1(f(xj) > 0) � �f(xj)� f(�xI)f(�xI) �2 � 1�f(xj) > f(�xI)� 8j 2 I: (5.1)Proof. De�ne RHS , �f(xj)�f(�xI )f(�xI) �2 � 1�f(xj) > f(�xI)� for some j in I. We see thatRHS � 0 for all j. We also see that if f(�xI) < 0, then RHS = 1 when f(xj) = 0, andRHS � 1 when f(xj) � 0. Thus, we arrive at the inequality in (5.1).46



Figure 5.2. Illustration of the lass-independent, one-sided, seond-order bounding funtionfor the impostor examples and for the target examples.This bound is illustrated in Figure 5.2. The above inequality de�nes a one-sided, seond-order upper bound on the 0 � 1 error funtion for impostor examples. To simplify theoptimization of this bound in the following setions, the seond-order bounding funtion fora given lass is entered at the mean of the lass. However, we only use the right-hand sideof eah seond-order bounding funtion; the left-hand side is set to zero (note that the leftand right sides are reversed for the orresponding bound on target examples).We an now use the inequality in (5.1) to obtain the following bound on the risk funtion,R(f):Theorem 2. Given the soring funtion f(x) = vTx + b, if f(�xI) < 0 and f(�xT ) > 0,and if xT and xI are symmetrially distributed about their means, then the following boundholds. R(f) � 12 �� vTCT v(vT �xT + b)2 + vTCIv(vT �xI + b)2�: (5.2)Proof. The above bound follows from omputing the expetation of bound (5.1) over allimpostor lasses. This gives us an upper bound on the rate of false positives, p(f(xj) �47



0 j j 2 I). By symmetry, we an ompute a similar upper bound on p(f(xj) � 0 j j 2 T ),the rate of false negatives. Adding the two bounds gives us the upper bound on R(f) in(5.2).The upper bound in (5.2) an also be derived from the Chebyshev inequality, whih isgiven as follows: p(jf(x)� E f(x)j � t) � Var(f(x))t2 :For the ase where f(x) is symmetrially distributed about its mean, we an onvert theabove inequality into the following equivalent, one-sided form:p(f(x)� E f(x) � t) � 12 � Var(f(x))t2 :Now, if we substitute t = � E f(x) into the above inequality and onstrain x to the set ofall impostor examples, we arrive at the following expression:p(f(xj) � 0 j j 2 I) � 12 � Varj2I(f(xj))(E j2I f(xj))2 ;= 12 � vTCIv(vT �xI + b)2 :By symmetry, we an obtain a similar bound on p(f(xj) < 0 j j 2 T ). Adding these boundsgives us the upper bound on R(f) in (5.2).We an now use the upper bound in (5.2) as an objetive funtion for training an\optimized" linear lassi�er. Our goal is to minimize the bound in (5.2) with respet to(v; b). This gives us the following optimization problem:minv;b 12 �� vTCT v(vT �xT + b)2 + vTCIv(vT �xI + b)2� (5.3)subjet to 0 < vT �xT + b;0 > vT �xI + b:Here, we have added linear onstraints on vT �xT +b and on vT �xI+b to enfore the assump-tion in (5.2) that f(xI < 0) and that f(xT � 0). The objetive funtion in (5.3) is omposedof terms of the form, vTCT v(vT �xT +b)2 . These terms are quadrati in v in both the numerator and48



in the denominator. Thus, we say that the objetive funtion in (5.3) is based on termsthat have a quadrati-over-quadrati funtional form. Note that this form is not onvex(Boyd and Vandenberghe [2004℄). However, we an further bound (5.2) to obtain termsthat have a quadrati-over-linear form, whih is onvex (Boyd and Vandenberghe [2004℄).The quadrati-over-linear form an be bounded even further to obtain a quadrati program(QP). The orresponding optimization problems for these bounds on R(f) are given below,along with the original optimization problem of (5.3).Theorem 3. Given the soring funtion f(x) = vTx + b, if xT and xI are symmetriallydistributed about their means, then the following bounds hold.R(f) � minv;b 12 � � vTCT v(vT �xT + b)2 + vTCIv(vT �xI + b)2� (5.4)subjet to 0 < vT �xT + b;0 > vT �xI + b:= minv;b 12 � � vTCT v(vT �xT + b)2 + vTCIv(vT �xI + b)2� (5.5)subjet to 1 � vT �xT + b;�1 � vT �xI + b:� minv;b 12 � � vTCT vvT �xT + b � vTCIvvT �xI + b� (5.6)subjet to 1 � vT �xT + b;�1 � vT �xI + b:� minv;b 12 � vT (CT +CI)v (5.7)subjet to 1 � vT �xT + b;�1 � vT �xI + b:Proof. The problem in (5.4) is homogeneous in (v; b). Thus, we an modify the linear49



onstraints in (5.4) to obtain (5.5). Given these onstraints, we an upper bound (5.5) byreplaing (vT �xT + b)2 with (vT �xT + b) and (vT �xI + b)2 with �(vT �xI + b). This gives us(5.6). We an further upper bound (5.6) by setting the denominators equal to 1 and -1,respetively, as in (5.7).In the above set of bounds, the optimization problem in (5.4) represents the originalproblem in (see (5.3)). We upper bound the optimization problem in (5.4) by the problemin (5.6), where the objetive funtion is omposed of terms of the form, vTCT vvT �xT +b . Theseterms have a quadrati-over-linear form, whih is onvex (Boyd and Vandenberghe [2004℄).Moreover, the overall objetive funtion is a positively-weighted sum of onvex terms (notethat the term, � vTCIvvT �xI+b , is onvex under the onstraint, �1 � vT �xI + b). The overallobjetive funtion is therefore also onvex, as are the onstraints. We refer to the funtionalform of the objetive funtion as a sum of quadrati-over-linear form. Sine (5.6) has bothonvex onstraints and a onvex objetive funtion, the overall optimization problem is alsoonvex. We will show in Chapter 7 that this sum of quadrati-over-linear form an be astas a seond-order one program (SOCP).The sum of quadrati-over-linear form in (5.6) is further bounded by the QP in (5.7).We note that if (CT +CI) is full-rank, then the QP in (5.7) an be onverted into a morefamiliar form by de�ning the vetor w and the matrix U as follows:v ,Uw;UUT , (CT +CI)�1:Substituting Uw in for v in (5.7) gives usminw;b 12 �wTw (5.8)subjet to 1 < wTUT �xT + b;�1 > wTUT �xI + b:The above optimization problem has the same general form as the hard-margin SVM in(3.1), exept that the feature vetors �xT and �xI have been replaed with UT �xT and UT�xI .50



Thus, the formulation in (5.8) impliitly de�nes the following kernel funtion k and orre-sponding feature transformation �:k(x1;x2) = xT1 (CT +CI)�1x2;�(x) = UTx:From these equations, we see that k is a generalized linear kernel of the form, k(x1;x2) =xT1Rx2, where R is de�ned as R = (CT +CI)�1:Thus, we have derived a hard-margin SVM along with a generalized linear kernel k and aorresponding feature transformation � that are \optimal" in the sense that they minimizethe upper bound on lassi�ation error in (5.7). In this ase, the upper bound is simplybased on a pair of one-sided seond-order onvex bounding funtions|one to bound falsepositives and another to bound false negatives. In the following setions, we will use a similarapproah to derive the optimal generalized linear kernel k and feature transformation � formore ompliated bounding funtions. We note that beause (5.7) only has two inputfeature vetors (i.e., xT and xI), the optimal v in (5.7) an be omputed analytially asv� / (CT +CI)�1(xT � xI): (5.9)To see this, we begin with the following onstraints from the SVM dual formulation of (3.2):Xj2fI;T g�jyj = 0;0 � �j 8j:From these onstraints, we obtain, w / UT (xT � xI). Substituting w = U�1v into thisequation gives us the solution for v� in (5.9).5.3.1 Comparison with Minimax Probability MahineIn Chapter 4, we desribed the Minimax Probability Mahine (MPM) developed byLankriet et al. [2002℄. Given (�xT ;CT ) and (�xI ;CI), the MPM trains the aÆne deision51



boundary that minimizes the maximum probability of mislassi�ation over all distributionsof xT and xI , where xT � (�xT ;CT ) and xI � (�xI ;CI). This an be expressed as follows:min�;v 6=0;b � (5.10)subjet to supxT �(�xT ;CT ) p(vTxT + b � 0) � �;supxI�(�xI ;CI) p(vTxI + b � 0) � �:Here, � represents the maximum rate of false-positives or false-negatives over all possibledistributions of xT and xI that have the given means and ovariane matries. In Lankrietet al. [2002℄, the authors show that the optimization over v an be restated as follows:minv pvTCT v +pvTCIv (5.11)subjet to vT (�xT � �xI) = 1:The optimization problem for the MPM is onvex and an be omputed by solving a seond-order one program (SOCP). We an ompare (5.11) with the hard-margin SVM from thepreeding setion. Note that the following optimization problem is equivalent to the problemin (5.7) for optimizing over v: minv pvTCT v + vTCIv (5.12)subjet to vT (�xT � �xI) = 1:Here, we see that the objetive funtions for the two approahes are atually very similar.The MPM in (5.11) minimizes a sum of square-roots, while the SVM approah in (5.12)minimizes a square-root of sums. The MPM has a potential advantage over the SVMapproah in that it ahieves the tightest possible bounds on the maximum probabilityof error for the given means and ovarianes matries. However, as we will show in thefollowing setions, the bounding funtions that were used to onstrut the SVM an also beused to onstrut lass-dependent bounds, whih are often tighter than the lass-independentbounds in (5.4), (5.6), and (5.7). So far, there are no tehniques in the literature for applyingthe MPM onept to lass-dependent bounds.52



5.4 Class-Dependent BoundsThe MPM approah and the SVM approah of the previous setion are both based onwhat we refer to as lass-independent error bounds. One major aveat of both of theseapproahes is that they only use the means and the ovariane matries of the targetand impostor lasses to train a deision boundary. In this setion, we argue that tighterbounds on lassi�ation error an be ahieved by onstruting so-alled lass-dependenterror bounds, where every lass gets its own bounding funtion. These bounds use themeans and ovariane matries of all lasses within the target and impostor sets to traina deision boundary. We begin with a modi�ed version of the inequality in (5.1). Thisinequality forms an upper bound on the zero-one loss funtion, 1(f(xj) > 0), for impostorlass j.Theorem 4. Given the soring funtion f(x) = vTx+ b, if f(�xj) < 0 for all j in I, thenthe following inequality holds.1(f(xj) > 0) � �f(xj)� f(�xj)f(�xj) �2 � 1�f(xj) > f(�xj)� 8j 2 I: (5.13)Proof. The proof follows the same steps as the proof of Theorem 1, exept that we replae�xI with �xj .This bound is illustrated in Figure 5.3 for the ase where the impostor set is dividedinto multiple impostor lasses. Unlike the lass-independent bound of (5.1), where a singlefuntion is used to bound the entire impostor set, the bound in (5.13) assigns a separateone-sided, seond-order onvex bound to every impostor lass. The seond-order boundingfuntion for a given lass is entered at the mean of the lass. However, we only use theright-hand side of eah seond-order bounding funtion; the left-hand side is set to zero (notethat the left and right sides are reversed for the orresponding bound on target examples).We use the expeted value of the lass-dependent bounds in (5.13) over all impostor53



Figure 5.3. Comparison of the lass-independent and lass-dependent bounding funtionsfor the ase where the target and impostor sets are omposed of separate lasses (i.e.,lusters). The �gure on the left shows the deision boundary for a set of target examplesand for a set of impostor examples. The orresponding sore distributions, 0 � 1 errorfuntions, and bounding funtions for the impostor examples are shown on the right sideof the �gure. For simpliity, the sore distribution of the target examples is shown as auni-modal distribution.lasses, along with a orresponding bound for false-positives, to obtain an upper bound onR(f). This bound is given below:Theorem 5. Given the soring funtion f(x) = vTx + b, if f(�xj) < 0 for all j 2 I, andf(�xj) > 0 for all j 2 T , and if xj is symmetrially distributed about its mean for all j, thenthe following bound holds. R(f) � 12 � Xj2fT ;Ig p̂j vTCjv(vT �xj + b)2 : (5.14)Proof. The above bound follows from omputing the expetation of bound (5.13) over allimpostor lasses. This gives us an upper bound on the rate of false positives, p(f(xj) �0 j j 2 I). We an ompute a similar upper bound on p(f(xj) � 0 j j 2 T ), the rate of falsenegatives. Adding the two bounds gives us the upper bound on R(f) in (5.14).The objetive funtion for the above bound is a positively-weighted sum of quadrati-54



over-quadrati terms. This is the same general funtional form as in the lass-independentbound on R(f) in (5.2). Thus, (5.14) also leads to a similar set of optimization problemsas those in Setion 5.3. These optimization problems are given below:Theorem 6. Given the soring funtion f(x) = vTx + b, if xT and xI are symmetriallydistributed about their means, then the following bounds hold.R(f) � minv;b 12 � Xj2fT ;Ig p̂j vTCjv(vT �xj + b)2 (5.15)subjet to 0 < yj(vT �xj + b) 8j:� minv;b 12 � Xj2fT ;Ig p̂j vTCjvvT �xj + b (5.16)subjet to 1 � yj(vT �xj + b) 8j:� minv;b 12 � vT � Xj2fT ;Ig p̂jCj�v (5.17)subjet to 1 � yj(vT �xj + b) 8j:Proof. The proof follows the same steps as the proof for Theorem (3).As in Setion 5.3, minimizing the upper bound onR(f) leads to three di�erent optimiza-tion problems: a sum of quadrati-over-quadrati form (5.15), a sum of quadrati-over-linearform (5.16), and a QP (5.17). The sum of quadrati-over-linear form is onvex and will bedisussed in greater detail in Chapter 7.5.4.1 Hard-Margin SVMWe will fous our attention on the QP in (5.17). If (Pj2fT ;Ig p̂jCj) is full-rank, thenthe QP in (5.17) an be onverted into the standard form for a hard-margin SVM. To show55



this, we �rst de�ne the vetor w and the matrix U as follows:v ,Uw;UUT , � Xj2fT ;Ig p̂jCj��1:Substituting Uw in for v in (5.7) gives usminw;b 12 �wTw (5.18)subjet to 1 � yj(wTUT �xj + b) 8j:The above optimization problem has the same form as a hard-margin SVM (see Chapter 3),exept that the feature vetor �xj has been replaed with UT �xj for all j. However, unlikethe hard-margin SVM in (5.8) and the MPM in (5.11), both of whih have only two linearonstraints|one for �xT and one for �xI|the SVM in (5.18) has M linear onstraints: onefor every lass in the data. Thus, the SVM in (5.18) has the same general form as theonventional hard-margin SVM in (3.1), exept that it impliitly spei�es a kernel funtionk and feature transformation, �. The kernel funtion k and the orresponding featuretransformation � for this SVM are de�ned as follows:k(x1;x2) = xT1 � Xj2fT ;Ig p̂jCj��1x2; (5.19)�(x) = UTx: (5.20)The term U represents the Cholesky fatorization of �Pj2fT ;Ig p̂jCj��1:UUT , � Xj2fT ;Ig p̂jCj��1:From these equations, we see that k is a generalized linear kernel of the form, k(x1;x2) =xT1Rx2, where R is de�ned as R = � Xj2fT ;Ig p̂jCj��1:
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5.4.2 Bounding Funtions for the Hard-Margin SVMAs an alternative to the derivation shown above, the hard-margin SVM of (5.17) an beobtained diretly from a spei� set of lass-dependent bounding funtions. These boundingfuntions are given below.Theorem 7 (Bounding funtions for the hard-margin SVM). Given a soring fun-tion f , if yjf(�xj) > 0 for all j 2 f1; : : : ;Mg, then the following inequality holds.1(yjf(xj) < 0) � maxk2f1;:::;Mg�f(xj)� f(�xj)f(�xk) �2 � 1�yjf(xj) < yjf(�xj)� 8j 2 f1; : : : ;Mg:(5.21)Proof. The above bound follows from the same steps used in (4).Minimizing the expeted value of the above bounding funtions over all j leads tothe optimization problem in (5.17) for the hard-margin SVM. The bounding funtions in(5.21) are illustrated in Figure 5.4. Unlike the original seond-order bounding funtionsin (5.13), the seond-order funtions in (5.21) are onstrained to be of uniform width forevery lass. Figure 5.4 shows that the funtions are simply shifted versions of one-another.Thus, the bounds on error-rate are quite loose for lasses whose mean sores are far fromzero. The upside of this looseness is that the resulting solution for the optimized linearlassi�er f is relatively simple: the optimized linear lassi�er is a hard-margin SVM withan optimized linear kernel k and orresponding feature transformation �, as given in (5.19)and (5.20). Given this solution, we an train an optimized linear lassi�er by �rst applyingthe linear feature transformation � to every feature vetor and then training a hard-marginSVM. In Chapter 7, we will show how to tighten the bounding funtions in (5.21) whilestill maintaining the onvexity of the overall optimization problem. This leads to a new,modi�ed support vetor mahine that we refer to as the adaptive, multiluster SVM.
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Figure 5.4. A relaxed set of lass-dependent bounding funtions for the impostor examples.5.4.3 Bounding Funtions for Classes that are not Symmetrially Dis-tributed About their MeansThe upper bounds in (5.7) and in (5.17) are somewhat limited by the fat that they onlyapply to lasses that are symmetrially distributed about their means. For non-symmetriallasses, we an use the following lass-dependent bounding funtions to derive an upperbound on R(f):Theorem 8 (Class-dependent bounding funtions for asymmetrial lasses).Given the soring funtion f(x) = vTx+ b, if yjf(�xj) > 0 for all j 2 f1; : : : ;Mg, then thefollowing inequality holds.1(yjf(xj) < 0) � maxk2f1;:::;Mg�f(xj)� f(�xj)f(�xk) �2 8j 2 f1; : : : ;Mg: (5.22)Proof. The above bound has the same form as the bound in (7), exept that we haveremoved the indiator funtion, 1�yjf(xj) < yjf(�xj)�. Removing the indiator funtionhas the e�et of loosening the bound. Thus, the bound in (5.22) is valid.The above inequality is the same as the inequality in (5.21), exept that we have removedthe indiator funtion, 1�yjf(xj) < yjf(�xj)�. The result is a two-sided, seond-orderbounding funtion. We an obtain the orresponding upper bound on R(f) by omputing58



the expeted value of (5.22) over all target and impostor examples. Minimizing this boundsgives us the following optimization problem:Theorem 9 (Class-dependent upper bound on R(f) for asymmetrial lasses).Given the soring funtion f(x) = vTx+ b, if yjf(�xj) > 0 for all j 2 f1; : : : ;Mg, then thefollowing inequality holds.R(f) � minv;b vT � Xj2fT ;Ig p̂jCj�v (5.23)subjet to 1 � yj(vT �xj + b) 8j:Proof. The above bound follows from omputing the expetation of bound (5.22) over allimpostor lasses. This gives us an upper bound on the rate of false positives, p(f(xj) �0 j j 2 I). By symmetry, we an ompute a similar upper bound on p(f(xj) � 0 j j 2 T ),the rate of false negatives. Adding the two bounds gives us the upper bound on R(f) in(5.23).Here, we see that (5.23) has the same form as the lass-dependent upper bound in (5.17),exept that the bound has been multiplied by a fator of 2. A similar bound an be obtainedfor the lass-independent ase. The upper bound in (5.23) represents the worst-ase lass-dependent upper bound on R(f) for any dataset. Although this bound is looser than thebound in (5.17) for the symmetrial ase, the two bounds only di�er by a onstant fator;thus, both bounds yield the same solution for the SVM parameters, (v; b). The remainder ofthe dissertation will deal exlusively with upper bounds for lasses that are symmetriallydistributed about their means. We note, however, that eah of these upper bounds anbe reformulated for the general ase where the lass distributions are not assumed to besymmetrial.
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5.4.4 Relative Tightness of the Class-Dependent BoundsWe note that the lass-dependent bounds of (5.13) and Figure 5.3 do not neessarily leadto a tighter expeted bound over all lasses than the lass-independent bound of (5.1)|thatis, they do not neessarily lead to tighter bounds on R(f). For example, if the within-lassvariane of the soring funtion f(xj) is relatively large for every lass, then the lass-dependent bounds will tend to be looser than the lass-indepedent bound in expetationover all lasses. On the other hand, if the within-lass variane of f(xj) is small for everylass, then the lass-dependent bounds may ahieve tighter bounds on R(f) than the lass-independent bound. As evidene of this, we an onsider the ase where the expetedwithin-lass variane of f(x) is zero over all lasses, but the overall variane of f(x) is �for some � > 0. In this ase, the lass-independent upper bound on R(f) in (5.7) will bestritly positive, while the lass-dependent bound in (5.17) will be zero.5.4.5 Clustering Data and Choosing What Constitutes a ClassIn general, the relative \tightness" of the lass-dependent bounds is dependent on howthe lasses are de�ned: lasses that are distint and easily separable from one-another withinthe data will tend to yield better bounds on R(f), relative to the lass-independent bound,than lasses that are indistint and spread out. Thus, we would obviously prefer that ourlasses orrespond with real lusters in the data, where the within-lass variane of f(xj)over all j is relatively small for any hoie of v|that is, for any \diretion" within ourfeature spae.In this thesis, we assume that the lasses represent prede�ned lusters within the targetand impostor sets. For example, we will later report results on speaker veri�ation exper-iments where the lasses represent individual speakers. The lass-dependent bounds arediretly appliable to datasets suh as this, where the lasses represent real lusters withinthe data that are de�ned a priori. In priniple, we an also apply the lass-dependent boundsto binary lassi�ation tasks where the impostor and target sets are not partitioned, a pri-60



ori, into individual lasses. Tasks suh as this, are, of ourse, very ommon in real worldsenarios. In order to apply lass-dependent bounds to these general tasks, we must �rst uselustering tehniques to de�ne our own set of lusters (i.e., lasses). We will not address theproblem of how to perform lustering for lass-dependent bounds in any signi�ant depthin this thesis. However, we believe that this problem presents an interesting and importantopportunity for future work.
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Chapter 6
Error Bounds for Non-SeparableData: A New Derivation of theSoft-Margin SVM

In the preeding hapter, we onstruted a set of upper bounds on lassi�ation errorfor the ase where the means of the target and impostor lasses are linearly separable. Byminimizing these upper bounds, we were able to derive a formulation of the hard-marginSVM. This formulation also provides a solution for an optimized linear kernel funtion kand a orresponding feature transformation, �. In this hapter, we extend this approah tothe ase where the target and impostor means are not linearly separable. We desribe anapproah similar to that of Chapter 5 that leads diretly to a new, modi�ed formulation ofthe soft-margin SVM. This modi�ed formulation di�ers from the onventional derivation ofthe soft-margin SVM in Vapnik [1995℄, in the following ways:1. The new, modi�ed formulation follows diretly from minimizing a partiular upperbound on lassi�ation error. On the other hand, Vapnik's formulation is based onappending slak variables to the hard margin SVM.62



2. The C hyperparameter is exatly spei�ed in the modi�ed SVM formulation of thishapter but is undetermined in Vapnik [1995℄. We note, however, that a number oftehniques have been proposed for optimizing C analytially (Cristianini and Shawe-Taylor [2000℄).3. Our new, modi�ed formulation of the soft-margin SVM provides a solution for anoptimized linear kernel k and orresponding feature transformation �.This hapter is organized as follows: We begin by de�ning a set of bounding funtionson the event of a mislassi�ation in Setion 6.1. These bounding funtions are minimizedin Setion 6.2 to yield a new formulation of the soft-margin SVM. In Setion 6.3, we showhow to apply our soft-margin SVM framework to a typial speaker veri�ation task. Thissetion leads to the idea of performing within-lass ovariane normalization (WCCN) oninput feature vetors before training SVMs. We disuss the intuition behind WCCN inSetion 6.4. Finally, in Setions 6.6 and 6.7, we desribe a set of experiments where weompare WCCN to other feature normalizations on a real speaker veri�ation task.6.1 Bounding FuntionsIn this setion, we onstrut an upper bound on R(f) that leads to a modi�ed formof the onventional, 1-norm soft-margin SVM. The upper bound on R(f) is based on oneor more bounding funtions on the event of a mislassi�ation (i.e., on the 0 � 1 errorfuntion). As in Chapter 5, bounding funtions an be onstruted for both the lass-independent ase, where the target and impostor sets are treated as single lasses, as wellas for the lass-dependent ase, where every lass in the target and impostor sets gets itsown bounding funtion. Sine the lass-indepedent bounding funtion is a speial ase ofthe lass-dependent bounding funtions, we will assume throughout this hapter that thebounding funtions are lass-dependent. The bounding funtions are de�ned in Theorem10. We note that Theorem 10 uses the shorthand (�)+ to represent the hinge-loss funtion.63



This is de�ned as (a)+ , 1(a � 0) � a:The theorem is given below:Theorem 10. Given the soring funtion f(x) = vTx + b, if yjf(�xj) > 0 for all lassesj 2 f1; : : : ;Mg, then the following inequality holds.1(yjf(xj) < 0) � B(xj ; �j): (6.1)Here, �j represents a set of parameters for lass j, and B(xj ; �j) represents a one-sided,seond-order bounding funtion. These are de�ned as follows:�j , fv; b; yj ; �xjg;B(xj ; �j) , �yjf(xj)� yjf(�xj)�2 1�yjf(xj) < yjf(�xj)�+ 2 � �1� yjf(�xj)�+: (6.2)Proof. We an see by inspetion that as yjf(xj) dereases, B(xj ; �j) inreases or staysthe same. Thus, we have only to show that B(xj ; �j) � 1 for all yjf(�xj) 2 (0;1) whenyjf(xj) = 0. We divide the problem into two ases: one where yjf(�xj) � 1, and anotherwhere 0 � yjf(�xj) � 1. In eah ase, we will assume that yjf(xj) = 0.Case 1: 1 � yjf(�xj)In this ase, the term 2 � �1 � yjf(�xj)�+ is zero, and the quadrati term �yjf(xj) �yjf(�xj)�21�yjf(xj) < yjf(�xj)� inreases as yjf(�xj) inreases. Thus, the bounding funtionB(xj ; �j) is minimized by setting yjf(�xj) = 1.Case 2: 0 � yjf(�xj) � 1For this ase, we ompute the �rst and seond derivatives of B(xj ; �j) with respet toyjf(�xj). This gives us �B(xj ; �j)��yjf(�xj)� = 2yjf(�xj)� 2;�2B(xj ; �j)��yjf(�xj)�2 = 2:64



Figure 6.1. Illustration of the 0 � 1 error funtion, 1(yjf(xj) < 0), and the boundingfuntion, B(xj ; �j), as a funtion of yjf(xj) for various values of yjf(�xj).Setting �B(xj ; �j)��yjf(�xj )� equal to zero gives us yjf(�xj) = 1. We know that B(xj ; �j) is onvexbeause �2B(xj ; �j)��yjf(�xj )�2 is stritly positive. Thus, yjf(�xj) = 1 is the global minimum for thisase.The above ases show that B(xj ; �j) is minimized at yjf(�xj) = 1. We also knowthat B(xj ; �j) = 1 at yjf(�xj) = 1. Thus, B(xj ; �j) � 1 for all yjf(�xj) 2 (0;1) whenyjf(xj) = 0.The funtion, B(xj ; �j), represents a one-sided, seond-order bounding funtion on the0�1 error funtion, 1(yjf(xj) < 0). The latter funtion equals one when xj is mislassi�edand zero otherwise. An illustration of this bound is provided in Figure 6.1.6.1.1 Comparison with Bounding Funtions for Hard-Margin SVMWe note that the form of B(xj ; �j) in (6.1) is similar to that of the bounding funtionsfor the hard-margin SVM in (5.21). In both (5.21) and (6.1), the bounding funtions forthe di�erent lasses have uniform width and are simply shifted versions of one-another. The65



bounding funtions in (5.21) have a width equal to mink2f1;:::;Mg ykf(�xk), whih representsthe maximum possible width for whih the bounding funtions satisfy the upper bound on1(yjf(xj) < 0) in (5.21) for all lasses. We note, however, that this width assignment onlyyields valid upper bounds on 1(yjf(xj) < 0) if mink2f1;:::;Mg ykf(�xk) is nonnegative. Inother words, the formulation in (5.21) only works in the ase where the target and impostormeans are linearly separable from one-another given the soring funtion, f .The upper bound in (6.1) is based on the lass-dependent bounding funtion, B(xj ; �j),whih has a uniformwidth of one for all j. This means that for any lass j where yjf(�xj) < 1,the funtion, B(xj ; �j), will be too wide to upper bound the indiator funtion in (6.1) inthe usual way. To ompensate for this, we use the term �1�yjf(�xj)�+ to loosen B(xj ; �j)for any lass j where yjf(�xj) < 1. The �1�yjf(�xj)�+ term represents a hinge-loss funtionon 1 � yjf(�xj). In (6.2), this hinge-loss funtion is saled by a onstant fator of 2. Onean show that this is the minimum onstant saling fator for whih B(xj ; �j) satis�es theupper bound in (6.1) for any hoie of �xj .6.1.2 Upper Bound on R(f)In this setion, we use the inequality in (6.1) to derive an upper bound on R(f). Aswas the ase in Chapter 5, we assume throughout the following setions that eah lass issymmetrially distributed about its mean. Under this assumption, we an obtain the upperbound on R(f) given below in Theorem 11. Before giving the theroem, let us de�ne thevetor � , [�1; : : : ; �M ℄T , where M is the number of lasses. We will also use the notation,0 � �, as shorthand to denote a per-element vetor inequality:0 � � () 0 � �j 8j:The theorem is given below:Theorem 11. If, for all j 2 f1; : : : ;Mg, xj is symmetrially distributed about its mean,66



then the following bound holds.R(f) � 12 � vT (Xj p̂jCj)v + 2 �Xj p̂j�j (6.3)subjet to 1� �j � yj(vT �xj + b) 8j;0 � �:Proof. A formal proof of Theorem 11 is provided in Appendix A.The bound in (6.3) follows from taking the expetation of both sides of the inequalityin (6.1).6.2 The Soft-Margin SVMIf (Pj p̂jCj) is full-rank, then we an onvert the bound in (6.3) to a more familiarform by performing a substitution of variables. As in Chapter 5, we de�ne the vetor wand the matrix U as follows: v ,Uw;UUT , (Xj p̂jCj)�1:Substituting Uw in for v in (6.3) gives us the following bound.R(f) � 12 �wTw + 2 �Xj p̂j�j (6.4)subjet to 1� �j � yj(wTUT�xj + b) 8j;0 � �:We an now use the upper bound in (6.4) as an objetive funtion for training a linearlassi�er. Our goal is to minimize the bound in (6.4) with respet to (w; b; �). This gives
67



us the following optimization problem:minw;b;� wTw+ 4 �Xj p̂j�j (6.5)subjet to 1� �j � yj(wTUT �xj + b) 8j;0 � �:Note that the objetive funtion in (6.5) orresponds with the upper bound in (6.4) saledby a fator of 2. The optimization problem in (6.5) de�nes a new, modi�ed formulation ofthe soft-margin SVM. This modi�ed SVM has the same general form as the onventional1-norm soft-margin SVM in Cristianini and Shawe-Taylor [2000℄; Vapnik [1995℄, exeptthat eah feature vetor, �xj , is replaed withUT �xj . We will disuss the di�erenes betweenthe formulation in (6.5) and the onventional soft-margin SVM formulation in greater detailin the following setion. The new SVM formulation impliitly de�nes a feature mapping �and a kernel funtion k of the form, �(x) = UTx;k(x1;x2) = xT1Rx2;Here, the matries, R and U, are de�ned as follows:R , (Xj p̂jCj)�1; (6.6)UUT , R:6.2.1 Comparison with Conventional Soft-Margin SVM FormulationIf we ompare the new, modi�ed soft-margin SVM in (6.5) with the onventional for-mulation in (3.4), we see that the two formulations are essentially idential. However, thereare a few important di�erenes: For example, the new formulation in (6.5) assigns a �xedvalue of 4 to the SVM hyperparameter, C. This value represents the smallest value of C forwhih the optimization problem in (6.5) forms an upper bound on the risk funtion, R(f).In the onventional soft-margin SVM, the C hyperparameter and the hinge-loss term are68



simply appended to the hard-margin SVM without o�ering any proper justi�ation for theirinlusion. Our formulation, on the other hand, follows diretly from minimizing the upperbounds on R(f) in (6.3) and (6.4).As with the hard-margin SVM in Chapter 5, another key di�erene between the on-ventional soft-margin SVM in (3.4) and the new, modi�ed formulation in (6.5) is that thenew formulation impliitly spei�es a generalized linear kernel k and a orresponding linearfeature transformation, � (note that this result only holds if (Pj p̂jCj) is full-rank). Thekernel k and the orresponding feature transformation � are seleted to minimize the upperbounds on R(f) in (6.3) and (6.4). Thus, we say that k and � are optimal for the givenupper bounds on lassi�ation error. One important impliation of this is that the modi�edSVM in (6.5) is invariant to any full-rank linear distortion of the feature spae. This meansthat if we replae eah input feature vetor �xj in the training and test sets with A�xj, whereA is some full-rank linear transformation, then the output sores obtained from f will beunhanged. The new formulation in (6.5) also di�ers from the onventional soft-marginSVM formulation in that it inorporates the prior probabilities of eah lass onditional onthe given set (i.e., either the target set or the impostor set).We note that a onventional 1-norm soft-margin SVM with a simple inner-produtkernel|that is, a kernel of the form, k(x1;x2) = xT1 x2|an be viewed as a speial ase ofthe optimization problem in (6.5) where the following onditions hold:1. Pj p̂jCj is assumed to be proportional to the identity matrix, I, for all i.2. The �j terms are weighted by p̂j for all j3. Every input training example is treated as the mean of some lass. Thus, we replaeeah xj term in the original SVM formulation with �xj .4. The C hyperparameter is set equal to 4.
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6.3 Generalized Linear Kernels for Speaker Veri�ationTasksIn the previous setions, we derived a new, modi�ed formulation of the soft-margin SVM.This SVM spei�es an analytial form for R in the generalized linear kernel, k(x1;x2) =xT1Rx2. In this setion, we o�er a pratial argument for how to estimate R on a typialspeaker veri�ation task, where the number of training examples available for the targetspeaker is very small. Under various assumptions, we show that the formulation in (6.6)leads to the notion of performing within-lass ovariane normalization (WCCN) on theinput feature spae.In most speaker veri�ation tasks, the amount of training data provided for the giventarget speaker is small|typially no more than 8 onversation sides of around 2.5 minuteseah. Given this limited amount of training data, the task of oming up with a robustestimate of the ovariane matries for the target set (i.e., speaker) an be very diÆult,espeially when the dimensionality of the feature spae is very high. One way of gettingaround this, in the absense of any other information, is to assume that the expeted within-lass ovariane matrix over all lasses in the target set T is equal to the expeted within-lass ovariane matrix over all lasses:Xj2T p̂jCj = CW : (6.7)The above assumption will hold|at least approximately|for datasets where the lass dis-tributions are seleted in suh a way that their ovariane matries are relatively homo-geneous. We an make a pratial argument that the assumption in 6.7 tends to hold forlasses that represent instanes of a partiular type. For example, in a speaker veri�ationtask, we an de�ne eah lass to represent an individual speaker. We an then use CW toprovide an estimate of Ci for any individual speaker i.Under the assumption in (6.7), the overall R matrix in (6.6) is approximately equal to70



the inverse of the expeted within-lass ovariane matrix, CW :R � C�1W :This approximation beomes more exat as the total number of lasses, M , grows large.One attrative property of the above assignment for R is that it applies to any hoie oftarget set, assuming that Pj2T p̂jCj = CW . Thus, we arrive at a single linear featuremapping that an be applied uniformly to all input feature vetors, regardless of the hoieof target set. We an express this feature mapping as follows:�(x) = C� 12W x:Here, C 12W represents the Cholesky fatorization of CW . Thus, CW = C 12 TW C 12W . The abovehoie of � performs what we refer to as within-lass ovariane normalization (WCCN)on the input feature spae. This means that � normalizes the feature spae to have anexpeted within-lass ovariane matrix CW equal to the identity matrix, I.6.4 Intuition Behind Within-Class Covariane Normaliza-tionThe preeding setion shows how the formulation in (6.6) leads to the notion of per-forming within-lass ovariane normalization (WCCN) on the input feature spae. In thissetion, we desribe the intuition behind this approah. Given an input feature spae, X ,omposed of a set of J lasses, our goal is to �nd the linear feature mapping �(x) = Axthat will optimally transform X for the purposes of disriminating between lasses. Morespei�ally, we would like to �nd the optimal linear feature mapping for training SVMsin a one-versus-all setting, where one lass is hosen as the target lass and the remainingJ � 1 lasses are pooled to form the impostor set. If we ignore rotations of the featurespae, then the problem of oming up with an optimal linear transformation is equivalentto �nding the optimal saling fator for every diretion in feature spae. We an argue71



Figure 6.2. Illustration of the within-lass ovariane normalization (WCCN) approah.Here, we apply WCCN to a 2-dimensional feature spae omposed of 4 Gaussian lasses.These ellipses represent isolines of onstant Mahalanobis distane for eah of the lasses.WCCN boosts informative diretions and attenuates noisy diretions by making the within-lass distributions as symmetrial as possible.that diretions in feature spae where the between-lass variane is large ompared to theexpeted within-lass variane should be given greater weight than diretions where thisis not the ase. Alternatively, we an say that diretions with a large Rayleigh oeÆientJ(w) should be given more weight than diretions where J(w) is small. In WCCN, eahdiretion in feature spae is saled by 1�W (w) , where �W (w)2 represents the expeted withinlass variane over all lasses along diretion w. After weighting the feature spae in thisway, eah diretion will have a between-lass variane equal to the Rayleigh oeÆient ofthat diretion. Thus, the Rayleigh oeÆient forms a measure of how informative or noisya given diretion is. An illustration of how WCCN works is provided in Figure 6.2.
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6.5 Relationship Between WCCN and Linear DisriminantAnalysis (LDA)We note that the WCCN approah desribed in Setion 6.3 is, in many respets, verysimilar to linear disriminant analysis (LDA). In LDA, the input feature spae is projetedonto the eigenvetors of the matrix CBC�1W . Sine the eigenvetors of CBC�1W are orthonor-mal, this operation results in a rotation of the input feature spae. The resulting featurerepresentation an be trunated|that is, we an drop the features that orrespond withthe P -lowest Rayleigh oeÆients. Beside reduing the dimensionality of the feature spae,this trunation an have the e�et of �ltering out diretions in feature spae that are noisy.Thus, if P is properly tuned, then LDA will often lead to improved auray when used asa pre-proessing step in a lassi�ation system.The idea behind WCCN is not to �lter out diretions in feature spae that are noisy,but simply to deemphasize them based on their Rayleigh oeÆients. In this way, WCCNattempts to extrat as muh information as possible from the input feature spae X byoptimally weighting every diretion. (Note that WCCN is only \optimal" in the sense thatit minimizes a partiular upper bound on lassi�ation error). If CW is full-rank, thenthese weights are never equal to zero; thus, WCCN is lossless, in that it retains all of theoriginal diretions in the input feature spae, X . Unlike LDA, WCCN is also invariant toany full-rank linear distortion of X . In other words, we an transform X with �(x) = Ax,and the resulting feature spae after performing WCCN will look the same for any hoieof A where A is full-rank and N � N . The same is not true of LDA, however, sineLDA simply performs a rotation in feature spae followed by a trunation. In Chapter8, we provide a set of results where we ompare the WCCN approah with a version ofLDA alled nuisane attribute projetion (NAP) (Solomono� et al. [2004, 2005℄). The NAPapproah was previously desribed in Chapter 4.
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6.6 Experiments on a Speaker Veri�ation TaskThe following setion desribes a set of experiments where we ompare the perfor-mane of various linear feature transformations on an SVM-based speaker veri�ation sys-tem. These feature transformations inlude the WCCN approah desribed in Setions 6.3through 6.1, where the R = C�1W . We also experiment with the parameterization, R = C�1,where C is the overall ovariane matrix over all of the data. This parameterization orre-sponds with the lass-independent ase of WCCN where the target and impostor sets aretreated as individual lasses, and where CI and C are assumed to be equal. We note thatthis parameterization is idential to the GLDS kernel desribed in Campbell [2001℄.Experiments were performed on two NIST-de�ned speaker veri�ation tasks where thegoal is to orretly deide whether or not a given pair of onversation sides belong to thesame speaker. In these tasks, one of the onversation sides in eah pair is used to de�ne thetarget lass (i.e., speaker), while the other is used as a test example. We train an SVM-basedsoring funtion for every target speaker using a �xed pool of held-out impostor examplestaken from several hundred impostor speakers. Note that the lasses in these experimentsrepresent speakers.We used a version of the state-of-the-art MLLR-SVM system desribed in Stolke et al.[2005℄ to extrat one 12480-dimensional feature vetor from every onversation side. Thesefeatures an be divided into eight disjoint groups of 1560 features eah, where eah group isassoiated with a partiular set of speeh phonemes. We used held-out data from the NISTSRE-2003 dataset to ompute the empirial expeted within-lass ovariane matrix ĈWand the empirial overall ovariane matrix, Ĉ. Note that both ĈW and Ĉ were estimatedin a blok-diagonal fashion, where the ovariane between any two features i and j, where iand j belong to di�erent phoneme groups, was set to zero. The resulting ovariane matries
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SRE-03 subset SRE-04kernel EER% DCF EER% DCFR = diag(Ĉs)�1(baseline) 4.36 0.0166 9.84 0.0347R = diag(ĈW;s)�1 4.21 0.0151 9.56 0.0338R = Ĉ�1s 4.15 0.0141 9.56 0.0348R = Ĉ�1W;s 3.80 0.0128 9.28 0.0322relativeimprovement 12:8% 22:9% 5:7% 7:2%Table 6.1. EERs and minimum DCFs for various generalized linear kernels. Here, \relativeimprovement" ompares the performane of R = Ĉ�1W;s with the baseline.were then smoothed using the models,ĈW;s = �W � ĈW + (1� �W ) � diag(ĈW ); �W 2 [0; 1℄;Ĉs = � � Ĉ+ (1� �) � diag(Ĉ); � 2 [0; 1℄;where diag(A) is the diagonal omponent of the square matrix A. The parameters �W and� were independently tuned to a value of 0.30 by performing ross-validation on held-outdata from the SRE-2003 dataset.Testing was performed on a subset of the SRE-2003 task and dataset and on the entireSRE-2004 task and dataset for the 1-onversation training ondition. Results are shown inTable 6.1 for two standard error metris: equal-error rate (EER) and minimum deisionost-funtion (DCF)|a standard metri used by NIST to measure lassi�ation error whenthe relative rate of false positives is high (NIST [2005℄). Note that both error metris areomputed on the pooled set of SVM output sores obtained from the various target lasses.Here, the R = diag(Ĉs)�1 and R = diag(ĈW;s)�1 parameterizations orrespond with per-feature variane normalization and with per-feature within-lass variane normalization.The R = Ĉs parameterization orresponds with the GLDS kernel (Campbell [2001℄) andR = ĈW;s orresponds with WCCN. As shown in Table 6.1, the R = Ĉ�1W;s ase shows asubstantial improvement over the R = Ĉ�1s ase and over the baseline, where eah feature isnormalized to have unit variane (i.e., R = diag(Ĉ)�1). The improvement on SRE-2004 issigni�antly smaller than that obtained on SRE-2003. However, this is to be expeted, sine75



both ĈW and Ĉ were estimated only on SRE-2003 data, whih represents a di�erent setof hannel and reording onditions than SRE-2004 (Stolke et al. [2005℄) for more detailsabout the system, datasets, and tasks). Further information on these experiments an befound in Hath and Stolke [2006℄.6.7 Summary and ConlusionsThe preeding hapter desribes an approah for training generalized linear kernels ofthe form, k(x1;x2) = xT1Rx2, for OVA lassi�ation tasks. We develop a set of error boundswhih, under various onditions, are minimized by hoosing R = C�1W . This parameteriza-tion performs what we refer to as within-lass ovariane normalization (WCCN) on theinput feature spae. In experiments performed on an MLLR-SVM speaker veri�ation sys-tem, WCCN ahieves substantial redutions in lassi�ation error over other linear featuretransformations, inluding the GLDS kernel of Campbell [2001℄ and per-feature varianenormalization.
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Chapter 7
Tightening the Bounds: theAdaptive, Multiluster SVM

In Chapters 5 and 6, we introdued a new modi�ed formulation of the hard-margin andsoft-margin SVMs. These formulations follow from the lass-dependent bounding funtionsin (5.21) and (6.2), whih provide an upper bound on the event of a mislassi�ation.The modi�ed SVMs in Chapters 5 and 6 speify a kernel funtion k and a orrespondinglinear feature transformation � that minimize the upper bounds on R(f) in (5.18) and(6.4). The upshot of these formulations is that we an implement an \optimized" linearlassi�er (optimized in the sense that it minimizes these partiular upper bounds on R(f))by performing the following two steps:1. Use � to transform the input feature spae.2. Train a linear SVM in the usual way. Here the term, \linear SVM," refers to an SVMthat uses the inner-produt kernel, k(x1;x2) = xT1 x2.In Setion 6.3, we gave a pratial argument for how, under ertain assumptions, the opti-mized feature transformation � leads to the notion of within-lass ovariane normalization(WCCN). WCCN has the attrative property of being indepedent of the given partitioning77



of lasses|that is, WCCN is independent of the assignment of eah lass to either theimpostor set or to the target set. This means that after performing WCCN on the inputfeature spae, the standard linear SVM is approximately optimal for minimizing the upperbounds in (5.18) and (6.4) on any partitioning of lasses.The WCCN approah provides a onvenient means of obtaining linear lassi�ers thatapproximately minimize a partiular upper bound on R(f). However, WCCN has thedrawbak of being derived from error-bounds that are unneessarily loose. We note thatthe upper bounds on R(f) in (5.18) and (6.4) are based on a set of one-sided, seond-order,lass-dependent bounding funtions in (5.21) and (6.2) that all have uniform width (seeFigure 5.4). These bounding funtions are spei�ally designed to yield objetive funtionsthat are easy to solve. However, we an obtain tighter bounds on error by using boundingfuntions of variable width, where eah bounding funtion intersets the \edge" of the0 � 1 loss funtion (i.e., the point on the 0 � 1 loss funtion where f(x) = 0). We havealready introdued a tighter set of bounding funtions in (5.15) and (5.16) for the asewhere the target and impostor means are linearly separable. These bounding funtions arede�ned to be as wide as possible while still providing an upper bound on the event of amislassi�ation. In this hapter, we onstrut a similar set of bounding funtions for thease of non-separable data. By minimizing the orresponding upper bound on R(f), weultimately arrive at a new formulation of the 1-norm soft-margin SVM that impliitly learnsR in the generalized linear kernel, k(x1;x2) = xT1Rx2. Unlike the SVM formulation inChapter 6, this formulation optimizes the relative weight applied to eah lass-onditionalovariane matrix in the parameter matrix, R. The resulting parameter matrix has theform, R = (Pj �j p̂jCj)�1, where �j represents the relative weight applied to lass j. Werefer to this new formulation as the adaptive, multiluster SVM (AMC-SVM), beause itallows us to adapt the relative weight applied to eah lass when omputing R.This hapter is organized as follows: Setion 7.1 desribes a set of bounding funtionsthat form the basis of the AMC-SVM. Setion 7.2 desribes two methods for optimizing thesebounds. These inlude an iterated quadrati program (QP), in whih we iterate between78



optimizing two di�erent subsets of parameters. We also desribe an equivalent formulation,where the AMC-SVM is framed as a seond-order one program (SOCP). In Setion 7.3,we desribe a set of experiments where we test the AMC-SVM against a onventional SVMthat uses WCCN. These experiments are performed on various types of arti�ial Gaussiandata. Finally, a set of onlusions is provided in Setion 7.5.7.1 Bounding FuntionsIn this setion, we onstrut an upper bound on R(f). Minimizing this upper boundleads to a modi�ed form of the onventional, 1-norm soft-margin SVM in (3.4). As in Chap-ter 6, the upper bound on R(f) follows from a set of lass-dependent bounding funtions onthe event of a mislassi�ation (i.e., on the 0� 1 error funtion). To simplify our notationin the following setion, we begin by de�ning Dj to be the ovariane matrix of lass jweighted by the onditional probability of j within the orresponding set (i.e., either thetarget set or the impostor set). Thus, we have:Cj , E (xj � �xj)(xj � �xj)T 8j;Dj , p̂jCj 8j;where p̂j is de�ned as p̂j ,8><>: p(j)Pk2T p(k) ; if j 2 T ;p(j)Pk2I p(k) ; if j 2 I:We also de�ne �X to be a matrix of the lass means, and �y to be a diagonal matrix of theorresponding labels: �X , [�x1; : : : ; �xM ℄;[�y℄ij , ( yi; if i = j;0; if i 6= j:A set of lass-dependent bounding funtions is de�ned below:79



Theorem 12. Given the soring funtion f(x) = vTx + b, if yjf(�xj) > 0 for all j 2f1; : : : ;Mg, then the following inequality holds.1(yjf(xj) < 0) � B(xj ; �j) : 0 < �j � 1; (7.1)Here, �j represents a set of parameters for lass j, and B(xj ; �j) represents a one-sided,seond-order bounding funtion. These are de�ned as follows:�j , fv; b; �j ; yj; �xjg;B(xj ; �j) ,  (yjf(�xj)� yjf(xj))+maxn 1�j ; yjf(�xj)o !2 + 2 � (1� �jyjf(�xj))+: (7.2)Proof. The proof follows essentially the same steps as the proof of Theorem 10. We an seeby inspetion that as yjf(xj) dereases, B(xj ; �j) inreases or stays the same. Thus, wehave only to show that B(xj ; �j) � 1 for all yjf(�xj) 2 (0;1) when yjf(xj) = 0. We dividethe problem into two ases: one where yjf(�xj) � 1�j , and another where 0 � yjf(�xj) � 1�j .In eah ase, we assume that yjf(xj) = 0.Case 1: 1�j � yjf(�xj)In this ase, the term 2 � �1 � �jyjf(�xj)�+ is zero, and the quadrati term (yjf(�xj)�yjf(xj))+max� 1�j ;yjf(�xj )� !2 is equal to one.Case 2: 0 � yjf(�xj) � 1�jFor this ase, we ompute the �rst and seond derivatives of B(xj ; �j) with respet toyjf(�xj). This gives us �B(xj ; �j)��yjf(�xj)� = 2�2jyjf(�xj)� 2�j ;�2B(xj ; �j)��yjf(�xj)�2 = 2�2j :Setting �B(xj ; �j)��yjf(�xj )� equal to zero gives us yjf(�xj) = 1�j . We know that B(xj ; �j) is onvex,beause �2B(xj ; �j)��yjf(�xj)�2 is stritly positive. Thus, yjf(�xj) = 1�j is the global minimum for thisase. 80



Figure 7.1. Illustration of the 0 � 1 error funtion, 1(yjf(xj) < 0), and the boundingfuntion, B(xj ; �j), as a funtion of yjf(xj) for various values of yjf(�xj). If �j > 0, thenB(xj ; �j) forms an upper bound on 1(yjf(xj) < 0) for any value of yjf(xj) and yjf(�xj).The above ases show that B(xj ; �j) is minimized at yjf(�xj) = 1�j . We also knowthat B(xj ; �j) = 1 at yjf(�xj) = 1�j . Thus, B(xj ; �j) � 1 for all yjf(�xj) 2 (0;1) whenyjf(xj) = 0.As in Chapter 6, B(xj ; �j) represents a one-sided, seond-order bounding funtionon the 0 � 1 loss funtion, 1(yjf(xj) < 0). The form of the bounding funtion in (7.2)is similar to that de�ned in (6.2), exept that we sale B(xj ; �j) to have a width of(maxf 1�j ; yjf(�xj)g), where �j 2 (0; 1℄ is a new model parameter. The bounding funtion,B(xj ; �j), is assigned a width of yjf(�xj) for any lass j where yjf(�xj) > 1�j . This representsthe maximum possible width for whih we satisfy the bound, 1(yjf(xj) < 0) � B(xj ; �j).For the ase where yjf(�xj) < 1�j , the bounding funtion is assigned a �xed width of 1�j . Wealso use the hinge-loss term (i.e., 2 � (1 � �jyjf(�xj))+) to ensure that B(xj ; �j) remainsgreater than the 0 � 1 error funtion when yjf(�xj) < 1�j . An illustration of B(xj ; �j) isprovided in Figure 7.1. Note that the bound in (7.1) is only valid if �j is �nite and greaterthan zero. 81



We an now use the inequality in (7.1) to derive an upper bound on R(f). As usual,we assume throughout the following setions that eah lass is symmetrially distributedabout its mean. This implies that for all j, the distribution of f(xj) is symmetrial as well,sine f is an aÆne funtion. Under this assumption, we an obtain the bound in Theorem13 on the risk funtion, R(f). For this bound, we de�ne � and � as � , [�1; : : : ; �M ℄T , and� , [�1; : : : ; �M ℄T , where M is the number of lasses.Theorem 13. If, for all j 2 f1; : : : ;Mg, xj is symmetrially distributed about its mean,then the following bound holds.R(f) � 12 � vT (Xj �jDj)v + 2 �Xj p̂j�j (7.3)subjet to 1�j � �j � yj(vT �xj + b) 8j;0 � � � 1;0 � �:Proof. A formal proof of Theorem 13 is provided in Hath [2006℄ and in Appendix A.The above bound follows from taking the expetation of both sides of the inequality in(7.1).We an onvert the bound in (7.3) to a more familiar form by substituting v = U�w,where U�UT� = (Pj �jDj)�1. (For simpliity, we will assume throughout this dissertationthat (Pj �jDj) is full-rank and therefore non-singular). This gives us the following bound:R(f) � 12 �wTw+ 2 �Xj p̂j�j (7.4)subjet to 1�j � �j � yj(wTUT��xj + b) 8j;0 � � � 1;0 � �:Here, we see that for �xed �, minimizing the bound in (7.4) leads to an optimizationproblem with the same general form as the 1-norm soft-margin SVM in (3.4), exept that the82



onstraint, 1��j � yj(wTUT��xj+b) 8j has been replaed with 1�j��j � yj(wTUT��xj+b) 8j.We refer to this formulation, and to aÆne deision funtions that we obtain by minimizingit, as the adaptive, multiluster SVM (AMC-SVM). The AMC-SVM impliitly de�nes afeature mapping � and a kernel funtion k of the form,�(x) = UT�x;k(x1;x2) = xT1Rx2;where the matries, R and U�, are de�ned as follows:R , (Xj �jDj)�1; (7.5)U�UT� , R:In the above equations, the �j parameters ontrol the relative weight applied to the ovari-ane matries in omputing the feature mapping � and the kernel funtion k.From the bound in (7.3), we note that a 1-norm soft-margin SVM with a simple inner-produt kernel (i.e., a kernel of the form, k(x1;x2) = xT1 x2) an be viewed as a speial aseof the AMC-SVM where the following onditions hold:1. �j is �xed at 1 for all j.2. Cj is assumed to be proportional to the identity matrix, I, for all j.3. The �j terms are weighted by p̂j for all j.4. Every input training example is treated as the mean of some lass. That is, we replaeeah xj term in the original SVM formulation with �xj .Similarly, the WCCN approah of Chapter 6 forms a speial ase of the AMC-SVM where�j = 1 for all j. Hene, we an view the AMC-SVM as an adaptive form of WCCN wherethe weights assigned to the lass ovariane matries (i.e., the Cj terms) are adapted to thegiven dataset. 83



7.2 OptimizationIn this setion, we examine the problem of minimizing the upper bound on R(f) in (7.3)with respet to (v; b; �; �). We use the notation (v�; b�; ��; ��) to represent the optimizersof (7.3). From (7.3), we see by inspetion that ��j has the following solution for all j:��j = 1yj(v�T �xj + b) + ��j : (7.6)Given the above solution for ��j , we an state the problem of minimizing (7.3) with respetto (v; b; �) as follows: minv;b;� Xj vTDjvyj(vT �xj + b) + �j + 4 �Xj p̂j�j (7.7)subjet to 1� �j � yj(vT �xj + b) 8j;0 � �:The vTDjvyj(vT �xj+b)+�j terms in the above optimization problem have a quadrati-over-linearform, whih is onvex. Thus, the overall objetive funtion of (7.7) is onvex, sine it isomposed of a positively-weighted sum of onvex terms. The onstraints in (7.7) are linearand therefore also onvex; thus, it follows that the overall optimization problem of (7.7) hasa onvex form.We presribe two approahes for solving (7.7). The �rst of these is an iterated quadratiprogram (QP) approah, where we optimize (7.7) by iteratively solving a QP over (v; b; �)and then minimizing with respet to �. We also show how the problem in (7.7) an beframed as a seond-order one program (SOCP). This solution was reently proposed byLaurent El Ghaoui.7.2.1 Iterated QP FormulationOne approah to optimizing (7.7) (or equivalently, to minimizing the bound in (7.3)) isto use what we refer to as an iterated QP approah, where we �rst optimize over (v; b; �)given some initial � and then over � given (v; b; �). These two steps an be iterated until84



the objetive funtion onverges to the global minimum. Although potentially ineÆient,this iterative approah has the advantage that it doesn't require any speialized optimiza-tion software exept for a standard SVM trainer (we note, however, that the iterated QPapproah also requires software for performing eigendeompositions on potentially largematries).The �rst step in the iterated QP is to optimize over (v; b; �) given some initial value of� (say �j = 1 for all j). We an express this optimization as a quadrati program (QP):minv;b;� vT (Xj �jDj)v + C �Xj p̂j�j (7.8)subjet to 1�j � �j � yj(vT �xj + b) 8j;0 � �:= max0��j�C�p̂j 8j�T y=0 2Xj �j�j � �T�y �XT (Xj �jDj)�1 �X�y�: (7.9)Here, the optimization problem in (7.9) represents the dual problem of (7.8). We will omita formal proof of this sine the derivation of (7.9) follows essentially the same steps used inVapnik [1995℄; Cristianini and Shawe-Taylor [2000℄ to derive the dual of the 1-norm soft-margin SVM. Note that we have replaed the fator \2" in equation (7.3) with the generalhyperparameter C in (7.8) and in (7.9). The optimal value of v for the above optimizationproblems has the form, v� = (Xj �jDj)�1 �X�y��;where �� is the maximizer of (7.9). This solution for the optimal v follows from thestandard solution in (3.3) for the weight vetor of an SVM. Given v and �, we an omputethe optimal (b; �) by solving the following linear program (LP):minb;� Xj p̂j�jsubjet to 1�j � �j � yj(vT �xj + b) 8j;0 � �j 8j:85



Next, we optimize over � given (v; b; �):min0���1 vT (Xj �jDj)v + C �Xj p̂j�jsubjet to 1�j � �j � yj(vT �xj + b) 8j:The solution for the optimal � in the above optimization problem is given in (7.6). Byputting all of these steps together, we arrive at the following iterative proedure for mini-mizing the bound in (7.3) with respet to (v; b; �; �):1. set �j := 1 8j.2. set R := (Pj �jDj)�1.3. solve for �: max0��j�C�p̂j 8j�T y=0 2Xj �j�j � �T�y �XTR�X�y�: (7.10)4. set v := R�X�y�.5. solve for � and b: minb;� Xj p̂j�jsubjet to 1�j � �j � yj(vT �xj + b) 8j;0 � �j 8j:6. set �: �j := 1yj(vT �xj + b) + �j 8j:7. return to step 2.The iterated QP proedure shown above inludes a QP in step 3 and an LP in step 5. Bothof these problems an be solved by using standard optimization tools for SVMs. The aboveproedure also requires omputing the inverse of a potentially large matrix in step 2. Sinematrix inversions an be time-onsuming, this step forms one of the main omputational86



bottleneks in implementing the iterated QP proedure. As the name implies, the iteratedQP also requires that eah step be repeated multiple times until the variables onverge tothe global minimum. Thus, the iterated QP may be somewhat ineÆient, partiularly inases where many iterations are required. In the following setion, we desribe an equiva-lent formulation of the AMC-SVM where all variables are optimized simultaneously. Thisformulation has the advantage of being potentially more eÆient than the iterated QP;however, it requires an SOCP solver, whih may not be readily available to all users.7.2.2 SOCP FormulationThe optimization problem in (7.7) an also be framed as a seond-order one program(SOCP). To show this, we begin with the following lemma, whih was reently proposed byLaurent El Ghaoui:Lemma 1. The following inequalities are equivalent for any real salars x > 0 and y > 0and for any vetor z 2 RN , where N is a positive integer:xy � zT z() 12(x+ y) � kz; 12(x� y)k2: (7.11)Proof. Squaring both sides of the inequality in (7.11) gives us12(x+ y) � kz; 12(x� y)k2 () �x+ y2 �2 � kz; x� y2 k22() 14(x2 + 2xy + y2) � zT z+ 14(x2 � 2xy + y2);() xy � zT z:
We an use Lemma 1 to obtain the following equivalent SOCP formulation for the boundin (7.7): 87



Theorem 14 (SOCP Formulation). The bound on R(f) in (7.7) an be minimized withrespet to v, b, and � by solving the following SOCP:minv;b;�;t Xj (tj + Cp̂j�j) (7.12)subjet to 12(tj + yj(vT �xj + b) + �j) � kD 12Tj v; 12(tj � yj(vT �xj + b)� �j)k2 8j;1� �j � yj(vT �xj + b) 8j;0 � �:Here, we de�ne D 12j to be the Cholesky fatorization of Dj:D 12j D 12 Tj ,Dj:Proof. The problem in (7.7) an be restated asminv;b;�;t Xj (tj +Cp̂j�j) (7.13)subjet to tj � vTDjvyj(vT �xj + b) + �j 8j;1� �j � yj(vT �xj + b) 8j;0 � �:We an now apply Lemma 1 to the linear onstraint on tj . This gives us the SOCP in(7.12).Note that in Theorem 14, the term t is de�ned as t , [t1; : : : ; tM ℄T , where M is thenumber of lasses.7.2.3 A Kernelized Version of the Adaptive, Multiluster SVMIn this setion, we address the problem of how to empirially estimate lass ovarianematries, and more spei�ally, how to estimate R , (Pj �jDj)�1 given a �nite set of88



training data. The theory in this setion also leads to a \kernelized" version of the AMC-SVM, whih allows us to apply the iterated QP and SOCP formulations of the previoussetions to arbitrary kernels and feature mappings. For instane, the theory developed inthis setion an be used to implement an AMC-SVM with a Gaussian or RBF kernel. Webegin, in the following setion, by deriving an iterated QP formulation of the AMC-SVMwhere the lass ovariane matries are estimated empirially. This is followed by a similarderivation for the SOCP formulation.Iterated QP FormulationWe begin by de�ning Xi to be a matrix ontaining the training vetors for lass i:Xi , [xi1 ; : : : ;xiNi ℄:Here, xij represents the jth training vetor of lass i, and Ni represents the total numberof training vetors in the lass. Next, we de�ne X̂i to be a weighted and entered versionof Xi: X̂i ,r p̂iNi�Xi � 1NiXi1Ni1TNi�:We use the notation 1Ni to denote a olumn vetor of Ni ones. Given the above de�nitionfor X̂i, we de�ne X̂ to be a matrix ontaining X̂i for all i and �� to be a diagonal matrixontaining the square-roots of the elements of �:X̂ , [X̂1; : : : ; X̂M ℄;�� = diag([p�11TN1 ; : : : ;p�M1TNM ℄T ):Given these de�nitions, we an approximate R ,Pj �jDj as R̂, whih is de�ned below:R̂ , X̂�2�X̂T ; (7.14)Here, R̂ represents the empirial estimate of R. Substituting R̂ for R in (7.10) gives us thefollowing expression for the QP in Setion 7.2.1:max0��j�C�p̂j 8j�T y=0 2Xj �j�j � �T�y �XT (X̂�2�X̂T )�1 �X�y�: (7.15)89



We an now use the kernel PCA tehnique desribed in Shoelkopf and Smola [2002℄ toobtain a \kernelized" version of the above expression. By the singular value deomposition,we have X̂�2�X̂T = U�2UT ;��X̂T X̂�� = V�2VT ;where U and V are the eigenvetor matries for X̂�2�X̂T and ��X̂T X̂��, respetively, and�2 is the orresponding diagonal matrix of eigenvalues. If V�2VT is full-rank, then we anexpress U as follows: U = X̂��V��1: (7.16)The above equation an be used to obtain an expression for the pseudoinverse of R̂, whihwe represent as R̂+ .̂R+ = U��2UT ;= X̂��V��1��2��1VT��X̂T ;= X̂��(��X̂T X̂��)�2��X̂T ;= X̂����1� (X̂T X̂)�1��1� ��1� (X̂T X̂)�1��1� ��X̂T ;= X̂(X̂T X̂)�1��2� (X̂T X̂)�1X̂T :Substituting R̂+ for R�1 in (7.10) gives us the following QP:max0���C�p̂j 8j�T y=0 2Xj �j�j � �T�y �XT X̂(X̂T X̂�2�X̂T X̂)�1X̂T �X�y�: (7.17)As in the onventional SVM, the feature vetors in (7.17) only appear in the form of innerproduts. Thus, we an apply the kernel trik to (7.17), where we replae eah inner produtxT1 x2 with a kernel funtion, k(x1;x2). In general, we an implement the AMC-SVM for anyarbitrary feature mapping � by plugging in the orresponding kernel funtion, k. Furtherdetails on the kernel trik an be found in Chapter 3.If we now ompare the expression in (7.17) with the expression in (7.15), we see thatthe two expressions are the same exept that eah instane of �X and X̂ in (7.15) is replaed90



with X̂T �X and X̂T X̂ in (7.17). Thus, we an view X̂T �X in (7.17) as a olumn matrix ofinput feature vetors. Under this interpretation, we an use (7.14) to ome up with theorresponding equation for R̂. This gives usR̂ , X̂T X̂�2�X̂T X̂:We an now substitute R̂ for R and X̂T �X for �X in (7.10) to arrive at the expressionin (7.17). Here, we note that beause X̂T �X is an N � J matrix, where N is the totalnumber of training examples and J is the total number of lasses, the new \feature vetors"in the olumns of X̂T �X will be N -dimensional. Thus, if the original feature spae has adimensionality of L, where L > N , then we an use the empirial approah desribed in thissetion to e�etively redue the dimensionality of the input feature vetors from L down toN .SOCP FormulationThe preeding setion desribes what we refer to as the \empirial formulation" of theiterated QP, where the ovariane matries are estimated from the training data. We an usea similar set of arguments as those given in Setion 7.2.1 to obtain an empirial formulationfor the SOCP in 7.2.2. As with the empirial formulation of the iterated QP, the empirialSOCP formulation is \kernelized" in the sense that the feature vetors only appear in theform of inner produts. To derive this formulation, we begin by estimating the ovarianematrix Cj as follows: Ĉj = 1̂pj X̂jX̂Tj :Here, Ĉj represents the empirial estimate of Cj, based on the training data. The matrixX̂j is de�ned in the previous setion. Given Ĉj, the orresponding empirial estimate forD 12j is D̂ 12j = X̂j:
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Substituting D̂ 12j for D 12j in (7.12) yields the following empirial SOCP formulation:minv;b;�;t Xj (tj + Cp̂j�j) (7.18)subjet to 12(tj + yj(vT �xj + b) + �j) � kX̂Tj v; 12(tj � yj(vT �xj + b)� �j)k2 8j;1� �j � yj(vT �xj + b) 8j;0 � �:By using kernel PCA as in the previous setion, we an obtain the following kernelizedformulation of the SOCP:minv;b;�;t Xj (tj + Cp̂j�j) (7.19)subjet to 12(tj + yj(vT X̂Tj �xj + b) + �j)� kX̂Tj X̂jv; 12(tj � yj(vT X̂Tj �xj + b)� �j)k2 8j;1� �j � yj(vT X̂Tj �xj + b) 8j;0 � �:Again, as in the onventional SVM, the feature vetors in (7.19) only appear in the form ofinner produts. Thus, we an apply the kernel trik to (7.19), where we replae eah innerprodut xT1 x2 with a kernel funtion, k(x1;x2).7.3 Experiments on Arti�ial DataThe following setion desribes a set of experiments where we test the adaptive,multiluster framework introdued in Setions 7.1 and 7.2 on various types of arti-�ial data. In eah experiment, we �rst de�ne one or more distributions on themeans and on the ovariane matries for a set Gaussian lasses that reside in an N-dimensional feature spae. We then draw from these distributions to obtain the set,Si = f(�xi;1;Ci;1; yi;1); : : : ; (�xi;M ;Ci;M ; yi;M )g, where (�xi;j;Ci;j; yi;j) represents the mean,92



ovariane matrix, and orresponding label for the jth lass in set Si. For these exper-iments, we used a one-versus-all setting where eah lass is assigned a label of -1 exeptfor one randomly hosen \target lass," whih gets a label of 1. The experiments wereperformed using the iterated QP formulation.Given the set Si, the means and ovariane matries for the Gaussian lasses de�nedby Si are used to train an AMC-SVM, whih we then test on 10,000 random draws takenfrom the same Gaussian lasses. For simpliity, we used the exat means and ovarianematries de�ned in Si to train eah AMC-SVM. The only exeption to this is Experiment3, where the ovariane matrix of the target lass is assumed to be unknown. We used thefollowing weighted metri to ompute lassi�ation error:error = 12 �# of false neg:# true trials + # of false pos:# impostor trials� :Here, error represents the average of the empirial rates of false positives and false negatives.Final results for eah experiment were obtained by omputing the average of error over�3000 draws of Si for various values of the SVM hyperparameter, C.7.3.1 Experiment 1For our �rst experiment, we tested the AMC-SVM in a one-versus-all setting with 10Gaussian lasses in a 10-dimensional feature spae. In this experiment, the lass means andlass ovariane matries are both de�ned to be iid, respetively. The exat distributionsof the means and ovariane matries are given below:�xi � N (0; �)10 8i 2 f1; : : : ; 10g;Ci = Vi diag(�i) V Ti 8i 2 f1; : : : ; 10g;�i � Unif(0; 1)10 8i 2 f1; : : : ; 10g;� = 1:5:Here, the olumns of Vi 2 R10�10 represent a set of orthonormal eigenvetors for the o-variane matrix, Ci. The Vi matries are drawn independently from a uniform distribution93



Figure 7.2. Results for Experiment 1.over all possible sets of orthonormal eigenvetors in R10 . Sine the Vi matries serve aseigenvetors for the lass ovariane matries, the Gaussian lasses in this experiment areompletely independent of one another in their spatial orientation (i.e., the diretions oftheir major and minor axes in R10 ).Figure 7.2 shows lassi�ation results obtained from using the AMC-SVM for variousvalues of the hyperparameter C. The �gure also shows two sets of results obtained froma onventional 1-norm, soft margin SVM. These inlude a set of baseline results where weperform per-feature variane normalization on the input features (i.e., R = diag(C)�1),and another set of results where we perform WCCN (i.e., R = C�1W ). Note that both theonventional SVM and the AMC-SVM were trained only on the lass means.In Figure 7.2, we see that WCCN yields dramati improvements over the baseline, wherethe features are saled to have unit variane. The �gure also shows that the AMC-SVMyields modest improvements over WCCN when C is small. However, these improvementsbeome fairly negligible when C is large.
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7.3.2 Experiment 2We performed a seond experiment where the Gaussian lasses form two major lustersof 5 lasses eah. In this experiment, the lass means within eah luster are orrelatedwith one-another, as are the lass ovariane matries. We use the notation, �xi;j and Ci;j,to represent the mean and ovariane matrix for the jth lass of luster i. The exatdistributions for the lass means and lass ovariane matries are de�ned below:�xi;j = 10 � �yi;0 + �yi;j 8(i; j) 2 f1; 2g � f1; : : : ; 5g;�yi;j � N (0; 1)10 8(i; j) 2 f1; 2g � f0; : : : ; 5g;Ci;j = (1� �) � �i;0 + � � �i;j 8(i; j) 2 f1; 2g � f1; : : : ; 5g;�i;j = Vi;j diag(�i;j) V Ti;j 8(i; j) 2 f1; 2g � f0; : : : ; 5g;�i;j � Unif(0; 1)5 8(i; j) 2 f1; 2g � f0; : : : ; 5g;� = 0:1:Here, �yi;0 and �i;0 represent the \primary" mean and ovariane matrix for the lasses inluster i. These are ombined in a weighted sum with �yi;j and �i;j for all j 2 1; : : : ; 5. Notethat in this experiment, the lass means within a given luster are heavily orrelated withone-another, as are the lass ovariane matries. The matrix Vi;j is distributed in the sameway as in Experiment 1.Figure 7.3 shows lassi�ation results for various values of C (see Hath [2006℄ for a hartof the orresponding numerial results). In this experiment, WCCN and the AMC-SVMboth yield large improvements over the baseline results, where we use a onventional SVMafter performing per-feature variane normalization. As in Experiment 1, the AMC-SVMsigni�antly outperforms WCCN when the C hyperparameter is small. However, the twosystems perform about the same when C is large. For the purpose of training an AMC-SVM, we note from (7.3) that saling down C is equivalent to saling up our estimates ofthe lass-onditional ovariane matries|that is, the estimates that we use in training.In other words, reduing C inreases the amount of seond-order regularization that we95



Figure 7.3. Results for Experiment 2.perform in training. Based on this, and based on the results in Figure 7.2, we might assumethat the relative bene�ts of the AMC-SVM over WCCN are potentially quite signi�ant forases where a large amount of regularization is required|for example, the ase where weonly have noisy estimates of the lass ovariane matries.7.3.3 Experiment 3In many real-world tasks, the amount of training data available for the target lass isvery limited, whereas the amount of available impostor data is very large. For these tasks,oming up with an empirial estimate of the target lass ovariane matrix an be diÆult,if not impossible. Thus, it may be neessary to estimate the ovariane matrix of thetarget lass from the impostor lasses|partiularly from impostor lasses that are highlyonfusable with the target lass. To simulate this senario, we repeated Experiment 2 forthe ase where the ovariane matrix of target lass i is estimated as a weighted average ofthe ovariane matries of the impostor lasses:Ci = 1Pj2I �j p̂j Xj2I �j p̂jCj:The averaging sheme given above is based on the de�nition of R in equation (7.5). We96



Figure 7.4. Results for Experiment 3.use � as the main parameter in de�ning an estimate of Ci based on a weighted average ofovariane matries. Insofar as �j represents a measure of \onfusability" between lass jand the target lass, this estimate of Ci assumes that lasses that are highly onfusable withone-another will tend to have similar ovariane matries. Note that while this assumptionmay be reasonable for the partiular lass means and lass ovariane matries that we havede�ned for Experiment 2, we annot expet this assumption to hold for general datasets.Results for Experiment 3 are shown in Figure 7.4 along with the orresponding baselineresults (a hart of the orresponding numerial results an be found in Hath [2006℄). Inthis experiment, the relative improvement obtained from the AMC-SVM over WCCN ismuh more signi�ant through the entire range of C values than the improvement obtainedin Experiments 1 and in Experiment 2. Thus, we might onlude that the potential bene�tsof the AMC-SVM approah are partiularly signi�ant in ases where information aboutthe target lass ovariane matrix an be gleaned from impostor lasses that lie lose to thedeision boundary.
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Figure 7.5. Results for Experiment 4.7.4 Experiment 4In our 4th and �nal experiment, we used an arti�ial Gaussian dataset similar to that ofExperiments 2 and 3, exept that the dimensionality of the input feature spae is inreasedfrom 10 to 100. We also hanged the distribution of the data so that the lasses reside in 5lusters of 2 lasses eah. The exat distributions for the lass means and lass ovarianematries are de�ned below:�xi;j = 10 � �yi;0 + �yi;j 8(i; j) 2 f1; : : : ; 5g � f1; : : : ; 2g;�yi;j � N (0; 1)100 8(i; j) 2 f1; : : : ; 5g � f0; : : : ; 2g;Ci;j = (1� �) � �i;0 + � � �i;j 8(i; j) 2 f1; : : : ; 5g � f1; : : : ; 2g;�i;j = Vi;j diag(�i;j) V Ti;j 8(i; j) 2 f1; : : : ; 5g � f0; : : : ; 2g;�i;j � Unif(0; 1)5 8(i; j) 2 f1; : : : ; 5g � f0; : : : ; 2g;� = 0:1:Results for the AMC-SVM are shown in Figure 7.5, along with a set of results obtainedfrom using WCCN and another set of results for the baseline system. Here, we see thatthe AMC-SVM approah yields large improvements over WCCN for most values of the C98



hyperparameter. (However, the WCCN approah in Figure 7.5 outperforms the AMC-SVMwhen C is approximately between 3 and 4. The minimum lassi�ation error ahieved bythe two tehniques is approximately the same.) Based on these results, we might onludethat the AMC-SVM is more robust to sub-optimal values of C than WCCN. Comparingthese results with those of Experiment 2, where the input feature spae has a dimensionalityof 10, we note that the potential bene�ts of the AMC-SVM over WCCN appear to growlarger as the dimensionality of the input spae inreases. These results give us reason tobelieve that the AMC-SVM may yield signi�ant improvements over WCCN on real-worldtasks where the dimensionality of the input spae is large relative to the number of trainingexamples, and where the optimal value of C is unknown.7.5 ConlusionsIn this hapter, we extend the WCCN approah of Chapter 6 to obtain the so-alledadaptive, multiluster SVM (AMC-SVM). The AMC-SVM implements an adaptive formof WCCN, where the weights of the lass ovariane matries are adapted to the givendataset. This formulation is based on a tighter set of upper bounds on lassi�ation errorthan those used to derive WCCN in Chapters 5 and 6. The AMC-SVM is onvex and an beinstantiated as either an iterated QP or as an SOCP. We also show how either instantiationan be \kernelized" in the same way as a onventional SVM. In experiments performedon arti�ial Gaussian data, the AMC-SVM yields modest, but signi�ant improvementsover WCCN when the dimensionality of the input feature spae is small ompared to thenumber of lasses. These improvements beome more substantial as the dimensionality ofthe feature spae is inreased.
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Chapter 8
Within-Class CovarianeNormalization forHigh-Dimensional Data

In this hapter, we expand on the within-lass ovariane normalization (WCCN) teh-nique that was introdued in Chapter 6. WCCN uses information about lass labels fromthe training data to identify orthonormal diretions in feature spae that maximize task-relevant information. In this respet, WCCN is similar to other linear transformations suhas NAP (Solomono� et al. [2004, 2005℄) or linear disriminant analysis (LDA). However,unlike these tehniques, WCCN optimally weights eah diretion in feature spae to mini-mize a partiular upper bound on the risk funtion, R(f) (Hath and Stolke [2006℄; Hath[2006℄). In priniple, WCCN an harness whatever task-relevant information is ontainedin eah of the \diretions" of the underlying feature spae|even diretions that are largelydominated by noise.In the following hapter, we desribe a pratial proedure for applying WCCN to anSVM-based speaker reognition system where the input feature vetors reside in a high-100



dimensional spae. Our approah involves using prinipal omponent analysis (PCA) tosplit the original feature spae into two subspaes: a low-dimensional, high-energy \PCAspae" and a high-dimensional, low-energy \PCA-omplement spae." After performingWCCN in the PCA spae, we onatenate the resulting feature vetors with a weightedversion of their orresponding omponents from the PCA-omplement spae. Our algorithmprovides a pratial approah for applying WCCN to large feature sets, where invertingor simply estimating CW is impratial for omputational reasons. In experiments onSRI International's latest MLLR-SVM speaker veri�ation system (i.e., feature set), ourombined WCCN approah ahieves relative improvements of up to 22% in equal-errorrate (EER) and 28% in minimum DCF below SRI's previous baseline. We also ahievesubstantial improvements over an MLLR-SVM system that performs WCCN in the PCAspae but disards the PCA-omplement.The hapter is organized as follows: In Setion 8.1, we summarize the WCCN approahand disuss pratial onsiderations for how to apply WCCN to large feature sets. In Setion8.2, we desribe the approah used in Kajarekar [2005℄ for breaking feature vetors downinto PCA and PCA-omplement omponents. This is followed by Setion 8.3, where wedesribe the experimental proedure that we use to perform feature normalization and totrain SVM-based speaker models. Finally, in Setions 8.4 and 8.6, we desribe a set ofexperiments, provide results, and end with a set of onlusions.8.1 Within-Class Covariane NormalizationIn Chapter 6, we derived WCCN by �rst onstruting a set of upper bounds on the ratesof false positives and false negatives in a linear lassi�er (i.e., a binary lassi�er that usesa linear or aÆne deision boundary). Under various onditions, the problem of minimizingthese upper bounds with respet to the parameters of the linear lassi�er leads to a modi�edformulation of the hard-margin support vetor mahine (SVM) (Vapnik [1995℄; Cristianiniand Shawe-Taylor [2000℄). Given a generalized linear kernel of the form, k(x1;x2) = xT1Rx2,101



where R is a positive semide�nite parameter matrix, this modi�ed SVM formulation im-pliitly presribes the parameterization, R = C�1W , where CW is the expeted within-lassovariane matrix over all lasses. We an represent CW mathematially asCW , MXi=1 p(i) �Ci;Ci , E (xi � �xi)(xi � �xi)T 8i:Here, xi represents a random draw from lass i, M represents the total number of lasses,and �xi represents the expeted value of xi. We use Ci and p(i) to represent the ovarianematrix and the prior probability of lass i. (Note that in this hapter, the term, \lass"is synonymous with \speaker.") Given CW , where CW is full-rank, we an implement ageneralized linear kernel with R = C�1W by using the following feature transformation, �:�(x) , ATx: (8.1)Here, A is de�ned as the Cholesky fatorization of C�1W :AAT , C�1W :We refer to the transformation performed by � as within-lass ovariane normalization(WCCN).In pratie, empirial estimates of CW are typially quite noisy; thus, a ertain amountof smoothing is usually required to make the WCCN approah work. In this hapter, weuse the following smoothing model:ĈW;s , (1� �) � ĈW + � � I; � 2 [0; 1℄: (8.2)Here, ĈW;s represents a smoothed version of the empirial expeted within-lass ovarianematrix, ĈW , and I represents an N �N identity matrix where N is the dimensionality ofthe feature spae. The � parameter represents a tunable smoothing weight whose value isbetween 0 and 1. It is straightforward to show that in the above model, the eigenvetors102



of ĈW;s are onstant with respet to �. Thus, we an ompute the WCCN feature trans-formation, �, in (8.1) for any value of � without having to reompute the eigenvetors ofĈW;s.8.1.1 WCCN for High-Dimensional DataIn this hapter, we examine the problem of how to apply WCCN to high-dimensionaldata sets, where inverting or simply estimating ĈW is impratial for omputational reasons.For high-dimensional data, we an use kernel prinipal omponent analysis (KPCA) to �rstredue the dimensionality of the feature spae to a more manageable size before performingWCCN. One potential problem with this approah, however, is that by �ltering out variousorthogonal vetors or \diretions" in feature spae (i.e., by performing feature redution),we lose a signi�ant amount of the information ontained in the original feature set. Toavoid this problem, we use the PCA deomposition desribed in Kajarekar [2005℄, wherethe feature spae is divided into two subspaes: a spae that ontains the top N featuresobtained from performing PCA, and a PCA-omplement spae, whih inludes all of theinformation ontained in the original features but not in the PCA spae. In this hapter,we set N equal to the total number of feature vetors in the training data. Thus, thePCA deomposition retains all of the energy (i.e., variane) of the original training data.Conversely, the PCA-omplement spae retains none of the energy of the training data.For new feature vetors (i.e., test data), the PCA spae will tend to have high energy andlow dimensionality, while the PCA-omplement spae will tend to have low energy andhigh-dimensionality. Sine most of the signal energy is on�ned to the PCA spae, ourstrategy is to perform WCCN on the PCA-spae, whih has redued dimensionality, andthen onatenate the resulting feature set with the PCA-omplement spae. This proedureis desribed in the following setions.
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8.2 Kernel PCA and the PCA-ComplementThis setion provides an overview of kernel PCA and also desribes the PCA-omplement approah used in Kajarekar [2005℄. We begin by de�ning X to be a olumnmatrix ontaining saled, mean-entered versions of the feature vetors in the training set:X ,r 1N � [(x1 � �x); : : : ; (xN � �x)℄:Here xi represents the ith training vetor, and �x represents the average over all N trainingvetors. Given the above de�nition, we an represent Ĉ (i.e., the empirial ovarianematrix of the data) as follows: Ĉ = XXT ;,U�2UT : (8.3)In the seond line of the above equation, we de�ne U�2UT to be the eigendeompositionof Ĉ. We an represent the orresponding eigendeomposition for XTX as follows:XTX , V�2VT : (8.4)Here, we de�ne V to be a olumn matrix ontaining the eigenvetors of XTX and �2 tobe a diagonal matrix ontaining the orresponding eigenvalues. If XTX is full-rank, thenwe an ombine (8.3) with (8.4) to arrive at the following expression for U, the eigenvetormatrix of Ĉ: U = XV��1: (8.5)The olumns of U represent the set of all eigenvetors of Ĉ whose orresponding eigenvalueis non-zero. Thus, we an perform PCA by projeting the input feature vetors onto theolumn vetors of U. This leads to the following feature transformation, �PCA:�PCA(x) ,UTx;= ��1VTXTx: (8.6)104



This transformation redues the dimensionality of the underlying feature spae down to Nfeatures, where N is the size of the training set. Sine the input feature vetors appearin the form of inner produts, whih an be replaed with kernel funtions, this featuretransformation is referred to as kernel PCA (Shawe-Taylor and Cristianini [2004℄).We use �PCA to represent the feature transformation for the PCA-omplement spae,whih is de�ned as follows: �PCA(x) , (I�UUT )x: (8.7)The PCA-omplement spae represents the portion of the original feature spae that isorthogonal to the training set. Thus, �PCA(x) = 0 (i.e., a null vetor) for all x in thetraining set.8.3 Experimental ProedureThe experiments in this hapter ompare two di�erent feature normalizations: WCCNand standard ovariane normalization (CN), where R = Ĉ�1s . (Here, Ĉs representsa smoothed version of Ĉ, the empirial ovariane matrix of the training data.) Sine�PCA(x) = 0 for all x in the training set, we have no way of oming up with a meaning-ful estimate of the ovariane matrix for the PCA-omplement (any empirial ovarianeestimate will simply be 0). Thus, WCCN and standard CN are only applied to the PCAfeature set. The normalized PCA features are then onatenated with a weighted versionof the PCA-omplement to form the �nal feature representation.Our experimental proedure is summarized below:1. Perform per-feature within-lass variane normalization on all of the input features(i.e., sale all features to have an average within-lass variane of one on the trainingdata). The resulting features provide us with a �rst-ut approximation of what wewould obtain by performing full WCCN on the original feature set. This is simply apreproessing step for performing KPCA, whih is not invariant to saling operations105



on the input features. Note that the smoothing model of (8.2) is also not invariant tosaling operations.2. Compute �PCA(x) for every feature vetor x in the training and test sets. This givesus the PCA feature set.3. Compute �PCA(x) for every feature vetor x in the training and test sets. This givesus the PCA-omplement feature set.4. Perform either within-lass ovariane normalization (WCCN) or standard ovarianenormalization (CN) on the PCA feature set. Both normalizations an be representedin the form of a matrix multipliation. We use the smoothing model shown in equation(8.2) for both WCCN and standard CN. The smoothing parameter � is tuned on aset of held-out ross-validation data.5. Conatenate a saled version of the normalized PCA feature set with a saled versionof the PCA-omplement feature set to arrive at our �nal feature representation, �:�(x) , 264 (1� �) �AT�PCA(x)� � �PCA(x) 375 ; � 2 [0; 1℄: (8.8)Here, AT represents the transformation matrix derived in step 4 to perform eitherWCCN or standard CN on the PCA feature set. Thus, AT�PCA(x) represents thenormalized PCA omponent of feature vetor x. We use the parameter � to ontrolthe relative weight applied to the two feature sets (i.e., the PCA set and the PCA-omplement set). This parameter is tuned on a held-out ross-validation set.6. Use the �nal feature representation to train and test SVM-based speaker models.A diagram of this proedure is shown in Figure 8.1. Given a standard linear kernel,k(x1;x2) = xT1 x2, it's fairly straightforward to show that when � = 0:5 and A = I (i.e.,A is the idenitity matrix), then the following equality holds for any pair of input featurevetors, x1 and x2: k(x1;x2) = 4 � k(�(x1);�(x2)): (8.9)106



Figure 8.1. Diagram of WCCN proedure for high-dimensional data. The \+" sign in theabove �gure represents a onatenation operator.The equality in (8.9) follows diretly from the de�nitions for �, �PCA, and �PCA in equa-tions (8.8), (8.6), and (8.7). Equation (8.9) shows that when � = 0:5 and A = I, thenapplying the feature transformation, �, to the input feature vetors does not a�et thekernel funtion k beyond a saling fator. Thus, by onatenating the PCA set with thePCA-omplement set, we preserve all of the information ontained in the original featureset, at least for the purpose of omputing linear kernels.8.4 Experiments and ResultsIn this setion, we desribe the tasks, datasets, and features used in our experiments.The results of these experiments are disussed in Setion 8.4.4.8.4.1 MLLR-SVM SystemWe used an MLLR-SVM system similar to the one desribed in Stolke et al. [2006℄to ompute feature vetors for our experiments. The MLLR-SVM system uses speaker107



adaptation transforms from SRI's DECIPHER speeh reognition system as features forspeaker veri�ation. A total of 8 aÆne transforms are used to map the Gaussian meanvetors from speaker-independent to speaker-dependent speeh models. The transforms areestimated using maximum-likelihood linear regression (MLLR), and an be viewed as atext-independent enapsulation of the speaker's aousti properties. For every onversationside, we ompute a total of 24960 transform oeÆients, whih are used as features. Notethat this system uses twie as many features as the original MLLR-SVM system desribedin Stolke et al. [2005℄; Hath and Stolke [2006℄. The input feature vetors are identialto those used in Stolke et al. [2006℄. However, besides applying the feature transformation� to the input feature vetors, our system di�ers from the MLLR-SVM system used inStolke et al. [2006℄ in the following ways: 1) our system does not apply rank normalization(Stolke et al. [2005℄) to the input feature vetors and 2) our system does not apply TNORM(Aukenthaler et al. [2000℄) to the output SVM sores. We have yet to experiment withapplying these normalizations to a system that uses WCCN.8.4.2 Task and DataExperiments were performed on the 1-onversation training ondition of two NIST-de�ned tasks: SRE-2004 and a subset of SRE-2003. Note that these tasks and datasets arethe same as those desribed in previous reports (Stolke et al. [2006℄; Hath and Stolke[2006℄). The SRE-2003 subset was divided into two splits of disjoint speaker sets, bothomprised of �3600 onversation sides and �300 speakers. Eah split omprises �580speaker models and �9800 speaker trials. These splits were alternately used for training(i.e., omputing ovariane estimates and feature transformations) and for testing. We usedSRE-2004 to tune � and � for testing on SRE-2003, and vie-versa. To simplify the tuningproess, � was optimized for the ase where � = 0. The resulting � parameter was thenheld �xed while tuning �. Further details on the tasks and datasets an be found in Stolkeet al. [2006℄. 108



8.4.3 SVM TrainingWe used SVMlight (Joahims [1999℄) to train SVM-based speaker models for eah task.Eah speaker model was trained with a linear kernel using the default value of the SVMhyperparameter C. A held-out dataset omposed of 425 onversation sides taken from theSwithboard-2 orpus and 1128 onversation sides taken from the Fisher orpus was usedas negative examples for the SVM training.8.4.4 ResultsTable 8.1 shows results on the MLLR-SVM system for various feature representations.Here, the labels \WCCN" and \CN" denote within-lass ovariane normalization andstandard ovariane normalization, where � is tuned on the ross-validation set. The �parameter is optimized on the ross-validation set for systems that are labeled \PCA." Forsystems that are not labeled \PCA," � is set equal to zero (i.e., the PCA-omplement isomitted from the �nal feature representation). The \baseline" label represents the MLLR-SVM system without any feature normalization.As shown in Table 8.1, the WCCN approah provides improvements that are quitesubstantial, at least in most ases, over standard CN (see the \improvement overPCA+CN+PCA" results). It's worth noting that the improvements obtained over thebaseline are signi�antly larger on SRE-2003 than on SRE-2004. However, this is to beexpeted, sine the feature transformations and normalizations used in these experimentswere trained only on held-out SRE-2003 data, whih represents a di�erent set of hanneland reording onditions than SRE-2004.We note that the \PCA," \PCA+CN," and \PCA+WCCN" results are all obtainedfrom PCA feature sets whose dimensionality is redued to�3600 (i.e., the number of trainingexamples in eah split of the SRE-2003 subset). In spite of this redued dimensionality, the
109



SRE-03 subset SRE-04� EER% DCF EER% DCFbaseline 2.91 0.117 5.97 0.282PCA 3.89 0.158 7.35 0.318PCA+CN 2.92 0.123 6.43 0.289PCA+WCCN 2.30 0.108 5.52 0.260PCA+PCA 2.91 0.117 5.97 0.282PCA+CN+PCA 2.33 0.092 5.87 0.266PCA+WCCN+PCA 2.08 0.091 5.27 0.247improvement overbaseline 28:5% 22:2% 11:7% 12:4%improvement overPCA+WCCN 9:6% 15:7% 4:5% 5:0%improvement overPCA+CN+PCA 10:7% 1:1% 10:2% 7:1%Table 8.1. EERs and minimum DCFs for various feature transformations/normalizations onthe MLLR-SVM system. Here, \baseline" represents the raw MLLR-SVM system withoutany feature normalization. The labels \WCCN" and \CN" denote within-lass ovarianenormalization and standard ovariane normalization, and \PCA" denotes a system thatuses the PCA-omplement with � optimized on the ross-validation set. The \improvement"entries represent the relative improvement of PCA+WCCN+PCA over the given system.\PCA+WCCN" system signi�antly outperforms the \baseline" system, where eah featurevetor is omposed of 24960 features.Table 8.1 also shows that adding the PCA-omplement to the PCA feature set leadsto signi�ant relative redutions in error rate (see the \improvement over PCA+WCCN"results). To the best of our knowledge, the results for the \PCA+WCCN+PCA" systemare the best reorded so far in the literature for an MLLR-SVM system. Even without usingrank normalization or TNORM|two tehniques used in Stolke et al. [2006℄ whih shouldpresumably lead to redutions in error rate (we have not yet integrated these normalizationsinto our system)|our system outperforms the MLLR-SVM system in Stolke et al. [2006℄by at least 15% on the SRE-2003 subset and by a smaller, but still signi�ant margin onSRE-2004. These experiments point to the utility of using WCCN in onjuntion with thePCA-omplement when training SVM-based speaker models.110



8.5 Experiment 2: Comparison between WCCN and NAPIn this setion, we report some reent results from experiments that diretly ompareWCCN with the NAP approah desribed in Solomono� et al. [2004, 2005℄ and in Setion4.6.3. These experiments were performed by Sahin Kajarekar and Andreas Stolke ofSRI International and are reported in Kajarekar and Stolke [2007℄. The experimentsompare the performane of the WCCN approah desribed in Chapter 6 versus NAPon SRI International's most reent MLLR-SVM system. Eah experiment involves twotrainingsets: one to estimate ovariane matries and another to serve as bakground datawhen training SVM-based speaker models. The speaker models are trained and tested on the1-onversation-side ondition of both the SRE2005 and SRE2006 speaker veri�ation tasks.The � and � parameters for WCCN and the N parameter for NAP (i.e., the dimensionalityof the output feature spae after performing NAP) are optimized on SRE2005 and thentested on both SRE2005 and on SRE2006. Thus, the results for SRE2005 tehnially involvesome amount of \heating," sine the testset is used to tune parameters. The experimentsin Hath and Stolke [2006℄ and in Chapter 6 di�er from those desribed in Setion 8.4.4 inthe following ways:1. The training set that is used to ompute ovariane matries is also used to performrank-normalization on the input feature vetors.2. The experiments use di�erent training sets than those used in Setion 8.4.4.A set of results for WCCN and for NAP are provided in Table 8.2 and Table 8.3.The best results for eah testset are listed in bold type. The �gures in parenthesisrepresent heating results for SRE2006, where the �, �, and N parameters are tuned onthe testset. The parameters for the non-parenthesized results are tuned on SRE2005. Thefollowing table lists the relative improvement obtained by using WCCN over NAP. Table8.4 shows that WCCN ahieves modest but signi�ant improvements on all test onditionsexept for one: the results degrade fairly signi�antly for the ase where the ovariane111



Intersession SRE05 (English) SRE06 (English)BKG data variability (DEV set) (EVAL set)estimated on %EER min DCF %EER min DCFbaseline 5.872 0.190 4.639 0.224Fisher SRE03 5.066 0.154 4.314 0.198SRE04 5:056 0:147 4.477 0.216baseline 6.189 0.200 4.315 0.197SRE04 SRE03 5.219 0.162 3.776 0.173SRE04 5.103 0.157 3:603 0:166(3:452) (0:162)Table 8.2. EERs and minimum DCFs obtained from applying WCCN to an MLLR-SVMsystem. Intersession SRE05 (English) SRE06 (English)BKG data variability (DEV set) (EVAL set)estimated on %EER min DCF %EER min DCFbaseline 5.872 0.190 4.639 0.224Fisher SRE03 5.653 0.166 4.423 0.206SRE04 5:470 0:158 3.999 0.196baseline 6.189 0.200 4.315 0.197SRE04 SRE03 5.744 0.172 3.831 0.180SRE04 5.664 0.163 3:614 0:170(3:567) (0:167)Table 8.3. EERs and minimum DCFs obtained from applying NAP to an MLLR-SVMsystem.matries and rank-normalization are estimated on SRE2004, the bakground data is drawnfrom the Fisher dataset, and testing is performed on SRE2006. The latter degradation issomewhat surprising, espeially given that the same ombination of trainingsets yields animprovement for WCCN on SRE2005.8.6 ConlusionsIn this hapter, we have desribed a pratial proedure for applying within-lass o-variane normalization (WCCN) to an MLLR-SVM speaker veri�ation system where thefeature vetors reside in a high-dimensional spae. When applied to a state-of-the-artMLLR-SVM speaker veri�ation system, this approah ahieves improvements of up to112



Intersession SRE05 (English) SRE06 (English)BKG data variability (DEV set) (EVAL set)estimated on EER min DCF EER min DCFbaseline | | | |Fisher SRE03 10.38% 7.23% 2.46% 3.88%SRE04 7:57% 6:96% -11.95% -10.20%baseline | | | |SRE04 SRE03 9.14% 5.81% 1.44% 3.89%SRE04 9.90% 3.68% 0:30% 2:35%(3:22%) (2:99%)Table 8.4. Relative improvements in EER and minimum DCF obtained from using WCCNover NAP.22% in EER and 28% in minimum deision ost funtion (DCF) over our previous base-line. We also ahieve substantial improvements over an MLLR-SVM system that performsWCCN on the PCA set but disards the PCA-omplement. These results point to the util-ity of using WCCN in onjuntion with the PCA-omplement when training SVM-basedspeaker models.This hapter also provides results for experiments that ompare WCCN against thenuisane attribute projetion (NAP) approah desribed in Solomono� et al. [2004, 2005℄and in Setion 4.6.3. In these experiments, WCCN typially outperforms NAP by a modestbut signi�ant margin when applied to an MLLR-SVM speaker veri�ation system.
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Chapter 9
Summary and Conlusions

In this dissertation, we examine the problem of kernel optimization for binary lassi-�ation tasks where the training data are partitioned into multiple, disjoint lasses. Thedissertation fouses spei�ally on the �eld of speaker veri�ation, whih an be framedas a one-versus-all (OVA) deision task involving a target speaker and a set of impostorspeakers.The main result of this dissertation is a new framework for optimizing generalized linearkernels of the form, k(x1;x2) = xT1Rx2, where x1 and x2 are input feature vetors, andR is a positive semide�nite parameter matrix. Our framework is based on using �rst andseond-order statistis from eah lass (i.e., speaker) in the data to onstrut an upperbound on lassi�ation error in a linear lassi�er. Minimizing this bound leads diretly toa new, modi�ed formulation of the 1-norm, soft-margin support vetor mahine (SVM).We refer to this new, modi�ed SVM formulation as the adaptive, multiluster SVM (AMC-SVM). The AMC-SVM di�ers from the onventional soft-margin SVM in Vapnik [1995℄ inthe following ways:1. The AMC-SVM impliitly presribes a solution for the R parameter matrix in ageneralized linear kernel. 114



2. The AMC-SVM follows diretly from minimizing a partiular upper bound on lassi-�ation error. On the other hand, Vapnik's soft-margin SVM formulation is based onappending slak variables to the hard-margin SVM.3. The C hyperparameter is exatly spei�ed in the AMC-SVM but is undetermined inthe onventional soft-margin SVM.Unlike most other kernel learning tehniques in the literature, the AMC-SVM uses informa-tion about lusters that reside within the given target and impostor data to obtain tighterbounds on lassi�ation error than those obtained in onventional SVM-based approahes.This use of luster information makes the AMC-SVM partiularly well-suited to tasks thatinvolve binary lassi�ation of multilass data|for example, the speaker veri�ation task|where eah lass (i.e., speaker) an be treated as a separate luster.In OVA training settings, we show that the AMC-SVM an, under ertain onditions,be formulated to yield a single, �xed kernel funtion that applies universally to any hoieof target speaker. Sine this kernel funtion is linear, we an implement it by applying asingle linear feature transformation to the input feature spae. This feature transformationperforms what we refer to as within-lass ovariane normalization (WCCN) on the inputfeature vetors. The dissertation desribes a set of experiments where WCCN yields largeredutions in lassi�ation error over other normalization tehniques on a state-of-the-artSVM-based speaker veri�ation system.
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Appendix ADerivation of BoundsThe following derivation proves the upper bounds on R(f) in (6.3) and in (7.3). Theseupper bounds appear in Theorem 11 and in Theorem 13, respetively.Proof. We begin with the inequality given in (7.1):1(yjf(xj) < 0) � B(xj ; �j) : 0 < �j � 1: (A.1)Here, �j represents a set of parameters for lass j, and B(xj ; �j) represents a boundingfuntion. These are de�ned as follows:�j , fv; b; �j ; yj; �xjg;B(xj ; �j) ,0� f(xj)� f(�xj)maxn 1�j ; yjf(�xj)o1A2 � 1(yjf(xj) � yjf(�xj)) + 2 � (1� �jyjf(�xj))+:In the above equation, we use the shorthand, (a)+, to represent 1(a > 0) �a. An illustrationof the bound in (A.1) is provided in Figure 7.1. Note that the bound is only valid if � � 0.For the following derivation, we will onstrain � as 0 � � � 1. Taking the expetation ofboth sides of the inequality in (A.1) over all j gives us the following bound on R(f). Notethat in the following derivation, we assume that xj is symmetrially distributed about itsmean (i:e:; p(xj � �xj = Æ) = p(xj � �xj = �Æ) for all (j; Æ) 2 f1; : : : ; Jg � RL , where L is
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the dimensionality of the feature spae, and J is the total number of lasses.R(f) � Ej B(xj ; �j) : 0 < �j � 1 8j= Ej 0� f(xj)� f(�xj)maxn 1�j ; yjf(�xj)o1A2 � Ej 1(yjf(xj) � yjf(�xj)) + 2 � Ej (1� �jyjf(�xj))+(A.2)subjet to 0 < �j � 1 8j:= 12 �Xj p̂j E (f(xj)� f(�xj))2(maxn 1�j ; yjf(�xj)o)2 + 2 �Xj p̂j(1� �jyjf(�xj))+subjet to 0 < �j � 1 8j:= 12 �Xj p̂j E (vT (xj � �xj))2(maxn 1�j ; yjf(�xj)o)2 + 2 �Xj p̂j(1� �jyjf(�xj))+subjet to 0 < �j � 1 8j:= 12 �Xj vTDjv(maxn 1�j ; yjf(�xj)o)2 + 2 �Xj p̂j(1� �jyjf(�xj))+ (A.3)subjet to 0 < �j � 1 8j:The equation in (A.2) uses the fat that the following equality holds when xj is symmetri-ally distributed about its mean:Ej 240� f(xj)� f(�xj)maxn 1�j ; yjf(�xj)o1A2 1(yjf(xj) � yjf(�xj))35 =Ej 0� f(xj)� f(�xj)maxn 1�j ; yjf(�xj)o1A2 � Ej 1(yjf(xj) � yjf(�xj)):Sine xj is symmetrially distributed about �xj and sine f is an aÆne funtion, we knowthat f(xj) is symmetrially distributed about f(�xj). Thus, E j 1(yjf(xj) � yjf(�xj)) = 12 ,whih explains the origin of the \12" term in the preeding derivation. We now relax the
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bound on R(f) in the following way:R(f) � 12 �Xj vTDjv(maxn 1�j ; yjf(�xj)o)2 + 2 �Xj p̂j(1� �jyjf(�xj))+ (A.4)subjet to 0 < �j � 1 8j:� 12 � vT (Xj �2jDj)v + 2 �Xj p̂j�j�j (A.5)subjet to �j = ( 1�j � yj(vT �xj + b))+ 8j;0 < �j � 1 8j:� 12 � vT (Xj �2jDj)v + 2 �Xj p̂j�j�j (A.6)subjet to 1�j � �j � yj(vT �xj + b) 8j;0 � �j 8j;0 < �j � 1 8j:� 12 � vT (Xj �jDj)v + 2 �Xj p̂j�j (A.7)subjet to 1�j � �j � yj(vT �xj + b) 8j;0 � �j 8j;0 < �j � 1 8j:� 12 � vT (Xj Dj)v + 2 �Xj p̂j�j (A.8)subjet to 1� �j � yj(vT �xj + b) 8j;0 � �j 8j:Note that the bound in (A.4) is the same as the bound in (A.3). In (A.5), we relax thebound on R(f) by setting the denominator equal to 1�2j . We further relax the bound byhanging the equality onstaint on �j in (A.5) to an inequality onstraint in (A.6). Sine�j is onstrained to lie in the range (0; 1℄, we an upper bound (A.6) by hanging �nj to�n�1j . This gives us the bounds in (A.7) and (A.8). The bound in (A.8) is the same as inTheorem 11 and the bound in (A.7) is the same as in Theorem 13.
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