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Abstract
We investigate whether probabilistic modeling of prosody can
aid various automatic labeling tasks essential for processing of
multi-party meetings. Task 1,automatic punctuation, seeks to
classify sentence boundaries and disfluencies. Task 2,jump-
in points, predicts locations within foreground speech at which
background speakers start talking; Task 3,jump-in words, ex-
amines characteristics of the speech they use to do so. Data
are from the ICSI Meeting Recorder corpus. To infer inherent
cues, analyses are based on close-talking microphone signals
and recognizer forced alignments. As a generous baseline for
word-level cues, we compare prosodic models to those of a lan-
guage model given the true words. Results for Task 1 show
prosody reduces classification error by 10% relative over the
cheating language model; furthermore when this task is run in
“online” mode the prosodic model degrades less than does the
language model. For Task 2, the language model provides no
information, while the prosodic model reduces entropy by 13%
over chance. For Task 3, a prosodic model reduces entropy by
25% over chance. Analyses also show interesting prosodic pat-
terns, which differ over tasks. Task 1 uses cues similar to those
for Switchboard (but not Broadcast News) data. Task 2 predicts
jump-in points thatlook prosodicallylike sentence boundaries
but that are not actually such boundaries. And Task 3 shows
that speakers “raise” their voice when starting during another’s
talk, compared to starting during silence. These results provide
evidence that prosodic modeling can be of use for the automatic
processing of meetings. Further results and implications for fu-
ture automatic meeting processing systems are discussed.

1. Introduction
Natural multi-party meetings have garnered recent interest in
the speech recognition and understanding communities [1, 2].
For meeting recordings and automatic transcripts to be truly
useful, we need to be able to automatically annotate the data
with a variety of labels that are either taken for granted or ab-
sent in written documents. These include, among others, the
locations of sentence boundaries, the locations of disfluent self-
interruptions (including incomplete sentences), and the extents
of speaker turns.

Sentence segmentation and disfluency modeling apply to
both monologues and dialogues, and have been the focus of
much recent work in speech processing [3, 4, 5, 6]. Turn-taking,
on the other hand, is an inherent property of multi-party dia-
logues that has received much attention in the linguistics liter-
ature (especially in conversation analysis, cf. [7, 8, 9, 10]), but
relatively little in the field of speech processing. Spontaneous

(as opposed to formal or scripted) multi-party speech is replete
with overlaps, or regions during which more than one person
is speaking. In a preliminary study of overlaps in meetings and
telephone conversations, we found that between 9-17% of all
words and over 50% of all “spurts” (stretches of speech with no
pauses longer than 0.5 seconds) were overlapped [11].

Our long-term goal is a comprehensive model of conver-
sational speech that would allow automatic recovery of prag-
matic and semantic structures, and eventually the creation of
conversational agents that behave naturally as meeting partic-
ipants. First research prototypes of machines that function as
conversational participants are being developed [12], and such
agents will have to master the subtleties of appropriate turn-
taking, backchanneling, and interruptions. In the present paper,
we investigate if and how prosodic cues can serve toward this
goal, by focusing on a few specific prediction and classification
tasks based on meeting data.

First, extending work that processed only one speaker at
a time [5, 6], we examine “automatic punctuation” (sentence
boundary and disfluency detection) in the meeting domain. Sec-
ond, we ask: do speakers “jump in” during someone else’s talk
at random locations, or in certain prosodic contexts? Third,
does prosody differ when jumping in during another party’s
speech (“jump-in words”) versus when starting during silence?
We also examine how prosodic models compare to purely word-
based language models, and investigate whether the two can be
combined for better accuracy.

2. Method
2.1. Data and annotations

We analyzed data from multi-party meetings collected as part
of the ICSI Meeting Project [2]. We drew data from two types
of ongoing meetings, “Meeting Recorder” (MR) and “Robust-
ness” (ROB), with between 4 and 8 participants each. MR meet-
ings are discussions about the Meeting Project itself, and are
highly democratic. ROB meetings cover research in a particular
field and are dominated by a single person (the group leader).
The amount of data from each source is summarized in Table 1.
Meetings were transcribed by human labelers and annotated for
sentence boundaries, incomplete sentences, and disfluencies.

For modeling purposes we split our corpus into a training
set and a disjoint test portion. The test portion consisted of
one MR and one ROB meeting, chosen so as to make the to-
tal amount of data (number of words) in the test set about 30%
of the total for each meeting type. Training and test sets did
overlap in speakers, since the bulk of the data is from speak-



Table 1: Types and amounts of data used in study: Meeting
Recorder (MR) and Robustness (ROB) meetings. Speech dura-
tion includes only speech regions (excludes long silent regions)
but counts overlapped speech multiple times. The notion of
speech “spurt” is defined in Section 2.3.

MR ROB
Meetings 5 3
Speech duration 7.7h 4.8h
Transcribed words 60,403 32,384
Speech spurts 5,688 4,100

ers that participate in almost all meetings. We consider this not
atypical of real-world application scenarios where meetings of-
ten involve recurring participants.

2.2. Transcript alignment

The Meeting Recorder project collects simultaneous signals
from both close-talking and far-field microphones. For all ex-
periments reported here the close-talking microphone signals
were used exclusively, since the goal was to use the highest-
quality features possible to capture the inherent properties of
the speech. The quality on the far-field microphone signals
for these data is severely degraded—particularly in the regions
of overlap. Furthermore, although active research on far-field
processing may lead to significant improvements, it is not un-
reasonable to assume that a future application could use close-
talking microphones if high quality speech is an issue in the
interim.

To obtain word times and other time-related features, the
word transcripts were automatically aligned to the waveforms
using SRI’s large vocabulary conversational speech recognizer,
originally developed for the NIST Hub-5 domain [13]. In this
study we based all feature extraction on knowledge of the cor-
rect words, again because our interest is in the properties of the
speech itself, not that of any particular recognition system.

In future work, we plan to carry out similar experiments
based on time alignments of automatically recognized words.
Recognition is poor in some cases, especially for lapel micro-
phones [2], and would severely degrade lexical features and
the language model. Prosodic features that are based on word
and phone boundaries would also be degraded. However, some
prosodic features that are used in our models do not depend on
word boundary information, but rather on a computation over
a window of speech frames; others, such as pause boundaries,
should be reasonably accurate for most current recognition sys-
tems.

2.3. Spurt units

We base our investigation of overlap on a unit of speech above
the word level that can be defined without reference to theoreti-
cal constructs from linguistics. We divide each speakers’ speech
into contiguous stretches called “spurts”, where a spurt is de-
fined as a stretch of contiguous speech containing no pauses
longer than 0.5 seconds. Thus, spurts can be defined without
reference to the words, have the same definition regardless of
speaking style, and are available in speech recognition output
via the word time alignments.

2.4. Task definitions

Given these time alignments and annotations, we define three
classification tasks:

Task 1: “Automatic Punctuation” Classify each word
boundary into one of three categories: complete
sentence end, incomplete sentence end or disfluent
interruption point, or sentence-internal fluent boundary.

Task 2: “Jump-in points” Classify each word boundary as to
whether or not any other speaker “jumped in” at that lo-
cation (specifically, whether or not any other speaker’s
spurt started during the current word or within any spurt-
internal pause that immediately precedes that word.)

Task 3: “Jump-in words” Within the set of all spurt-initial
words, classify each spurt-initial word as to whether it
is a “jump-in” (starts during ongoing speech by another
talker) or not (starts during silence).

Examples of boundary types in each of the classes are given
in Figure 1, showing the temporal arrangement of spurts from
two speakers. (The figure also shows automatically stylized
pitch contours to illustrate the F0-based processing described
below.)

Note that for purposes of this study, in which we use spurt
units based solely on observable pause lengths, we use the neu-
tral terms “jump-in points” and “jump-in words” to specify
overlap onsets of spurts. This is to avoid any confusion with ter-
minology taken from the turn-taking literature that refers to turn
units, since there is not a one-to-one mapping between spurts
and turns.

Automatic punctuation is important for a variety of down-
stream processing tasks in both speech recognition and under-
standing [6], including language modeling, parsing, delimiting
of dialog acts, and marking of semantic boundaries for informa-
tion extraction and retrieval. This task has obvious applications
for both offline and online processing. Thus, we explore both
an offline and a forward-only model for this task.

The speaker overlap prediction tasks differ formally from
punctuation prediction. The latter involves prediction of “hid-
den” locations in the word stream output by a speech recog-
nizer. Speaker overlaps, on the other hand, are directly observ-
able in the current data, since by definition overlaps occur at
points of simultaneous speech on more than one of the (indi-
vidually recorded) channels. What we are interested in is find-
ing out whether there is any correlation between the onset of
overlaps and prosodic features (of both theoverlappeeand the
overlapper). Thus for both of these tasks we consider only clas-
sifiers that have access to features extracted from speech up to
the point of interest.

Both punctuation and overlap have been discussed in the
literature as correlating with prosodic cues. For example, past
computational work has discussed prosodic features for sen-
tence boundaries as well as disfluency boundaries [3, 14, 15, 6].
Past work in conversation analysis, discourse analysis, and lin-
guistics has shown prosody to be a useful cue in turn-taking
behavior [7, 8, 9, 10]. Such studies suggest a potential con-
tribution from prosody for our tasks, but to our knowledge the
tasks have not yet been explored within a framework of auto-
matic feature extraction for multi-party meetings.

For all tasks, the processing is round robin, considering
each speaker in turn as the foreground speaker, and treating
all others as background speakers. For each task, we extract
prosodic cues completely automatically, based on recognizer
forced alignments.



Figure 1: Excerpt from a meeting illustrating overlapping spurts, punctuation boundaries, jump-in points, jump-in words, and stylized
F0 contours for two speakers (female = top, male = bottom). Spurts are delimited by vertical lines enclosing the word transcripts. (Note
that due to layout limitations, words do not line up exactly with pitch contours within a spurt.) Circled tags mark punctuation events,
including<s> (sentence boundary),<INC> (incomplete sentence), and<Q> questions (grouped with the complete sentence class
here); no disfluency example is shown. Overlap events are indicated by square boxes. A jump-in point for one speaker corresponds to
a jump-in word for the other, and vice versa. Note that jump-in words are always spurt-initial (see definition in text).

2.5. Language models

To provide a conservative baseline against which to evaluate the
contribution of prosodic features relative to lexical information,
we compare performance of the prosodic model with that of an
N-gram language model (LM) based on the true words. We al-
low the LM to know the true words to provide a ceiling on the
N-gram LM performance for this dataset. Given the high error
rates for this task (between 30% and 60%) [2] we expect the
LM-based classifier to deteriorate severely if it were based on
recognized words. One factor that currently limits the perfor-
mance of the LM is the very small amount of training data. We
did not experiment with LMs trained from other sources, since
much of the phenomena studied here are unique to multi-party
meetings.

The LM for punctuation is a hidden-event N-gram model of
the type used in our earlier work [5]. Word and boundary type

sequences are modeled by a backoff trigram model, trained in a
supervised fashion from annotated training data. (Higher-order
N-grams did not perform better, due to lack of sufficient training
data.) In testing, the N-gram is interpreted as a hidden Markov
model in which the boundary types are treated as hidden states,
and the words as observations. We use the forward-backward
algorithm for HMMs to recover the best boundary types as well
as their posterior probabilities. We also combine the predictions
of a decision tree with the HMM to construct a combined classi-
fier, by converting the decision tree probabilities into additional
HMM observation likelihoods [5].

2.6. Prosodic features

We automatically extracted and computed a large set of features
associated with each word. Various versions of each feature
were used, indexed by the location at which the feature was



extracted, relative to the point of interest:

PP boundaryP word P boundaryC word F boundaryF word

where P = previous, C = current, F = following. The basic
prosodic feature types include pause and duration features, styl-
ized F0 features, speaking rate features and energy features.

Pause and duration features.Pause features included raw
pause durations. For phone durations we chose to start with a
simple approach and model only vowel durations; this may also
be more robust to ASR errors than modeling all phone dura-
tions. We used vowel durations with ratio and z-score normal-
izations on both context-independent and context-dependent
duration statistics from the Switchboard corpus [16] (since
there is more data in Switchboard; we would expect that given
enough data, using statistics from the meeting training data
would only help us).

Intonation features.F0 features were based on frame-level
postprocessed output of the ESPS/Waves pitch trackerget f0
[17] with default parameter settings. Raw pitch values were me-
dian filtered and then “stylized” using a piece-wise linear algo-
rithm (PWL) described in [18]. This approach yields straight-
line approximations of the original contour, helps removes out-
liers, and allows for more robust extraction of local slopes
and minimum and maximum F0 values. In addition we auto-
matically computed an F0 “baseline” using a log-normal tied-
mixture model of F0 [18], based on all voiced regions from a
particular speaker. This proved to be a valuable normalization
parameter.

To estimate local pitch range, we extracted minimum,
mean, maximum, and last F0 values at each word position. We
also created “windowed” versions, in which the window started
at the end of the word, and moved backward in time byN

frames, whereN = 10; 20; 50; 80; 100. These local values
were normalized by the log difference and log ratio to the speak-
er’s baseline F0 value. As a more global measure of pitch range,
we computed features based on the minimum, mean, and maxi-
mum stylized F0 in the segment, again normalized by the speak-
er’s F0 baseline. For an estimate of local pitch movements, we
used the last stylized slope of the word, as well as versions for
each of the window lengths. We also compared the F0 values in
the current word to both those in the previous and those in the
following word; similar features compared stylized slope val-
ues of adjacent words. Finally, we included features capturing
the distance of the current word, positive or negative, from the
maximum and minimum stylized F0 in the segment.

Speaking rate features.Using the automatic alignments,
we estimated local speaking rate by computing the number of
vowels per unit time of speech, excluding pauses. The averages
were reset at spurt boundaries. (Speaking rate features turned
out not to be used by any of the classifiers learned for the tasks
discussed here.)

Energy features.From the frame-level RMS energy output
by get f0 we extracted values in two modes: all frames, and
voiced-frames only. We used the minimum, mean, and max-
imum values for each statistic within a word. Features were
either raw, or normalized by the mean or mean plus standard
deviation for the speaker over the meeting.

Nonprosodic features.In addition to prosodic features we
included a variety of other features (including cheating features)
for the purpose of exploring how they interact with prosody in
characterizing our locations of interest. These included: the cur-
rent word position, punctuation features (sentence boundaries,
disfluencies, and incomplete sentences), overlap features (start,

during, end of overlapping speech), and lexical features denot-
ing “special” words found in recent work to correlate with some
of our locations of interest [11]. The special words included
backchannels (e.g., “uh-huh”), filled pauses (e.g., “um”), coor-
dinating conjunctions (e.g., “and”), and discourse markers (e.g.,
“well”). Finally, we included a set of global contextual fea-
tures, to determine whether prosodic features correlated with
these factors. The set included the speaker’s identity, sex, and
native language, and the microphone type and meeting type. As
discussed in Section 3, our prosodic models were able to per-
form well for all tasks without use of the nonprosodic features,
although some correlations are worth exploring in future work
on integrated models.

2.6.1. Decision tree modeling

As in earlier work, we used CART-style decision trees [19] as
classifiers that learn to predict classes and their posterior prob-
abilities from input features. We observed that classifier per-
formance is usually improved if a feature subset selection algo-
rithm is used. This algorithm searches for a close to optimal
subset of input features, instead of relying on the greedy feature
selection strategy used by the decision tree learning algorithm.

We built and tested decision trees both on the raw distri-
bution of cases in the data, and on downsampled data sets that
equate the frequency of all classes. The downsampled train-
ing has several purposes. First, the raw class distribution is of-
ten highly skewed, and as a result decision trees focus their re-
sources on the majority class without revealing much about the
prosodic properties of the minority classes. Second, the prior
distribution of classes can vary greatly over different meeting
types; the downsampling can thus be considered as a form of
normalization across genres. Finally, a tree with equal priors
can be more directly integrated with the LM-based classifier
since its posterior probability estimates are proportional to class
likelihoods [5, 6].

3. Experiments and Results
We report results for four experiments. Each experiment con-
sists of a classification task in which one or more classifier is
trained to predict the posterior probability of all possible classes
given the features, at each word boundary location. The classi-
fier can be a prosodic decision tree, LM, or combination. Re-
sults are reported in terms of two metrics:accuracy(the per-
centage of cases in which the class with the highest posterior
probability is correct) andefficiency(the reduction in class en-
tropy achieved by the classifier relative to the prior distribution.)
Formally, efficiency is defined asH(p0)�H(p)

H(p0)
, wherep0 de-

notes the prior distribution,p the estimated posterior distribu-
tion, andH is the entropy. Due to the normalization relative to
H(p0), efficiency allows an approximate comparison of classi-
fiers on different tasks and with different priors, and therefore
different inherent difficulties. Efficiency 1 entails a perfect clas-
sifier, whereas zero efficiency characterizes a classifier that does
no better than chance. Where appropriate, we report decision
tree performance both on equal priors (downsampled) and on
the raw class distribution. Language models can only be eval-
uated on the raw distribution since contiguous data points are
required by the model.

3.1. Task 1a: Predicting punctuation

This task is a three-way classification of word boundaries as
either complete sentence ends, incomplete sentence/disfluent



Equal priors Raw priors
Model Acc. Eff. Acc. Eff.
Chance 33.33 0 78.47 0
DT only 62.23 22.06 82.44 23.63
LM only n/a n/a 88.69 51.76
DT + LM n/a n/a 89.72 56.71

Table 2: Accuracy and efficiency results on Task 1a (automatic
punctuation), using decision (DT) alone, true-word language
model (LM) alone, and combining both models. Chance de-
notes to a baseline classifier that always chooses the class with
the highest prior probability.

boundaries, and fluent sentence-internal word boundaries. To
avoid small class sizes, incomplete sentence ends and other dis-
fluencies are grouped together. This is reasonable since both
represent disfluent (self-)interruption points; but note that from
a forward-looking perspective incomplete sentence ends are
more like complete sentence ends in that both mark the begin-
ning of a new sentence. We chose here not to put question sen-
tence ends into a separate category due to their low frequency.
Instead, they were grouped with other sentences; this may hurt
us on questions that have rising intonation.

In our decision tree experiments we disallowed lexical fea-
tures, in order to encourage the use of prosodic features and
create classifiers that might complement the LM. We also ex-
cluded speaker identity as a feature since it strongly correlates
with the priors for the various event classes.

The decision tree induced on the equal-priors version of this
task is shown in Figure 2. It relies most heavily on pause dura-
tion at the boundary following the current words (F PAU DUR)
and on the vowel duration of the current word (C VOWEL DUR),
with minor roles for various features encoding F0 range and en-
ergy.

The results for decision trees with both equalized and raw
priors, as well as for the word-based LMs, are summarized in
Table 2. Note that the language model has access to the cor-
rect word identities, and can therefore predict some events per-
fectly, such as disfluencies accompanied by filled pauses (“uh”
and “um”).

Interestingly, the results found here on meeting speech are
similar to those previously obtained on telephone conversations
(the Switchboard corpus). As in [5, 6], prosodic features con-
tribute significantly to disfluency and sentence boundary de-
tection, both without and with a language model as the base-
line classifier. Furthermore, the most important features used
are pause duration and vowel duration, as previously found on
Switchboard, and in contrast to Broadcast News speech, where
pitch played a more prominent role [6]. That is, people in meet-
ings use a prosodic style more similar to casual phone conversa-
tions than to broadcast speech. This result confirms a similarity
between meeting speech and conversational telephone speech
that we recently observed when studying speech recognition
performance [11].

3.2. Task 1b: Predicting punctuation online

We were further interested in how successfully the punctuation
task could be accomplished using onlyprecedingspeech as con-
text. Such anonline (or causal) prediction of events would be
of practical interest for conversational agents that follow or par-
ticipate in meetings in real time [12]. Also, the task is of interest

Equal priors Raw priors
Model Acc. Eff. Acc. Eff.
Chance 33.33 0 78.47 0
DT only 53.96 11.96 79.35 6.90
LM only n/a n/a 84.56 31.53
DT + LM n/a n/a 84.58 34.64

Table 3: Accuracy and efficiency results on Task 1b (automatic
punctuation task using online prediction).

from a psycholinguistic perspective, since it can be performed
near-causally by humans.

To investigate this question we created online versions of
our classifiers. In the case of the decision trees we only allowed
features that could be computed from the preceding speech. For
the LM-based classifier, we estimated posteriors using only the
“forward” probabilities in the underlying HMM.

Results are summarized in Table 3. We observe a substan-
tial increase in classification error (1�Accuracy) for both the
decision tree and the LM classifiers. The relative error rate in-
crease is 22% for the decision tree classifier with equal priors.
The degradation can be attributed to the removal of the single
most important feature, the pause duration at the location of in-
terest. The LM-based classifier degrades even more, by 37%
relative. This is also not surprising, given that most distinctive
segmentation cues occur at the starts of sentences, i.e.,after the
location of interest, and are therefore not accessible to a LM
that operates strictly online.

3.3. Task 2: Predicting “Jump-in Points”

We turn now to a task relevant to turn taking: predicting the
locations at which a background speaker “jumps in” (starts an
overlapping spurt). We would ideally want to find the locations
at which speakerscould havejumped in, but in fact we only
have evidence of the locations where speakers actuallydid jump
in. Therefore this task, unlike the others, has a large amount
of inherent uncertainty, since we cannot distinguish locations
where the background speaker wanted to interrupt but didn’t
choose that location, from cases where the background speaker
did not want to interrupt.

The prior for this task is low: only 2.3% of all word loca-
tions, since we are considering only the locations of interrupt
starts. We therefore ran all experiments with equalized priors,
to encourage the tree to look at features rather than priors. We
also restricted the models (both prosodic and LM) to use only
information from locations prior to the potential jump-in, since
this is what the “jumper-in” has available via direct observation
(although a human listener could presumably predict to some
extent what the current speaker will say next).

It should be pointed out that we considered only those cases
in which a background spurt startedwithin a foreground speak-
er’s spurt, using our (arbitrary) duration for minimum spurt
pauses of 0.5 seconds. This means we do not consider any
jump-ins occurringbetweenspurts, even if the jump-in occurred
less than 0.5s after the end of the previous foreground spurt,
as illustrated in Figure 3. Since we do not consider forward-
looking features in this task, it is quite possible that at least
for cases of spurt onsets at locations like (a) in Figure 3, in
which a background speaker starts soon after the end of fore-
ground speech, the prosodic features may be similar for FG(1)
and FG(2). So, our models would be expected to do better if we



0.3333 0.3333 0.3333 NONE DF/INC SENT
F_PAU_DUR < 0.335: 0.4557 0.3442 0.2001 NONE
| C_VOWEL_DUR < 7.5: 0.597 0.2591 0.1439 NONE
| | F_PAU_DUR < 0.02: 0.6612 0.2218 0.117 NONE
| | F_PAU_DUR >= 0.02: 0.1823 0.5 0.3177 DF/INC
| C_VOWEL_DUR >= 7.5: 0.3071 0.4338 0.2592 DF/INC
| | C_VOWEL_DUR < 17.5: 0.3822 0.3125 0.3053 NONE
| | | F_PAU_DUR < 0.0575: 0.4476 0.2908 0.2616 NONE
| | | | C_VOWEL_DUR < 11.5: 0.5159 0.246 0.2381 NONE
| | | | C_VOWEL_DUR >= 11.5: 0.3471 0.3568 0.2961 DF/INC
| | | | | F_F0K_LOGRATIO_WORDMAX_BASELN < 0.35252: 0.3789 0.2501 0.371 NONE
| | | | | | C_RMS_MAX_R < 0.54694: 0.2468 0.6667 0.08658 DF/INC
| | | | | | C_RMS_MAX_R >= 0.54694: 0.3863 0.2267 0.387 SENT
| | | | | | | C_F0K_LOGRATIO_LASTPWLWIND100_BASELN < 0.13333: 0.2671 0.1901 0.5428 SENT
| | | | | | | C_F0K_LOGRATIO_LASTPWLWIND100_BASELN >= 0.13333: 0.4291 0.2399 0.331 NONE
| | | | | | | | F_RMS_MAX_R < 0.47863: 0.1375 0.1426 0.7199 SENT
| | | | | | | | F_RMS_MAX_R >= 0.47863: 0.4491 0.2465 0.3044 NONE
| | | | | F_F0K_LOGRATIO_WORDMAX_BASELN >= 0.35252: 0.3129 0.4715 0.2156 DF/INC
| | | | | | F_RMS_MAX_R < 3.1594: 0.2568 0.505 0.2381 DF/INC
| | | | | | F_RMS_MAX_R >= 3.1594: 0.4915 0.3646 0.1439 NONE
| | | F_PAU_DUR >= 0.0575: 0.1396 0.3928 0.4676 SENT
| | | | C_F0K_LOGRATIO_WORDMIN_BASELN < 0.1216: 0.1008 0.2856 0.6136 SENT
| | | | C_F0K_LOGRATIO_WORDMIN_BASELN >= 0.1216: 0.1667 0.4677 0.3656 DF/INC
| | C_VOWEL_DUR >= 17.5: 0.1475 0.6913 0.1612 DF/INC
F_PAU_DUR >= 0.335: 0.04798 0.3079 0.6441 SENT
| C_VOWEL_DUR < 26.5: 0.04884 0.2499 0.7012 SENT
| C_VOWEL_DUR >= 26.5: 0.04235 0.6853 0.2724 DF/INC
| | P_PAU_DUR < 3.1035: 0.04818 0.766 0.1858 DF/INC
| | P_PAU_DUR >= 3.1035: 0.008097 0.2105 0.7814 SENT

Figure 2: Prosodic decision tree for Task 1a: three-way classification of punctuation classes. The tree is trained on equal class
priors (downsampled to smallest class size). Class labels areSENT(complete sentence boundary),DF/INC (disfluencies or incom-
plete sentence boundary), andNONE(not a sentence, disfluency, or incomplete sentence boundary); order of probabilities listed is:
NONE DF/INC SENT. Feature names are [P,C,F] (measure is taken at the [previous,current,following] word or boundary) plus mea-
sure. Measures are:PAU DUR = pause duration,VOWEL DUR = raw vowel duration,F0K LOGRATIO WORD[MAX ,MIN ] BASELN =
log ratio of [max,min] stylized F0 in word to F0 of estimated speaker baseline,F0K LOGRATIO LASTPWLWIND100 BASELN = log
ratio of last stylized F0 value in window of 100 msec ending at end time of word, to F0 of estimated speaker baseline,RMS MAX R =
ratio of max RMS energy in word to mean RMS over all data for that speaker.

included such datapoints than they do here.
We ran two versions of the experiment, one including punc-

tuation and lexical features to test for any correlation, and one
excluding such features. Both experiments yielded the same
tree, i.e., no lexical or punctuation features were chosen by the
tree.

The decision tree for the jump-in location prediction task
achieved an accuracy of 64.74% (efficiency = 12.59%), well
above the chance level of 50%. Figure 4 depicts the tree. A
language model trained for the same task and using only past
word context did not perform better than chance.

These results are remarkable for several reasons. First, even
this modest accuracy is noteworthy given the inherent uncer-
tainty of the task. Second, none of the (cheating) word fea-
tures or punctuation features available are used; the tree uses
only prosodic features. The fact that an N-gram LM is not
effective for this task suggests the irrelevance of word identi-
ties. Third, adding forward-looking features to the tree yields
almost no accuracy improvement, so predicting where another
speaker will jump in is—from a prosodic standpoint—based
on pastprosody. Fourth, the features used in this tree suggest
that background speakers jump in at those locations in the fore-
ground speaker’s talk thatlook similar to sentence boundaries,
but which are not actually sentence boundaries. We know that
they are not better predicted by actual sentence boundaries, be-
cause if that were the case, the punctuation feature would have
been queried. As shown in Figure 4 the preferred jump-in points

_____________________________________

0 .5 1.0 sec
<--------> <--------->FG1
<--------: :--------------->FG2

(a) (b)
_____________________________________

Legend:

---- = speech
< > = begin, end of spurt
: = begin, end of pause within spurt
FG = ForeGround talker
a,b = spurt start by background talker

Figure 3: Illustration of dependence of jump-in point defini-
tions on spurt pause threshold. Spurt boundaries are defined by
the pause threshold of .5 seconds in the foreground (FG) talk-
er’s speech. FG1 and FG2 illustrate two different foreground
speaker patterns, which are identical up to the point marked “0”
seconds, but that differ in spurt definition due to the (future-
determined) total pause duration. FG1 (but not FG2) pauses
long enough to create a spurt boundary at point “0”. If some
background talker starts a spurt at either time “a” or point “b”,
the spurt onset will be considered a jump-in relative to FG2, but
not to FG1—even though in the case of a spurt at time “a” the
speech/nonspeech history of FG1 and FG2 are identical up to
that point.



0.5 0.5 0(no jump-in) 1(jump-in)
P_PAU_DUR < 0.105: 0.5226 0.4774 0
| P_RMS_MIN_R < 0.25621: 0.4686 0.5314 1
| | PP_PAU_DUR < 1.4635: 0.4882 0.5118 1
| | | CP_FOK_DIFF_MAXPWLWORD_MAXPWL_P-WORD < -16.83: 0.4222 0.5778 1
| | | CP_FOK_DIFF_MAXPWLWORD_MAXPWL_P-WORD >= -16.83: 0.5113 0.4887 0
| | | | CP_FOK_DIFF_MAXPWLWORD_MAXPWL_P-WORD < 8.2: 0.5424 0.4576 0
| | | | | P_TRIVOWEL_DUR_Z < 1.7: 0.556 0.444 0
| | | | | | CP_FOK_DIFF_MAXPWLWORD_MAXPWL_P-WORD < -8.755: 0.4627 0.5373 1
| | | | | | CP_FOK_DIFF_MAXPWLWORD_MAXPWL_P-WORD >= -8.755: 0.5844 0.4156 0
| | | | | P_TRIVOWEL_DUR_Z >= 1.7: 0.3096 0.6904 1
| | | | CP_FOK_DIFF_MAXPWLWORD_MAXPWL_P-WORD >= 8.2: 0.4373 0.5627 1
| | PP_PAU_DUR >= 1.4635: 0.3034 0.6966 1
| P_RMS_MIN_R >= 0.25621: 0.6526 0.3474 0
P_PAU_DUR >= 0.105: 0.2437 0.7563 1

Figure 4: Prosodic decision tree for Task 2: two-way classification of “jump-in” classes, trained on equal class priors (downsam-
pled to smallest class size). Class labels are0 (no jump-in), and1 (jump-in); probabilities are listed in that order. Feature names
are [PP,P,C,CP,F] (measure is taken at the [2-previous,previous,current,current-to-previous,following] word or boundary) plus mea-
sure. PAU DUR = pause duration,RMS MIN R = ratio of min RMS energy in word to mean RMS over all data for that speaker,
FOK DIFF MAXPWLWORD MAXPWL P-WORD = difference between max stylized F0 in current word and that in previous word,
TRIVOWEL DUR = vowel duration z-score-normalized by triphone duration.

are locations with pause boundaries, low RMS, a recent pre-
vious fall in F0 from the previous word to the current word,
and extended preceding triphone-normalized vowel durations.
These results suggest, consistent with [10], that speakers use
prosody, not just words, to coordinate turn-taking in conversa-
tion.

3.4. Task 3: Predicting “Jump-in Words”

The final question we investigated was whether there is any dif-
ference in the prosody of spurt onsets that start during silence,
versus during speech by another talker. In other words, do
speakers modify their prosody when they have to compete with
an already active speaker? As shown in Figure 1, the jump-in
words for one speaker correspond to the jump-in points in an-
other speaker’s spurt.

This task differs from the previous two tasks in that it con-
siders only a subset of word datapoints, rather than all word lo-
cations, since it looks only at words corresponding to the start of
a speaker’s spurt. For this reason, a language model for this task
would be most naturally formulated not in terms of hidden event
N-grams, but rather over the words making up the spurts them-
selves. We have not yet investigated LM-based classifiers for
this task, and report results using prosodic decision trees only.
Again, to remove the skew in the raw distribution we trained
and tested the classifiers with equal priors.

The decision tree trained with all features achieved an ac-
curacy of 77.28%, far above the 50% chance level, as shown
in Table 4. For this task, unlike previous tasks, we noticed that
RMS was used heavily by the trees. This could indicate that
speakers raise their voices when interrupting others, or simply
that the interrupted speakers’ signal is picked up by the inter-
rupting speaker’s microphone. In the latter case we would have
to consider RMS a “cheating” feature since it indirectly mea-
sures what we want the classifier to predict. Further investiga-
tion is required to assess to what degree the raised RMS reflects
a contribution from background speech. However, we found
that the classifier still does quite well if we remove all RMS
features from the candidate feature list, as shown in Table 4. It
does so in part by making increased use of F0 features (F0 is
raised when starting during current speech, relative to starting

Table 4: Results for Task 3: detection of spurt starts in over-
lapped speech. Both accuracy (Acc.) and efficiency (Eff.) are
listed.

Model Acc. Eff.
Chance 50.00 0
With RMS 77.28 24.90
No RMS 72.58 15.31

during silence). Thus overall, this task provides evidence that
speakers adjust for the background level when starting up, by
“raising” their voice.

4. Summary
We have studied the use of prosodic features for three classifica-
tion tasks on meeting speech. In Task 1, automatic punctuation,
we found that prosodic features, modeled by decision trees, can
provide a significant boost to classification accuracy (10% rela-
tive error reduction) over that of a language model based on the
true words. The main features used in the prosodic classifier
were pause and phone durations, consistent with what we had
found in conversational telephone speech [6]. We also inves-
tigated how the LM and prosodic classifiers deteriorate when
only information from the past of a given location is used, sim-
ulating online processing. Here the accuracy is considerably
worse (22-37% error increase), but the prosodic classifier de-
grades considerably less than does the LM.

The remaining two tasks involved the characterization of
speech at locations of speaker overlap, a pervasive phenomenon
in casual conversation. First, we trained classifiers to predict the
location of background speaker jumps-ins, based on the fore-
ground speaker’s prosody and words (Task 2). Although earlier
work [11] showed that jump-in locations are correlated with cer-
tain word classes (such as discourse markers and disfluencies),
a simple word-based N-gram model was not effective for this
task. Prosodic cues, however, were able to predict jump-in loca-
tions at better than chance, despite the inherent uncertainty for
this task. Analysis of the features used showed that jumping-
in is predicted at locations that look prosodically like sentence



boundaries—even if they are not actual sentence boundaries.
The other overlap-related task (Task 3) involved classify-

ing spurt onset words into overlap and nonoverlap cases. Only
prosodic features were investigated for this task. The induced
classifiers showed that jumping-in is correlated with higher
RMS energy as well as higher F0, suggesting that speakers ad-
just for the background level when starting to speak, by “rais-
ing” their voice.

Finally, across the different tasks, we observed different
features to be be important. Sentence boundary and disfluency
detection used mostly temporal features (pause and phone dura-
tion), while prediction of jump-ins used both durations and F0.
Energy and F0 was important for identifying jump-in words.
Also we found that generally, unnormalized durations seemed
to work better than normalized ones. The most useful F0 fea-
tures were those that measured F0 distance from the local word
or window, to an estimated speaker baseline—rather than lo-
cal pitch movements. F0 extremes (minima and maxima) rather
than means, seem to be the most useful metrics for computing
the pitch range features.

In conclusion, although further research as well as more
data are needed in studying these and related areas, we find ev-
idence that prosody provides useful cues for a variety of tasks
relevant to the automatic processing of meeting data. While the
focus in the present work was on prosody, the results suggest the
need for an integrated model combining lexical and prosodic as-
pects of speech communication in natural, multi-party contexts.
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