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Abstract  
In this paper, we present our recent progress on multi-layer 
perceptron (MLP) based data-driven feature extraction using 
improved MLP structures. Four-layer MLPs are used in this 
study. Different signal processing methods are applied before 
the input layer of the MLP. We show that the first hidden 
layer of a four-layer MLP is able to detect some basic patterns 
from the time-frequency plane. KLT-based dimension 
reduction along time is applied as a modulation frequency 
filter. The new feature extraction was tested on a large 
vocabulary continuous speech recognition (LVCSR) task 
using the NIST 2001 evaluation set. We achieved 11.6% 
relative word error rate (WER) reduction compared to the 
traditional PLP-based baseline feature. This is also a 
significant improvement compared to our previously 
published results on the same task using MLP-based features 
with three-layer MLPs. 

1. Introduction 
Spectral-based features, such as MFCC or PLP, have been used 
as the dominant feature in automatic speech recognition (ASR) 
systems for more than a decade. Currently we are conducting 
research on a novel feature extraction method using MLP-
based data-driven approaches and its application in LVCSR 
tasks [3]. In this scheme, the spectral information across 
several frames is transformed by a MLP, which is trained to 
classify different phones. The MLP outputs are further 
processed and used as the front-end feature for HMM-based 
speech recognition systems. 

Our previous papers have shown significant improvements 
using MLP-based features obtained with this approach [2][5] 
on different LVCSR tasks, including the NIST 2004 
Evaluation on Hub5 Continuous Telephone Speech (CTS) [6]. 
The topics of our previous papers cover long-term feature 
extraction, MLP output combination for merging long-term 
and short-term cues, using MLP-based feature with HMM for 
ASR, and the properties and performance of the feature in 
different tasks.  

This paper presents our recent work and progress in 
exploring the structures and constraints of a MLP for data-
driven feature extraction. Previously we used single or 
concatenated three-layer MLPs with specific constraints. In 
this paper we used a four-layer MLP structure. At the same 
time, we relaxed the narrow-frequency band constraints used in 
our previous long-term MLP systems. We also tested different 
signal processing methods before the input of a MLP. With 
these explorations, we found three MLP structures that can 
effectively extract different and complementary information 
from different views of the speech spectrogram. By combining 

the three MLPs, we are able to get more significant word error 
rate reduction using the MLP-based features. Compared with 
the baseline feature, PLP with first three derivatives followed 
by HLDA-based dimensionality reduction, we are able to 
reduced WER by 11.6% relative by using the MLP-based 
feature concatenated with the PLP baseline feature. 

2. Feature extraction using four-layer MLP 

2.1 Using MLP to learn phone posterior 

MLPs are a class of popular mechanisms in the machine 
learning world. A MLP can be trained so that the output 
approximate class posteriors [1]. Our MLPs are trained with 46 
mono-phones as the targets, and MLP outputs approximate 
phone posterior probabilities.  

One important practical issue with MLPs is the choice of 
structure. Without knowing the detailed properties of the 
problem, the three-layer MLP is the most frequently used 
structure, since it can theoretically model any class boundary, 
if the hidden layer size is large enough. It maps the input 
feature (the input layer) nonlinearly, through a sigmoid 
function, to a hidden layer that often has a higher 
dimensionality. Hopefully, in the space spanned by the nodes 
of the hidden layer, different classes are linearly separable. A 
linear combination of the hidden layer outputs is applied to 
form linear boundaries among classes, further followed by a 
normalization using a softmax function so that the sum of the 
MLP outputs equals one.  

In our previous work, we mostly use single or concatenated 
three-layer MLPs for extracting phone posterior from long or 
short time region of a spectrogram. Posteriors from different 
MLPs can be further combined for higher accuracy using 
simple or weighted average of different MLP posteriors. The 
combined posteriors are processed by taking logarithm and 
applying KLT-based dimensionality reduction. The MLP-
based features are then concatenated with regular PLP features 
to make a final feature vector, which is used as the input to the 
HMM-based ASR system. The details are shown in [5]. 

2.2 From three-layer MLPs to four-layer MLPs 

Instead of using a generic three-layer MLP structure, it might 
be possible to explore different details of the MLP structure so 
that the MLP might better fit with the underlying problem. It is 
known that the detailed structure of a model is important for 
modeling a problem. Unfortunately, there is often no 
systematic way in finding the best structure. This is true with 
many learning machines, for example, determining the detailed 
structure of an HMM with state-jump constraints. The 
exploration is often motivated or inspired by some 
observations or thoughts, and verified by experiments. In this 



sense, this paper doesn't show a mathematical proof that the 
proposed structure is better than the structures we used before, 
but rather reports on new findings using different effective 
MLP structures, our motivations and our observations with the 
new structures, and possible explanations for the better results 
in ASR tasks. 

We have several motivations for using four-layer MLPs. 
The initial motivation is that, since we already used 
concatenated three-layer MLPs, (for example in HATS [2]), 
we could try to combine them to form a four-layer MLP so that 
they have roughly the same structure but optimization can be 
performed jointly in one step. Another motivation is that, in 
our previous concatenated MLP structure, we applied certain 
constraints, for example, the band-separation constraint. With a 
four-layer MLP we want to experiment with relaxing these 
constraints so that the MLP can learn from the entire input. 
Another important motivation is that we guess there might be a 
limited number of basic "patterns" in the time-frequency plane. 
It might be more effective to first extract these patterns out of 
the time-frequency plane, then learn the phone posteriors from 
these basic patterns. For this reason, one might want to add 
another layer after the input layer to only learn these patterns, 
before they are further transformed to another layer where 
different classes are expected to be more linear separable.  

With these motivations, we constructed our four-layer 
MLPs. There are two hidden layers, the first hidden layer is 
often smaller in size compared to the second hidden layer. 
Figure 1 shows the MLP structure. A slice of the time-
frequency plane goes through a signal processing block, for 
example, log critical-band filter analysis, PLP analysis, or log 
critical-band analysis followed by DCT-based dimensionality 
reduction. 

With such a MLP structure, the second layer bears the 
same meaning as the hidden layer at the three-layer MLP: it is 
optimized so that different classes are linearly separable. The 
first layer, however, can be viewed as a pattern detector.  
Looking at one node in the first hidden layer and all the 
connections from the input layer to this node, as illustrated by 
the circled node in Figure 1, the node gives maximal output 
when the MLP input matches the weights connecting to this 
node. If a weight is zero, then the output of that node is not 
sensitive to the input via that connection. The output of a node 
is sensitive to the pattern corresponding to the connection 
weights of large absolute values. For this reason, we can call 
the first layer a "pattern detector layer", and the second layer a 
"classification layer". 

3. The Four-Layer MLPs 
One advantage of using MLPs in feature extraction is that we 
are able to use different information sources as the input to  
different MLPs and later combine them. In our previous papers, 
we used two information sources: the log critical-band energy 
from long time period of a half second, and PLP with first two 
derivatives from short time period of 9 frames. We found that 
MLP outputs using these two information sources are 
complementary and can be effectively combined.  

In this paper, we use three types of MLPs with different 
information sources as the input. All these MLPs have the 
basic structure shown in Figure 1. Their detailed sizes are 
tuned using the training data to maximize the frame accuracy 
of a held-out cross-validation set. The details of each of the 
three types of MLPs are presented below. MLPs are trained in 

a gender dependent manner. Each MLP has about 500K 
parameters, and is trained with 32 hours of gender dependent 
speech data. 

  
Figure 1: The general structure of a four-layer MLP for 
extracting phone posteriors from the time-frequency plane. 

3.1 MLP with Short-term log-critical-band energy as the 
input (Short LCBE MLP4) 

This is a new MLP structure compared to our previously 
published systems. The input to the MLP contains log critical-
band energy of 9 consecutive frames. We use 15 Mel scale 
critical-bands for each frame. Thus the input vector of the MLP 
has 9*15=135 dimensions. The first hidden layer has 600 
nodes and the second hidden layer has 672 nodes, and there are 
46 output nodes corresponding to 46 different mono-phones. 
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Figure 2: Illustration of the pattern corresponding to the 
weights connecting to a certain hidden node in the first 
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hidden layer. This hidden node is sensitive to a particular 
localized pattern in time-frequency plane. 

By looking the patterns of the weights connecting the input to 
the first hidden layer, we often see: 

 Only a small number of weights connecting to a node 
have values far away from zero.  

 These nonzero weights often form localized patterns. 
This means that the nodes in the first hidden layer are 

sensitive to certain localized input patterns. Some examples of 
the localized patterns represented by the weights are illustrated 
in Figure 2. The x-axis is the frame index, where the 5th frame 
is the center frame, and frames 1-4 are the previous frames and 
frames 6-9 are the future frames, and the y-axis is the critical-
band index, which corresponds to frequency change. Some of 
these self-organized patterns seem to be tracking energy 
change, or some formant change in the time-frequency plane.  

3.2 MLP with Short-term PLPs as the input (Short PLP-
MLP4) 

The input to this MLP is the 9 frame concatenation of regular 
PLP cepustal features plus energy, and their first two 
derivatives. The static PLP feature is a vector of dimension 12. 
Thus the total input size to MLP is (12+1)*3*9=351. The first 
hidden layer has 300 nodes, and the second hidden layer has 
1187 nodes.  

Again, the majority of the weights connecting to each node 
in the first hidden layer have values close to zero, and those 
values far from zero form some patterns. The patterns on the 
PLP feature are not localized across PLP coefficients, but are 
localized in time. Figure 3 shows a pattern from the weights of 
the PLP-MLP4. The y-axis are the 39 PLP plus derivatives. 
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Figure 3: Illustration of a pattern corresponding to the 
weights connecting to a certain hidden node in the first 
hidden layer of a PLP-MLP4. 

3.3 MLP with long-term log-critical-band energy as the 
input (Long LCBE MLP4) 

In previous work we extracted long-term information using a 
MLP structure called HATS [2]. In this paper, we use four-
layer MLPs. Besides the change in MLP structure, we also 
changed the signal processing before the MLP input. The 
spectrogram of 51 frames (about half second) first goes 
through a log critical-band analysis similar to that in section 
3.1 with 15 bands. Then for each band a Hamming window is 
applied on the band energy from 51 frames to decrease the 
contribution of frames far away from the center frame.   

It has been found that different modulation frequencies 
have different importance in speech perception [4]. It is often 
helpful to apply a modulation frequency filter to remove some 
high modulation frequency components. We use a DCT-based 
modulation frequency filter on the windowed log critical-band 
energy for each band. The 51-point DCT outputs are truncated 
to only keep the first 26 points. The input to the MLP has 
dimension of 26*15=390. The two hidden layers both have 
dimension of 520. 

It is hard to discern patterns from the weights to the first 
hidden layer of this MLP, since the time index has been 
warped by the DCT. But the weights are larger at low DCT 
indexes, corresponding to lower modulation frequencies, as 
shown in Figure 3. This agrees with human recognition 
experiments showing that lower modulation frequencies are 
more important. 
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Figure 4: Illustration of a pattern corresponding to the 
weights connecting to a hidden node in the first hidden 
layer of a Long LCBE MLP4. 

3.4  MLP combination 

There are many ways to combine MLP outputs, for example, 
taking the average, or taking the product of the posteriors from 
different MLPs. We tested different ways in combining MLP 
outputs in the past. For those experiments, the combination 
method was not a critical factor and the results were similar. 
We have tended to use inverse entropy weighting-based 
posterior combination [5], which was less sensitive to some 
bad MLP outputs. We re-visited the combination methods in 
combining the three MLP outputs.  

4. Experiments and Results 
The experimental setting is the same as used in [5] . The SRI 
Decipher system was used to conduct recognition experiments. 
The training set contained about 64 hours of conversational 
telephone speech (largely Switchboard) data. Gender 
dependent HMMs were trained with a maximum likelihood 
criterion, and a bigram language model was used in the 
decoding. The test set is the NIST 2001 evaluation set.  

The baseline feature is PLP with first three derivatives of 
52 dimensions, followed by HLDA-based dimensionality 
reduction to 39. The MLP-based feature, of dimensionality 25, 
is appended to the PLP feature to form a super feature vector. 
The MLP-based feature can be derived from one single MLP 
or from combinations of two or three MLPs. 



Table 1 shows the results of the MLP-based feature based 
on the combination of the three MLPs in Section 3. The first 
row shows the baseline WER using the PLP baseline. In the 
second row, three MLPs are combined using inverse entropy 
weighting-based combination (comb1). In the third row, the 
MLPs  are combined by taking the average of the log posterior 
from each MLP (comb2). The last row shows the WER of 
using the 25-dimension MLP-based feature alone from the 
third row.  

A significant improvement is achieved by appending MLP-
based feature with the PLP baseline features with a WER 
reduction of 11.6%. Using the MLP-based feature alone (25 
dimension) is also significantly better than the PLP feature (39 
dimension) by 3.5%. In this experiment, all of the three MLPs 
have similar good performance, and it turns out that taking the 
average of the log posterior gives better performance.  

 
Feature Word Error Rate 

(Relative error 
reduction) 

PLP baseline 37.2 

PLP + Three MLP comb1 33.3   (7.8% ) 

PLP + Three MLP comb2 32.9   (11.6% ) 

Only, Three MLP comb2 35.9   (3.5%  ) 

Table 1: The word error rate of the MLP-based feature 
with three MLP output combined. The test set is NIST 
2001 Evaluation set. 

Table 2 shows the WER using the MLP-based feature on 
each single MLP proposed in this paper, and the MLPs used in 
our previous papers, the HATS and the PLP-MLP3, where 
three-layer MLPs or concatenated three-layer MLPs are used. 
The previous structures, HATS and PLP-MLP3, have WER 
around 35.6% in this test set. Each of the new MLP structures 
from this paper is significantly better than all the old versions 
by WER reductions more than 1% absolution. All the three 
MLPs proposed in this paper have similar performance. 

Feature Word Error Rate 
(Relative error 
reduction) 

PLP baseline 37.2 

+ Long LCBE-MLP4  34.5   (7.3%) 

+ HATS 35.6   (4.3%) 

+ Short PLP-MLP4 34.4   (7.5%) 

+ Short PLP-MLP3 35.6   (4.3%) 

+ Short LCBE-MLP4 34.6   (7.0%) 

Table 2: The word error rate using MLP-based feature 
from each MLP in this paper and the previous MLP 
structures. 

We know based on our previous experience that MLPs 
complementary to each other can give large improvements 
through combination. Table 3 shows the WER results of the 
combination of every pair of MLPs in this paper to show how 
complementary these MLPs are to each other. The most 

complementary pair is the MLP with long term log critical-
band energy and the MLP with input of short term PLP inputs 
in the last row. The least complementary is the MLP with long 
term log critical-band energy and the short term log critical-
band energy inputs (LCBE combination in the second row), 
but even this case, the combined MLPs is still significantly 
better than using any single MLP alone. 

5. Conclusion 
We saw significant improvements with the three new MLP 
structures in this paper, used alone or in combination, 
compared with the previous MLP structures we used. We 
argued some possible reasons that the four-layer MLP fits 
better in this task. The first hidden layer, especially in the case 
when using log critical-band energy directly as the MLP input, 
is able to catch some basic patterns, and further classification 
can be more effective-based on these patterns than-based 
directly on the time-frequency plane. For extracting the long 
term feature, applying DCT-based truncation is found effective, 
by removing the high modulation frequencies.  
    MLPs are often used as black-boxes. But we found the four-
layer MLP is able to extract some basic patterns from the 
spectrogram. Besides better performance in WER, such a self-
organization behavior opens a door to our future research.  

Feature Word Error Rate 
(Relative error 
reduction) 

PLP baseline 37.2 

+   Short-term nets combination 33.5   (9.9%) 

+   LCBE combination 33.9   (8.9%) 

+ Long LCBE-MLP4 and PLP-
MLP4 combination 

33.4  (10.2%) 

Table 3: The word error rate of the MLP-based feature by 
combining every two MLPs in this paper.  
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