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t. The paper des
ribes our system devised for re
ognizing spee
hin meetings, whi
h was an entry in the NIST Spring 2004 Meeting Re
og-nition Evaluation. This system was developed as a 
ollaborative e�ortbetween ICSI, SRI, and UW and was based on SRI's 5xRT Conversa-tional Telephone Spee
h (CTS) re
ognizer. The CTS system was adaptedto the Meetings domain by adapting the CTS a
ousti
 and languagemodels to the Meeting domain, adding noise redu
tion and delay-sumarray pro
essing for far-�eld re
ognition, and adding postpro
essing for
ross-talk suppression for 
lose-talking mi
rophones. A modi�ed MAPadaptation pro
edure was developed to make best use of dis
riminativelytrained (MMIE) prior models. These meeting-spe
i�
 
hanges yielded anoverall 9% and 22% relative improvement as 
ompared to the originalCTS system, and 16% and 29% relative improvement as 
ompared to our2002 Meeting Evaluation system, for the individual-headset and multiple-distant mi
rophones 
onditions, respe
tively.1 Introdu
tionRe
ognizing spee
h in meetings provides numerous interesting 
hallenges for theresear
h 
ommunity, ranging from teasing apart and re
ognizing highly intera
-tive and often overlapping spee
h to providing robustness to distant mi
rophonesre
ording multiple talkers. Data 
olle
ted from meeting rooms provide an idealtestbed for su
h work, supporting resear
h in robust spee
h re
ognition, speakersegmentation and tra
king, dis
ourse modeling, spoken language understanding,and more.In re
ognition of this, NIST began its Meeting Room proje
t [1℄, hosting aworkshop in Fall 2001 to share information on resour
es and plans with otherinvolved parties (in
luding data providers CMU, ICSI, and LDC) and sponsoringits �rst Meeting Re
ognition evaluation in spring 2002 as part of the Ri
h Tran-s
ription evaluation series (RT-02) [2℄. At that time, meeting room resour
es



were extremely limited (as was parti
ipation in the eval!) and so the evaluationwas essentially an exer
ise simply in ben
hmarking systems trained for other do-mains, su
h as 
onversational telephone spee
h and broad
ast news. Our workon this task, as well as related meetings resear
h from that period, is reportedin [9℄.The next Meeting Re
ognition evaluation, RT-04S, was held in Mar
h 2004.In the intervening two years, there has been an explosion of interest in theMeetings domain, with a number of new proje
ts fo
using on the Meeting Roomtask and substantial amounts of meeting room data be
oming available.The 75-meeting ICSI Meeting Corpus [6℄ was released by the LDC at thestart of 2004 and several other 
olle
tions, su
h as data re
orded by CMU [14℄and by NIST itself, are being readied for publi
 release. It has thus be
omepossible to 
ondu
t true Meetings-
entri
 resear
h, fo
using development on theparti
ular problems presented by the Meetings task, su
h as the a
ousti
s oftabletop mi
rophones and the spe
ialized but varying topi
al 
ontent.In Mar
h 2004 NIST 
ondu
ted an evaluation of spee
h re
ognition systemsfor meetings (RT-04S), following on its initial Meetings evaluation two years prior(RT-02) [2℄. Our team had parti
ipated in RT-02 with an only slightly modi�edCTS re
ognition system, providing little more than a baseline for future work.For RT-04 our goal was to assemble a system spe
i�
ally for meeting re
ognition,although the limited amounts of meeting-spe
i�
 training data di
tated thatsu
h a system would still be substantially based on our CTS system. This paperdes
ribes and evaluates the design de
isions made in the pro
ess.The evaluation task and data are des
ribed in Se
tion 2. Se
tion 3 in
ludesthe system des
ription, followed by results and dis
ussion in Se
tion 4. Con
lu-sions and future work are presented in Se
tion 5.2 Task and Data2.1 Test DataEvaluation Data The RT-04S evaluation data 
onsisted of two 1-hour meet-ings from ea
h of the re
ording sites CMU, ICSI, LDC, and NIST. Systems wererequired to re
ognize a spe
i�
 11-minute segment from ea
h meeting; however,data from the entire meeting was allowed for purposes of adaptation, et
. Sepa-rate evaluations were 
ondu
ted in three 
onditions:MDM Multiple distant mi
rophones (primary)IHM Individual headset mi
rophones (required 
ontrast)SDM Single distant mi
rophone (optional)The CMU meetings 
ame with only one distant mi
; for the other meetingsbetween 4 and 7 distant mi
s were available. The IHM systems were allowed touse all mi
s (distant or individual). For MDM and SDM 
onditions, NIST onlyevaluated regions of spee
h with a single talker, thus eliminating overlappingspee
h. Unlike re
ent CTS evaluations, the Meetings evaluation in
luded non-native speakers of English. Table 1 summarizes the di�eren
es among the sour
esfor training and test data.



Table 1. RT-04 training and test data di�eren
es per sour
e.ICSI CMU LDC NISTEvaluation DataNum distant mi
s 6 1 4 7Development DataIndividual mi
s Head Lapel Lapel HeadTraining DataTotal available 74 hrs 11 hrs None 14 hrs% Failed alignment 0.1% 10% N/A 0.1%Re
ording Head+ Lapel N/A Head+Condition Distant only DistantDevelopment Data The RT-02 evaluation data (another 8 meetings from thesame sour
es) served as the development test set for RT-04. However, this setwas somewhat mismat
hed to the RT-04 evaluation data in that CMU and LDCused lapel6 instead of head-mounted mi
rophones. An additional 5 meetings (2ICSI, 2 CMU, 1 LDC) were available from the RT-02 devtest set.2.2 Training DataTraining data was available from CMU (17 meetings, 11 hours of spee
h aftersegmentation), ICSI (73 meetings, 74 hours), and NIST (15 meetings, 14 hours).No data from LDC was available. The CMU data was problemati
 in that onlylapel and no distant mi
rophone re
ordings were available.We ex
luded any data whi
h failed to for
e-align with the released trans
rip-tions. This eliminated 0.1% of the data from ea
h of ICSI and NIST, and 11%from CMU. For a
ousti
 training of the distant mi
 systems, we also ex
ludedregions with overlapped spee
h, based on for
ed alignments of the individual mi
signals.3 System Des
riptionIn this se
tion we des
ribe our meeting re
ognition system. Our system wasbased on a fast (5 times real-time) version of SRI's CTS re
ognizer. Figure 1shows the key aspe
ts of the system and highlights the adaptations we made tothe baseline CTS system.The top se
tion of the diagram (denoted by \Training") shows meeting spe-
i�
 adaptations performed in the training phase of the system. Spe
i�
ally, theCTS a
ousti
 and language models were adapted with meeting-related a
ousti
and textual data to 
reate better mat
hed models. These adaptations are dis-
ussed in Se
tions 3.2 and 3.3, respe
tively. The bottom portion of the diagram6 Throughout the text, individual mi
 subsumes both individual lapel and individualhead-set mi
 
onditions.
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Fig. 1. The overall system ar
hite
ture.(denoted by \Re
ognition") shows modi�
ations to the re
ognition pro
essing ofthe baseline CTS, namely, the addition of pre- and post-pro
essing steps. Thepre-pro
essing steps of signal pro
essing, segmentation, and array pro
essing aredis
ussed in Se
tions 3.1, 3.1, and 3.1, respe
tively. The post-pro
essing step isdis
ussed in Se
tion 3.5.3.1 Signal Pro
essing and SegmentationNoise Redu
tion of the Far-Field Mi
rophone Signals The distant mi
signals are �ltered using a bat
h version of the noise redu
tion algorithm de-veloped for the Aurora 2 front-end proposed by ICSI, OGI, and Qual
omm [3℄.The algorithm performs Wiener �ltering with typi
al engineering modi�
ations,su
h as a noise over-estimation fa
tor, smoothing of the �lter response, and aspe
tral 
oor. We modi�ed the algorithm to use a single noise spe
tral estimatefor ea
h meeting waveform. This was 
al
ulated over all the frames judged tobe nonspee
h by the voi
e-a
tivity dete
tion 
omponent of the Qual
omm-ICSI-OGI front end. We applied it independently for ea
h meeting waveform and usedoverlap-add resynthesis to 
reate noise-redu
ed output waveforms, whi
h thenserved as the basis of all further pro
essing.



Segmentation To identify regions of spee
h a
tivity and segment them intosuitable 
hunks for further pro
essing, a re
ognizer with two phones (spee
h andnonspee
h) was used to de
ode the signal. The phone models impose minimumduration 
onstraints and the language model (LM) penalizes swit
hes betweenthe two models. The resulting segments were postpro
essed to satisfy length
onstraints, and to pad spee
h boundaries with a few frames of nonspee
h. Fordistant mi
s, the algorithm performs a
ousti
 
lustering to keep di�erent speak-ers in separate segments, and to group same or similar speakers into 
lusters that
an subsequently be used for feature normalization and a
ousti
 adaptation.For the headset mi
s 
ondition, the segmentation models were trained onICSI and NIST headset mi
s training data, using for
ed alignments against thereferen
es. For the distant mi
 
onditions, two sets of models were trained: ICSIand NIST data were used to train models for those two sour
es; the RT-02devtest data (whi
h in
luded some CMU and LDC far-�eld data) were used totrain models for segmenting the CMU and LDC meetings.Multiple Distant Mi
rophone Array Pro
essing For MDM pro
essing,segmentation was performed on a single, 
entral mi
. Array pro
essing was thenperformed separately on ea
h spee
h region of the noise-redu
ed signals a

ord-ing to the 
ommon segmentation. The waveform segments from the various dis-tant mi
rophones were aligned to 
ompensate for time skew and sound traveldelays. Finally the aligned signals were summed to yield a single new segmentedwaveform.The rationale behind this pro
essing is that spee
h will be summed in-phaseand ampli�ed, whereas noise 
omponents are summed out of phase and willbe dampened. Delays for time alignment were estimated using maximal 
ross-
orrelation, in whi
h the 
entral mi
 
hannel was used as the referen
e. Sin
e themi
rophone and speaker lo
ations were unknown, the same sear
h interval wasused for all mi
rophone pairs at a given site; an edu
ated guess as to the possibledelay ranges was made based on available do
umentation of the re
ording room
on�gurations. Note that the method assumes that ea
h waveform segment 
on-tains only one speaker and thus that the alignment delays would not vary withina segment (hen
e the segmentation step had to pre
ede the array pro
essing).3.2 A
ousti
 Modeling and AdaptationGender-dependent re
ognition models were derived from CTS models trainedon 420 hours of telephone spee
h from the Swit
hboard and CallHome English
olle
tions. The MFCC models used 12 
epstral 
oeÆ
ients, energy, 1st, 2ndand 3rd order di�eren
e features, as well as 2x5 voi
ing features over a 5-framewindow [5℄. The 62-
omponent raw feature ve
tor was redu
ed to 39 dimensionsusing heteros
edasti
 linear dis
riminant analysis [8℄. PLP models used a similar
on�guration, ex
ept that no voi
ing features were in
luded and a two-stagetransform, 
onsisting of standard LDA followed by a diagonalizing transform[12℄ were used to map the feature spa
e from 52 to 39 dimensions. Also, thePLP models were trained with feature-spa
e speaker adaptive training [7℄.



The CTS models were adapted to the meeting domain using ICSI and NISTtraining data (the CMU meetings were deemed to be mismat
hed to the evaldata, as dis
ussed in Se
tion 2.2). Sin
e the prior models had been trained withthe maximum mutual information 
riterion (MMIE) [11℄ we developed a versionof the standard maximum a-posteriori (MAP) adaptation algorithm that pre-serves the models' dis
riminative properties. CTS MMIE models were used to
olle
t numerator and denominator 
ounts on the meeting data (downsampledto 8kHz). These 
ounts were 
ombined with CTS numerator and denominator
ounts, respe
tively. Finally, new Gaussian parameters were estimated from the
ombined 
ounts (mixture weights and HMM parameters were left un
hangedin the pro
ess).Experiments showed that an adaptation weight near 20 for the numerator and5 for the denominator was optimal. Furthermore, as reported in Se
tion 4, mostof the improvement 
an be a
hieved by only adapting the numerator 
ounts; this
ould be 
onvenient for some appli
ations sin
e denominator training requireslatti
es to be generated for the adaptation data.Feature Mapping We also experimented with the probabilisti
 optimum �l-tering (POF) [10℄ approa
h to 
ope with the mismat
h between far-�eld signalsand our CTS-based re
ognition models. In this approa
h a probabilisti
 mappingof noisy (distant mi
) to 
lean (headset mi
) features is trained based on stereore
ordings. However, the method is 
ompli
ated by time skew between 
hannels,
hanging speakers, and lo
ation-spe
i�
 ba
kground noise. We obtained an errorredu
tion with a feature mapping trained on test data, but were not able toobtain an improvement when using only training data, and therefore did notin
lude this method in our �nal system.3.3 Language Model and Vo
abularyOur CTS language model is a mixture LM with 4M words of Swit
hboard-1and 2, and 150M words of Broad
ast News, and it in
ludes 191M words of webdata 
hosen for style and 
ontent [4℄. It was adapted for meeting re
ognitionby adding two meeting-spe
i�
 mixture 
omponents: Meetings trans
ripts fromICSI, CMU, and NIST (1.7M words), and newly 
olle
ted web data (150Mwords)related to the topi
s dis
ussed in the meetings and also aimed at 
overing newvo
abulary items. Also, 5.3M words from the CTS Fisher 
olle
tion were addedfor 
overage of 
urrent topi
s. The mixture was adapted by minimizing perplexityon a held-out set 
onsisting of approximately equal amounts of trans
ripts fromthe four sour
es. We also experimented with sour
e-spe
i�
 LMs, but found thatthe available tuning data was insuÆ
ient to estimate sour
e-spe
i�
 mixtureweights robustly.Figure 2 show the language model perplexities for di�erent sour
es. We seethat the lowest perplexities are those of the ICSI data. This might be be
ause thedis
ussion topi
s are 
onsistent throughout these re
ording sessions and there isa relatively small set of 
ommon speakers. Additionally, we observe that the ICSI



Fig. 2. The language model perplexities for di�erent sour
es.subset bene�ts the most redu
tion in perplexity from the addition of meetings-spe
i�
 data, given the reasonable explanation that the majority of the meetingstext data 
omes from this sour
e. The perplexities of the CMU set are thehighest. Also, the CMU subset bene�ts the most from the addition of web dataand the least (degrades slightly, in fa
t) from the addition of meetings data.These trends are probably due to the wide range and variety of topi
s dis
ussedin the CMU meetings.The vo
abulary was extended (relative to the baseline CTS system) to in
ludeall non-singleton words from Fisher and Meetings trans
ripts. The vo
abularysize was 
lose to 50,000, and yielded a 0.9% out-of-vo
abulary rate on the de-velopment test trans
ripts. The pronun
iation di
tionary was inherited from theCTS system and was based on the CMU di
tionary, with added phones for �lledpauses and laughter.3.4 De
odingThe re
ognition sear
h was stru
tured as in the SRI \fast" (5xRT) CTS system.Within-word MFCC models were adapted with phone-loop MLLR and used togenerate bigram latti
es. The latti
es were then res
ored with a 4-gram LM and
onsensus-de
oded to obtain preliminary hypotheses. These were then used toestimate speaker-adaptive feature transforms and MLLR model transforms forthe 
ross-word PLP models, whi
h were employed to generate 2000-best listsfrom trigram-expanded latti
es. The N-best lists were then res
ored with a 4-gram LM, pronun
iation, pause, and duration models [13℄, and 
ombined into�nal 
onfusion networks, from whi
h 1-best hypotheses and 
on�den
e valueswere extra
ted.



Table 2. Improvement of the new baseline CTS system as 
ompared to the systemused in the RT-02 evaluation, reported on RT-02 eval set.All ICSI CMU LDC NISTIndividual Mi
sRT-02 System 36.0 25.9 47.9 36.8 35.2RT-04 CTS Base 32.8 24.0 44.3 33.2 31.5Single Distant Mi
RT-02 System 61.6 53.6 64.5 69.7 61.6RT-04 CTS Base 56.6 48.8 61.9 60.5 60.33.5 Cross-Talk SuppressionThe de
oded word hypotheses from the IHM system were postpro
essed in anattempt to eliminate 
ross-talk.We assumed that when 
ross-talk was suÆ
ientlyloud, re
ognized words with low 
on�den
e would be produ
ed, and that mostspee
h was not overlapped. Therefore, we time-aligned the words on all 
hannels,and deleted those words whi
h had 
on�den
e s
ore below a given threshold, andoverlapped, by at least 50%, with a word on another 
hannel.4 Results and Dis
ussion4.1 Improvements to the Baseline SystemSin
e both the old RT-02 system and this year's baseline system were developedfor the CTS domain, we were interested to see how mu
h of the improvementsmade on the CTS re
ognition task would 
arry over to the Meeting task. UsingRT-02 system 
omponents 
omparable to the 
urrent 5xRT system, the WERon the 2002 CTS task redu
ed from 29.4% to 23.6%, a 20% relative redu
tion.As shown in Table 2, the same system a
hieved relative improvements of 8%and 9% on the RT-02 meeting evaluation data, in the individual and distant mi

onditions, respe
tively.In the following se
tions, we report results on the oÆ
ial RT-04S develop-ment test, whose referen
es di�ered somewhat from the RT-02 evaluation set. Wepresent experiments in 
umulative fashion, so that ea
h improvement is the base-line for the following experiment. To be 
onsistent with RT-02, unless otherwisenoted, individual mi
 re
ognition uses referen
e segmentations, while distant mi
experiments use automati
 segmentation, plus noise �ltering.4.2 Language Model AdaptationFirst we examine the e�e
t of LM adaptation (see Se
tion 3.3), shown in Table 3.The improvement is roughly 5% overall and appears to be more substantial forICSI and NIST, and less so for CMU and LDC data. Besides the la
k of trainingdata for LDC meetings, the observed di�eren
e 
ould be due to the 
onsisten
y



Table 3. E�e
t of language model adaptation on RT-04 devtest data.All ICSI CMU LDC NISTIndividual Mi
sBaseline 33.3 23.5 44.6 34.2 32.0Adapted LM 31.5 20.9 43.6 33.7 28.5Single Distant Mi
Baseline 56.2 45.9 61.0 63.7 59.9Adapted LM 53.6 43.0 60.8 62.9 52.3Table 4. E�e
t of di�erent a
ousti
 adaptation algorithms on the IHM 
ondition (RT-04 dev). The sour
e of the adaptation data is mat
hed to the test data (ex
ept forLDC, where ICSI data was used in adaptation).All ICSI CMU LDC NISTUnadapted 31.5 20.9 43.6 33.7 28.5MLE-MAP 30.4 18.4 42.8 33.2 28.0NUM-MAP 30.0 18.3 42.0 33.0 27.3MMIE-MAP 29.8 17.9 41.4 32.9 27.6of meeting topi
s in the ICSI and NIST data, and their relative variability inthe CMU meetings.4.3 A
ousti
 Model AdaptationNext we tested the MMIE-MAP a
ousti
 adaptation approa
h des
ribed in Se
-tion 3.2. Table 4 shows small, yet 
onsistent, improvements over the standardMLE-MAP approa
h. MMIE adaptation was e�e
tive even if only the numerator
ounts were updated (\NUM-MAP").For the IHM 
ondition, models were adapted on training data re
orded withhead-mounted mi
rophones; for the MDM and SDM 
onditions, training datare
orded with distant mi
rophones were used. For the latter 
onditions, experi-ments showed that adapting models to dupli
ate versions of the data from dif-ferent mi
rophones de
reased the WER by 35-63% more than when models wereadapted to data from the 
entral mi
rophone only.Table 5 shows the improvement of adapted versus unadapted models. A
ous-ti
 adaptation provided an impressive improvement of 12.5% for the SDM 
ondi-tion (12.6% for delay-summed MDM) and 5.3% for the individual mi
 
ondition.For the distant mi
 
onditions, 
ombining the ICSI and NIST data for adapta-tion proved to be more e�e
tive than sour
e-mat
hed adaptation. Also for thedistant mi
 
ondition, the best results for CMU were produ
ed by using ICSI-only adapted models. A
ousti
 adaptation was most e�e
tive for ICSI data. Onereason is surely that ICSI was the sour
e with by far the most adaptation data.



Table 5. E�e
t of a
ousti
 adaptation on RT-04 devset. \SM Adapted" means sour
e-mat
hed: the sour
e of the adaptation data is mat
hed to the test.\I+N adapted" meansadapted to ICSI+NIST training data. +: there was no training data for LDC, so ICSIdata was used. *: re
ognition on CMU was best with models adapted to ICSI-only, andSDM and MDM results are identi
al sin
e only 1 mi
rophone was available. Sin
e theCMU and LDC dev data were mismat
hed to the eval data for IHM (lapel vs. headset),they were given less 
onsideration in making the overall design de
isions.All ICSI CMU LDC NISTIndividual Mi
sHeadset Lapel Lapel HeadsetUnadapted 31.5 20.9 43.6 33.7 28.5SM Adapted 29.8 17.9 41.4 32.9+ 27.6I+N Adapted 30.3 17.4 43.0 34.0 27.5Single Distant Mi
Unadapted 53.6 43.0 60.8 62.9 52.3SM Adapted 48.5 35.5 60.6 56.0 49.0I+N Adapted 46.9 34.3 59.0* 54.3 46.9Multiple Distant Mi
s (Delay-Summed)Unadapted 50.1 35.2 60.7 61.5 49.9I+N Adapted 43.8 28.4 59.0* 52.3 44.0Another likely reason is that ICSI meetings are dominated by speakers that re
urthroughout the entire 
orpus, in
luding in the test sets.4.4 Array Pro
essingThe a
ousti
 front-end pro
essing of delay-summing the test signal (as dis
ussedin Se
tion 3.1) produ
ed a further improvement of 6.6%. The delay-summingte
hnique was also most e�e
tive for ICSI data, possibly be
ause we had moreinformation about ICSI's meeting room 
on�guration than for the other sour
es.Delay-summing the adaptation data proved to be not as e�e
tive as using a
ous-ti
 models that were adapted to multiple versions of the signal from all mi
ro-phones (by 5% relative). This may be be
ause in the latter 
ase 
hannel vari-ability is better represented in the adaptation data.4.5 SegmentationTable 6 showsWERs with di�erent segmentations. For individual mi
s, the auto-mati
 segmentation in
reases the WER signi�
antly 
ompared to using referen
esegmentations. Resear
h on speaker diarization te
hniques 
ould be a solutionin re
ognizing 
ross-talk and produ
ing a better segmentation.4.6 Cross-Talk SupressionThe 
ross-talk suppression te
hnique des
ribed in Se
tion 3.5 led to a 2% WERredu
tion (see Table 7). The improvement was largest for the lapel re
ordings



All ICSI CMU LDC NISTIndividual Mi
sRef seg 30.3 17.4 43.0 34.0 27.5Auto seg 36.8 20.8 51.1 45.7 29.8Multiple Distant Mi
s (Delay-Summed)Ref seg (TC) 42.9 25.8 58.2 53.2 43.6Ref seg (AC) 44.1 27.8 56.9 55.9 43.8Auto seg 43.8 28.4 59.1 52.3 44.0Table 6. The table shows WERs with di�erent segmentations. TC stands for TrueClustering, and AC for Automati
 Clustering.All ICSI CMU LDC NISTIndividual Mi
sAuto seg 36.8 20.8 51.1 45.7 29.8Auto+Postpro
 36.1 20.5 50.2 43.8 30.1Table 7. The table shows the e�e
t of 
ross-talk removal postpro
essing on WER.Table 8. Results on the RT-04 evaluation set. \H" marks headset, \L" lapel mi

onditions. All ICSI CMU LDC NISTIndividual Mi
sDev IHM 36.1 20.5 50.2 L 43.8 L 30.1RT-04s IHM 34.8 24.2 40.3 H 44.7 H 27.1Distant Mi
sDev MDM 43.8 28.4 59.1 52.3 44.0RT-04s MDM 46.7 27.6 56.4 51.2 41.5RT-04s SDM 50.7 34.6 56.4 52.2 56.2(CMU and LDC); postpro
essing was not done for NIST meetings, whi
h seemedto have very little 
ross-talk.4.7 2004 Evaluations ResultsFinally, Table 8 shows the results on the RT-04 evaluation set, whi
h turned outremarkably similar to the devtest overall. The CMU individual mi
 re
ognitionis mu
h improved, presumably as a result of the swit
h to headset mi
s, thoughthis doesn't seem to be true for LDC. Note that, for the MDM 
ondition, eventhough the per-sour
e WERs are all lower, the overall WER is not, due to thefa
t that the more diÆ
ult sour
es (CMU and LDC) 
ontribute a larger portionof the test set.



Table 9. Results with full re
ognition system on RT-04 evaluation set.System MDM IHM CTS5xRT 46.7 34.8 24.1Full 44.5 32.7 22.24.8 The \Fast" vs. the \Full" SystemAfter having developed and tuned the system based on our 5xRT re
ognitionar
hite
ture, we ported our 
urrent full (20xRT) CTS evaluation system to theMeeting domain. The full system adds a se
ond de
oding path using within-wordPLP and 
ross-wordMFCCmodels, latti
e regeneration and model readaptation,and a �nal system 
ombination of three di�erent a
ousti
 models. Table 9 showsoverall results for IHM, MDM, and, for referen
e, 2003 CTS re
ognition. We seealmost identi
al absolute error redu
tions on the three test sets, although therelative improvement is somewhat smaller on Meetings (around 5%, 
omparedto 8% for CTS).5 Con
lusions and Future WorkWe have shown how a 
ombination of model adaptation, pre- and post-pro
essingte
hniques 
an be e�e
tive in retargeting a 
onversational telephone spee
h re
-ognizer to the meeting re
ognition task. The severe a
ousti
 mismat
h for distantmi
rophones espe
ially was alleviated by a 
ombination of dis
riminative modeladaptation and signal enhan
ement through noise �ltering and array pro
essing.Combined with LM adaptation, we a
hieved relative improvements of 9% and22%, respe
tively, for individual and distant mi
 
onditions. The system gaveex
ellent results in the Spring 2004 NIST evaluation.Still, many 
hallenges remain. Automati
 spee
h segmentation remains aproblem, leading to signi�
ant degradation 
ompared to a manual segmentation,whi
h we hope to remedy with the use of novel a
ousti
 features. Meetingsalso provide fertile ground for future work in areas su
h as a
ousti
 robustness,speaker-dependent modeling, and language and dialog modeling.6 A
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