The 2004 ICSI-SRI-UW Meeting Recognition
System

Chuck Wooters', Nikki Mirghafori!, Andreas Stolcke!:2, Tuomo Pirinen'-?,
Ivan Bulyko®, Dave Gelbart'+*, Martin Graciarena?, Scott Otterson?,
Barbara Peskin', and Mari Ostendorf?

! International Computer Science Institute, Berkeley, California, USA
2 SRI International, Menlo Park, California, USA
3 University of Washington, Seattle, Washington, USA
* University of California at Berkeley, Berkeley, California, USA
® Tampere University of Technology, Tampere, Finland
{wooters,nikki,stolcke}@icsi.berkeley.edu

Abstract. The paper describes our system devised for recognizing speech
in meetings, which was an entry in the NIST Spring 2004 Meeting Recog-
nition Evaluation. This system was developed as a collaborative effort
between ICSI, SRI, and UW and was based on SRI's 5xRT Conversa-
tional Telephone Speech (CTS) recognizer. The CTS system was adapted
to the Meetings domain by adapting the CTS acoustic and language
models to the Meeting domain, adding noise reduction and delay-sum
array processing for far-field recognition, and adding postprocessing for
cross-talk suppression for close-talking microphones. A modified MAP
adaptation procedure was developed to make best use of discriminatively
trained (MMIE) prior models. These meeting-specific changes yielded an
overall 9% and 22% relative improvement as compared to the original
CTS system, and 16% and 29% relative improvement as compared to our
2002 Meeting Evaluation system, for the individual-headset and multiple-
distant microphones conditions, respectively.

1 Introduction

Recognizing speech in meetings provides numerous interesting challenges for the
research community, ranging from teasing apart and recognizing highly interac-
tive and often overlapping speech to providing robustness to distant microphones
recording multiple talkers. Data collected from meeting rooms provide an ideal
testbed for such work, supporting research in robust speech recognition, speaker
segmentation and tracking, discourse modeling, spoken language understanding,
and more.

In recognition of this, NIST began its Meeting Room project [1], hosting a
workshop in Fall 2001 to share information on resources and plans with other
involved parties (including data providers CMU, ICSI, and LDC) and sponsoring
its first Meeting Recognition evaluation in spring 2002 as part of the Rich Tran-
scription evaluation series (RT-02) [2]. At that time, meeting room resources



were extremely limited (as was participation in the eval!) and so the evaluation
was essentially an exercise simply in benchmarking systems trained for other do-
mains, such as conversational telephone speech and broadcast news. Our work
on this task, as well as related meetings research from that period, is reported
in [9].

The next Meeting Recognition evaluation, RT-04S, was held in March 2004.
In the intervening two years, there has been an explosion of interest in the
Meetings domain, with a number of new projects focusing on the Meeting Room
task and substantial amounts of meeting room data becoming available.

The 75-meeting ICST Meeting Corpus [6] was released by the LDC at the
start of 2004 and several other collections, such as data recorded by CMU [14]
and by NIST itself, are being readied for public release. It has thus become
possible to conduct true Meetings-centric research, focusing development on the
particular problems presented by the Meetings task, such as the acoustics of
tabletop microphones and the specialized but varying topical content.

In March 2004 NIST conducted an evaluation of speech recognition systems
for meetings (RT-04S), following on its initial Meetings evaluation two years prior
(RT-02) [2]. Our team had participated in RT-02 with an only slightly modified
CTS recognition system, providing little more than a baseline for future work.
For RT-04 our goal was to assemble a system specifically for meeting recognition,
although the limited amounts of meeting-specific training data dictated that
such a system would still be substantially based on our CTS system. This paper
describes and evaluates the design decisions made in the process.

The evaluation task and data are described in Section 2. Section 3 includes
the system description, followed by results and discussion in Section 4. Conclu-
sions and future work are presented in Section 5.

2 Task and Data

2.1 Test Data

Evaluation Data The RT-04S evaluation data consisted of two 1-hour meet-
ings from each of the recording sites CMU, ICSI, LDC, and NIST. Systems were
required to recognize a specific 11-minute segment from each meeting; however,
data from the entire meeting was allowed for purposes of adaptation, etc. Sepa-
rate evaluations were conducted in three conditions:

MDM Multiple distant microphones (primary)
THM Individual headset microphones (required contrast)
SDM Single distant microphone (optional)

The CMU meetings came with only one distant mic; for the other meetings
between 4 and 7 distant mics were available. The IHM systems were allowed to
use all mics (distant or individual). For MDM and SDM conditions, NIST only
evaluated regions of speech with a single talker, thus eliminating overlapping
speech. Unlike recent CTS evaluations, the Meetings evaluation included non-
native speakers of English. Table 1 summarizes the differences among the sources
for training and test data.



Table 1. RT-04 training and test data differences per source.

| ICSI [CMU|LDC| NIST |

Evaluation Data
Num distant mics [ 6 | 1 | 4 | 7
Development Data
Individual mics || Head |Lapel |Lapel| Head
Training Data
Total available 74 hrs |11 hrs|None| 14 hrs
% Failed alignment|| 0.1% | 10% [N/A| 0.1%
Recording Head+ | Lapel | N/A |Head+
Condition Distant| only Distant

Development Data The RT-02 evaluation data (another 8 meetings from the
same sources) served as the development test set for RT-04. However, this set
was somewhat mismatched to the RT-04 evaluation data in that CMU and LDC
used lapel® instead of head-mounted microphones. An additional 5 meetings (2
ICSI, 2 CMU, 1 LDC) were available from the RT-02 devtest set.

2.2 Training Data

Training data was available from CMU (17 meetings, 11 hours of speech after
segmentation), ICST (73 meetings, 74 hours), and NIST (15 meetings, 14 hours).
No data from LDC was available. The CMU data was problematic in that only
lapel and no distant microphone recordings were available.

We excluded any data which failed to force-align with the released transcrip-
tions. This eliminated 0.1% of the data from each of ICSI and NIST, and 11%
from CMU. For acoustic training of the distant mic systems, we also excluded
regions with overlapped speech, based on forced alignments of the individual mic
signals.

3 System Description

In this section we describe our meeting recognition system. Our system was
based on a fast (5 times real-time) version of SRI’s CTS recognizer. Figure 1
shows the key aspects of the system and highlights the adaptations we made to
the baseline CTS system.

The top section of the diagram (denoted by “Training”) shows meeting spe-
cific adaptations performed in the training phase of the system. Specifically, the
CTS acoustic and language models were adapted with meeting-related acoustic
and textual data to create better matched models. These adaptations are dis-
cussed in Sections 3.2 and 3.3, respectively. The bottom portion of the diagram

% Throughout the text, individual mic subsumes both individual lapel and individual
head-set mic conditions.
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Fig. 1. The overall system architecture.

(denoted by “Recognition”) shows modifications to the recognition processing of
the baseline CTS, namely, the addition of pre- and post-processing steps. The
pre-processing steps of signal processing, segmentation, and array processing are
discussed in Sections 3.1, 3.1, and 3.1, respectively. The post-processing step is
discussed in Section 3.5.

3.1 Signal Processing and Segmentation

Noise Reduction of the Far-Field Microphone Signals The distant mic
signals are filtered using a batch version of the noise reduction algorithm de-
veloped for the Aurora 2 front-end proposed by ICSI, OGI, and Qualcomm [3].
The algorithm performs Wiener filtering with typical engineering modifications,
such as a noise over-estimation factor, smoothing of the filter response, and a
spectral floor. We modified the algorithm to use a single noise spectral estimate
for each meeting waveform. This was calculated over all the frames judged to
be nonspeech by the voice-activity detection component of the Qualcomm-ICSI-
OGI front end. We applied it independently for each meeting waveform and used
overlap-add resynthesis to create noise-reduced output waveforms, which then
served as the basis of all further processing.



Segmentation To identify regions of speech activity and segment them into
suitable chunks for further processing, a recognizer with two phones (speech and
nonspeech) was used to decode the signal. The phone models impose minimum
duration constraints and the language model (LM) penalizes switches between
the two models. The resulting segments were postprocessed to satisfy length
constraints, and to pad speech boundaries with a few frames of nonspeech. For
distant mics, the algorithm performs acoustic clustering to keep different speak-
ers in separate segments, and to group same or similar speakers into clusters that
can subsequently be used for feature normalization and acoustic adaptation.

For the headset mics condition, the segmentation models were trained on
ICSI and NIST headset mics training data, using forced alignments against the
references. For the distant mic conditions, two sets of models were trained: ICSI
and NIST data were used to train models for those two sources; the RT-02
devtest data (which included some CMU and LDC far-field data) were used to
train models for segmenting the CMU and LDC meetings.

Multiple Distant Microphone Array Processing For MDM processing,
segmentation was performed on a single, central mic. Array processing was then
performed separately on each speech region of the noise-reduced signals accord-
ing to the common segmentation. The waveform segments from the various dis-
tant microphones were aligned to compensate for time skew and sound travel
delays. Finally the aligned signals were summed to yield a single new segmented
waveform.

The rationale behind this processing is that speech will be summed in-phase
and amplified, whereas noise components are summed out of phase and will
be dampened. Delays for time alignment were estimated using maximal cross-
correlation, in which the central mic channel was used as the reference. Since the
microphone and speaker locations were unknown, the same search interval was
used for all microphone pairs at a given site; an educated guess as to the possible
delay ranges was made based on available documentation of the recording room
configurations. Note that the method assumes that each waveform segment con-
tains only one speaker and thus that the alignment delays would not vary within
a segment (hence the segmentation step had to precede the array processing).

3.2 Acoustic Modeling and Adaptation

Gender-dependent recognition models were derived from CTS models trained
on 420 hours of telephone speech from the Switchboard and CallHome English
collections. The MFCC models used 12 cepstral coefficients, energy, 1st, 2nd
and 3rd order difference features, as well as 2x5 voicing features over a 5-frame
window [5]. The 62-component raw feature vector was reduced to 39 dimensions
using heteroscedastic linear discriminant analysis [8]. PLP models used a similar
configuration, except that no voicing features were included and a two-stage
transform, consisting of standard LDA followed by a diagonalizing transform
[12] were used to map the feature space from 52 to 39 dimensions. Also, the
PLP models were trained with feature-space speaker adaptive training [7].



The CTS models were adapted to the meeting domain using ICSI and NIST
training data (the CMU meetings were deemed to be mismatched to the eval
data, as discussed in Section 2.2). Since the prior models had been trained with
the maximum mutual information criterion (MMIE) [11] we developed a version
of the standard maximum a-posteriori (MAP) adaptation algorithm that pre-
serves the models’ discriminative properties. CTS MMIE models were used to
collect numerator and denominator counts on the meeting data (downsampled
to 8kHz). These counts were combined with CTS numerator and denominator
counts, respectively. Finally, new Gaussian parameters were estimated from the
combined counts (mixture weights and HMM parameters were left unchanged
in the process).

Experiments showed that an adaptation weight near 20 for the numerator and
5 for the denominator was optimal. Furthermore, as reported in Section 4, most
of the improvement can be achieved by only adapting the numerator counts; this
could be convenient for some applications since denominator training requires
lattices to be generated for the adaptation data.

Feature Mapping We also experimented with the probabilistic optimum fil-
tering (POF) [10] approach to cope with the mismatch between far-field signals
and our CTS-based recognition models. In this approach a probabilistic mapping
of noisy (distant mic) to clean (headset mic) features is trained based on stereo
recordings. However, the method is complicated by time skew between channels,
changing speakers, and location-specific background noise. We obtained an error
reduction with a feature mapping trained on test data, but were not able to
obtain an improvement when using only training data, and therefore did not
include this method in our final system.

3.3 Language Model and Vocabulary

Our CTS language model is a mixture LM with 4M words of Switchboard-1
and 2, and 150M words of Broadcast News, and it includes 191M words of web
data chosen for style and content [4]. It was adapted for meeting recognition
by adding two meeting-specific mixture components: Meetings transcripts from
ICSI, CMU, and NIST (1.7M words), and newly collected web data (150M words)
related to the topics discussed in the meetings and also aimed at covering new
vocabulary items. Also, 5.3M words from the CTS Fisher collection were added
for coverage of current topics. The mixture was adapted by minimizing perplexity
on a held-out set consisting of approximately equal amounts of transcripts from
the four sources. We also experimented with source-specific LMs, but found that
the available tuning data was insufficient to estimate source-specific mixture
weights robustly.

Figure 2 show the language model perplexities for different sources. We see
that the lowest perplexities are those of the ICSI data. This might be because the
discussion topics are consistent throughout these recording sessions and there is
a relatively small set of common speakers. Additionally, we observe that the ICSI
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Fig. 2. The language model perplexities for different sources.

subset benefits the most reduction in perplexity from the addition of meetings-
specific data, given the reasonable explanation that the majority of the meetings
text data comes from this source. The perplexities of the CMU set are the
highest. Also, the CMU subset benefits the most from the addition of web data
and the least (degrades slightly, in fact) from the addition of meetings data.
These trends are probably due to the wide range and variety of topics discussed
in the CMU meetings.

The vocabulary was extended (relative to the baseline CTS system) to include
all non-singleton words from Fisher and Meetings transcripts. The vocabulary
size was close to 50,000, and yielded a 0.9% out-of-vocabulary rate on the de-
velopment test transcripts. The pronunciation dictionary was inherited from the
CTS system and was based on the CMU dictionary, with added phones for filled
pauses and laughter.

3.4 Decoding

The recognition search was structured as in the SRI “fast” (5xRT) CTS system.
Within-word MFCC models were adapted with phone-loop MLLR and used to
generate bigram lattices. The lattices were then rescored with a 4-gram LM and
consensus-decoded to obtain preliminary hypotheses. These were then used to
estimate speaker-adaptive feature transforms and MLLR model transforms for
the cross-word PLP models, which were employed to generate 2000-best lists
from trigram-expanded lattices. The N-best lists were then rescored with a 4-
gram LM, pronunciation, pause, and duration models [13], and combined into
final confusion networks, from which 1-best hypotheses and confidence values
were extracted.



Table 2. Improvement of the new baseline CTS system as compared to the system
used in the RT-02 evaluation, reported on RT-02 eval set.

| [AII[ICSI[CMU|LDCINIST)

Individual Mics
RT-02 System ||36.0{ 25.9 | 47.9 | 36.8 | 35.2
RT-04 CTS Base|[32.8| 24.0 | 44.3 | 33.2 | 31.5
Single Distant Mic
RT-02 System ||61.6] 53.6 | 64.5 | 69.7 | 61.6
RT-04 CTS Base||56.6| 48.8 | 61.9 | 60.5 | 60.3

3.5 Cross-Talk Suppression

The decoded word hypotheses from the ITHM system were postprocessed in an
attempt to eliminate cross-talk. We assumed that when cross-talk was sufficiently
loud, recognized words with low confidence would be produced, and that most
speech was not overlapped. Therefore, we time-aligned the words on all channels,
and deleted those words which had confidence score below a given threshold, and
overlapped, by at least 50%, with a word on another channel.

4 Results and Discussion

4.1 TImprovements to the Baseline System

Since both the old RT-02 system and this year’s baseline system were developed
for the CTS domain, we were interested to see how much of the improvements
made on the CTS recognition task would carry over to the Meeting task. Using
RT-02 system components comparable to the current 5xRT system, the WER
on the 2002 CTS task reduced from 29.4% to 23.6%, a 20% relative reduction.
As shown in Table 2, the same system achieved relative improvements of 8%
and 9% on the RT-02 meeting evaluation data, in the individual and distant mic
conditions, respectively.

In the following sections, we report results on the official RT-04S develop-
ment test, whose references differed somewhat from the RT-02 evaluation set. We
present experiments in cumulative fashion, so that each improvement is the base-
line for the following experiment. To be consistent with RT-02, unless otherwise
noted, individual mic recognition uses reference segmentations, while distant mic
experiments use automatic segmentation, plus noise filtering.

4.2 Language Model Adaptation

First we examine the effect of LM adaptation (see Section 3.3), shown in Table 3.
The improvement is roughly 5% overall and appears to be more substantial for
ICST and NIST, and less so for CMU and LDC data. Besides the lack of training
data for LDC meetings, the observed difference could be due to the consistency



Table 3. Effect of language model adaptation on RT-04 devtest data.

[AII[ICSI]CMU|LDC|NIST)

Individual Mics
Baseline |[33.3| 23.5 | 44.6 | 34.2 | 32.0
Adapted LM|[31.5( 20.9 | 43.6 | 33.7 | 28.5
Single Distant Mic
Baseline 56.21 45.9 | 61.0 | 63.7 | 59.9
Adapted LM|[53.6| 43.0 | 60.8 | 62.9 | 52.3

Table 4. Effect of different acoustic adaptation algorithms on the THM condition (RT-
04 dev). The source of the adaptation data is matched to the test data (except for
LDC, where ICSI data was used in adaptation).

| [All [ICSI[CMU[LDC|NIST)]
Unadapted [[31.5]20.9 [ 43.6 | 33.7 | 28.5
MLE-MAP [[30.4]18.4 | 42.8 [33.2 | 28.0
NUM-MAP [[30.0[ 18.3 | 42.0 | 33.0 | 27.3
MMIE-MAP|[29.8[17.9] 41.4 [32.9] 27.6

of meeting topics in the ICSI and NIST data, and their relative variability in
the CMU meetings.

4.3 Acoustic Model Adaptation

Next we tested the MMIE-MAP acoustic adaptation approach described in Sec-
tion 3.2. Table 4 shows small, yet consistent, improvements over the standard
MLE-MAP approach. MMIE adaptation was effective even if only the numerator
counts were updated (“NUM-MAP”).

For the THM condition, models were adapted on training data recorded with
head-mounted microphones; for the MDM and SDM conditions, training data
recorded with distant microphones were used. For the latter conditions, experi-
ments showed that adapting models to duplicate versions of the data from dif-
ferent microphones decreased the WER by 35-63% more than when models were
adapted to data from the central microphone only.

Table 5 shows the improvement of adapted versus unadapted models. Acous-
tic adaptation provided an impressive improvement of 12.5% for the SDM condi-
tion (12.6% for delay-summed MDM) and 5.3% for the individual mic condition.
For the distant mic conditions, combining the ICSI and NIST data for adapta-
tion proved to be more effective than source-matched adaptation. Also for the
distant mic condition, the best results for CMU were produced by using ICSI-
only adapted models. Acoustic adaptation was most effective for ICSI data. One
reason is surely that ICSI was the source with by far the most adaptation data.



Table 5. Effect of acoustic adaptation on RT-04 devset. “SM Adapted” means source-
matched: the source of the adaptation data is matched to the test. “I+N adapted” means
adapted to ICSI+NIST training data. +: there was no training data for LDC, so ICSI
data was used. *: recognition on CMU was best with models adapted to ICSI-only, and
SDM and MDM results are identical since only 1 microphone was available. Since the
CMU and LDC dev data were mismatched to the eval data for IHM (lapel vs. headset),
they were given less consideration in making the overall design decisions.

| [All] ICSI [CMU|LDC]| NIST |

Individual Mics
Headset| Lapel | Lapel {Headset
Unadapted |([31.5| 20.9 | 43.6 | 33.7 | 28.5
SM Adapted |[29.8| 17.9 | 41.4 (32.94| 27.6
I+N Adapted|30.3| 174 | 43.0 | 34.0 | 275
Single Distant Mic
Unadapted |[|53.6] 43.0 | 60.8 | 62.9 | 52.3
SM Adapted ||48.5| 35.5 | 60.6 | 56.0 | 49.0
I+N Adapted|46.9| 34.3 |59.0% | 54.3 | 46.9
Multiple Distant Mics (Delay-Summed)
Unadapted |[[50.1] 35.2 | 60.7 | 61.5 | 49.9
I+N Adapted|43.8| 284 |[59.0%| 52.3 | 44.0

Another likely reason is that ICST meetings are dominated by speakers that recur
throughout the entire corpus, including in the test sets.

4.4 Array Processing

The acoustic front-end processing of delay-summing the test signal (as discussed
in Section 3.1) produced a further improvement of 6.6%. The delay-summing
technique was also most effective for ICSI data, possibly because we had more
information about ICSI’s meeting room configuration than for the other sources.
Delay-summing the adaptation data proved to be not as effective as using acous-
tic models that were adapted to multiple versions of the signal from all micro-
phones (by 5% relative). This may be because in the latter case channel vari-
ability is better represented in the adaptation data.

4.5 Segmentation

Table 6 shows WERs with different segmentations. For individual mics, the auto-
matic segmentation increases the WER significantly compared to using reference
segmentations. Research on speaker diarization techniques could be a solution
in recognizing cross-talk and producing a better segmentation.

4.6 Cross-Talk Supression

The cross-talk suppression technique described in Section 3.5 led to a 2% WER
reduction (see Table 7). The improvement was largest for the lapel recordings



| [All[ICSI[CMU[LDC|NIST]
Individual Mics
Ref seg 30.3] 174 | 43.0 | 34.0 | 27.5
Auto seg (|36.8| 20.8 | 51.1 | 45.7 | 29.8
Multiple Distant Mics (Delay-Summed)
Ref seg (TC)[[42.9] 258 | 58.2 | 53.2 | 43.6
Ref seg (AC)|[44.1| 27.8 | 56.9 | 55.9 | 43.8
Auto seg [|43.8/ 28.4 | 59.1 | 52.3 | 44.0

Table 6. The table shows WERs with different segmentations. TC stands for True
Clustering, and AC for Automatic Clustering.

| |AI[ICSI|CMU|LDC|NIST)
Individual Mics

Auto seg 36.8/20.8 | 51.1 | 45.7| 29.8

Auto+Postproc||36.1| 20.5 | 50.2 | 43.8 | 30.1

Table 7. The table shows the effect of cross-talk removal postprocessing on WER.

Table 8. Results on the RT-04 evaluation set. “H” marks headset, “L” lapel mic
conditions.

[AII[ICSI|CMU| LDC |[NIST)|

Individual Mics
Dev IHM |(36.1| 20.5 |50.2 L|43.8 L| 30.1
RT-04s IHM ||34.8| 24.2 |40.3 H|[44.7 H| 27.1
Distant Mics
Dev MDM ||43.8] 28.4 | 59.1 | 52.3 | 44.0
RT-04s MDM|(46.7| 27.6 | 56.4 | 51.2 | 41.5
RT-04s SDM ([50.7| 34.6 | 56.4 | 52.2 | 56.2

(CMU and LDC); postprocessing was not done for NIST meetings, which seemed
to have very little cross-talk.

4.7 2004 Evaluations Results

Finally, Table 8 shows the results on the RT-04 evaluation set, which turned out
remarkably similar to the devtest overall. The CMU individual mic recognition
is much improved, presumably as a result of the switch to headset mics, though
this doesn’t seem to be true for LDC. Note that, for the MDM condition, even
though the per-source WERs are all lower, the overall WER is not, due to the
fact that the more difficult sources (CMU and LDC) contribute a larger portion
of the test set.



Table 9. Results with full recognition system on RT-04 evaluation set.

System[MDM|IHM|CTS)|

5xRT 46.7 | 34.8 | 241
Full 44.5 | 32.7|22.2

4.8 The “Fast” vs. the “Full” System

After having developed and tuned the system based on our 5xRT recognition
architecture, we ported our current full (20xRT) CTS evaluation system to the
Meeting domain. The full system adds a second decoding path using within-word
PLP and cross-word MFCC models, lattice regeneration and model readaptation,
and a final system combination of three different acoustic models. Table 9 shows
overall results for IHM, MDM, and, for reference, 2003 CTS recognition. We see
almost identical absolute error reductions on the three test sets, although the
relative improvement is somewhat smaller on Meetings (around 5%, compared
to 8% for CTS).

5 Conclusions and Future Work

We have shown how a combination of model adaptation, pre- and post-processing
techniques can be effective in retargeting a conversational telephone speech rec-
ognizer to the meeting recognition task. The severe acoustic mismatch for distant
microphones especially was alleviated by a combination of discriminative model
adaptation and signal enhancement through noise filtering and array processing.
Combined with LM adaptation, we achieved relative improvements of 9% and
22%, respectively, for individual and distant mic conditions. The system gave
excellent results in the Spring 2004 NIST evaluation.

Still, many challenges remain. Automatic speech segmentation remains a
problem, leading to significant degradation compared to a manual segmentation,
which we hope to remedy with the use of novel acoustic features. Meetings
also provide fertile ground for future work in areas such as acoustic robustness,
speaker-dependent modeling, and language and dialog modeling.
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