SPEECHCORDER, THE PORTABLE MEETING RECORDER

Adam Janin and Nelson Morgan

International Computer Science Institute
1947 Center Street
Berkeley, CA 94708

janin@icsi.berkeley.edu morgan@icsi.berkeley.edu

ABSTRACT

SpeechCorder is a project to design, implement, and test
a portable speech recognizer. It will be used to retrieve
information from roughly transcribed speech recorded dur-
ing natural meetings. This is an important application do-
main, but has inherent difficulties far beyond the command-
and-control functions that are beginning to be implemented
with speech recognition on portable computers. In addition
to the difficult acoustic environment presented by natural
meetings, the limitations of a portable platform must also
be considered.

The proposed system uses IRAM, a new chip being
developed at the University of California, Berkeley. It is
a low-power, vector processor with embedded DRAM. By
coding the speech recognition algorithms to take advantage
of IRAM, high performance with low power consumption
can be achieved.

In this paper, we will describe the proposed Speech-
Corder system, some of the research issues and design trade-
offs, and the status of work in progress.

1. SPEECHCORDER APPLICATION

The goal of the SpeechCorder project is to produce a port-
able device that records meetings in real-time and generates
a searchable transcript. Users would annotate and correct
the transcripts using voice and pen input. They would also
retrieve records based on spoken and textual queries.

1.1. Why Not Written Notes?

o Unreadable Handwriting: Often, written notes are
illegible. This becomes even more of a problem as
time passes — notes that were comprehensible when
written become indecipherable after a few weeks.

o Detracts From Listening: It can be very difficult to
take notes and pay close attention to the meeting at
the same time. Many people find that they can take
notes or they can listen closely, but not both.

o Incomplete Record: It is almost impossible to record
ameeting in its entirety. Frequently, important points
and data are missing from the written record.

o Hard to Search: Written notes provide no support for
searching and indexing. Finding particular informa-
tion is very difficult.

1.2. Why Not A Tape Recorder?

e Hard to Annotate: With written notes, adding ar-
bitrary annotations (underlining, circling, diagrams,
doodles) is trivial. It is much more difficult to provide
synchronized annotations with a tape recorder.

e Playback Can Be Disruptive: One cannot play back a
tape recording during a meeting without disturbing
the other participants. Also, one cannot play back
and record simultaneously.

e Too Much Data: Recording an entire meeting via
tape produces a very large amount of extraneous data.

e Hard to Search: As with written notes, a taped meet-
ing cannot easily be indexed and searched.

1.3. Hypothetical SpeechCorder Example

Figure 1 shows a hypothetical screen of the SpeechCorder
application. The image demonstrates some of the poten-
tial user-interface ideas for correction and annotation of the
transcript.

Page 7 (6 Minutes Ago)

User Added
. Annotation
1: We might be able to
reck your eyes the
fode. Cuterloop vect
2: 1 don’t think | can get to
T POfo that until after the|repealg Text
ranscription
P 3: Well, do what i Feet?etat Correction

Search

Recorded
E s BO=E

Annotation View Note Taking
(Selected) View

Page Controls

Figure 1: Hypothetical SpeechCorder Screen Shot.

As participants of the meeting speak, a possibly inaccu-
rate transcript would appear in real-time. Since the speech
recognizer often can produce a measure of how confident
it is with its guess, the user-interface could highlight poor

transcriptions. When the recognizer makes an error, the
user could quickly correct it by clicking on the incorrect
word. The recognizer would then generate a popup box
of alternatives from which the user could select the correct
word.

Also shown is a text annotation entered by the user.

1.4. SpeechCorder Requirements

For SpeechCorder to be useful, it must meet a number of
challenging requirements. It must record meetings in natu-
ral settings so that impromptu meetings can be processed.
The speech recognition must therefore work in uncontrolled
acoustic environments including background noise (fans,
music, etc.), and reverberation using far-field microphones
(e.g. a PDA microphone). The vocabulary must be large
enough to cover the domain of the meeting. It must work
with spontaneous speech.

If we want to support impromptu meetings in uninstru-
mented environments, it is necessary for SpeechCorder to
be portable. Although it is certainly possible to use a hand-
held computer as a terminal using a wireless network, we
feel that a self-contained solution is better in the long run.
The terminal/main-frame model has more components to
fail — the terminal, the network, the wireless link, the main-
frame, the infrastructure. There is also the question pri-
vacy, which is much easier to address with a self-contained
unit. The PC revolution has also shown us the utility of
personal compute power.

Perhaps the most useful aspect of having a transcript
of a meeting is the ability to search the record. We plan
to provide for searching both by speaker and text content.
Since the actual audio will be stored, the users can play
back the portion of the meeting that matches their criteria.
We will support both textual and spoken queries.

Note that, since the audio record is stored, the tran-
script need not be perfect. It need only be good enough
so that queries match where users expect them to match.
For referring to the actual content, users can play back the
audio. In addition, the speech recognizer can output not
just the most likely transcript, but also a list of the top
few most likely hypotheses (N-best lists). Queries can be
made against these N-best list, rather than just the best
hypothesis. Finally, the recognizer does much worse with
so-called function words (such as “the”, “a”, “of”, “an”)
as opposed to content words. However, for text retrieval,
systems usually ignore function words. For all of the above
reasons, it is perfectly satisfactory for the recognizer to be
imperfect. In fact, we expect word-error rates of up to 40%
to be acceptable for information retrieval [3].

2. IRAM

The SpeechCorder project is closely affiliated with the Intel-
ligent RAM (IRAM) group at the University of California,
Berkeley [6]. The IRAM group is building a powerful pro-
cessor well suited to our task. In this section, we will briefly
outline the architecture of the IRAM chip, and discuss its
advantages and disadvantages. The following section will
detail how ASR algorithms map to the IRAM architecture.

The IRAM architecture consists of a scalable design
combining a vector processing unit with a DRAM array
and fast I/O on a single chip. This allows efficient process-
ing of multimedia data with fairly low power consumption.
The architecture allows for considerable scaling in process-
ing power and memory while maintaining instruction set ar-
chitecture (ISA) compatibility. In the section below, we will
discuss some details of the first implementation of IRAM,
VIRAM-1.

2.1. Embedded Memory

The first distinguishing characteristic of IRAM is that the
memory is incorporated directly on the same chip as the
processor. Not only does this allow a high peak memory
bandwidth of 25.6 GBytes/s, but it also reduces power con-
sumption by removing the need to drive external busses
and cache local data. A deep vector pipeline helps hide the
latency of the DRAM.

Memory can scale up both in total amount, and also in
the number of banks. More banks provide higher efficiency
by allowing multiple memory accesses to overlap. Because
of limitations inherent in an academic research project, we
are constrained to use available memory “macros”, which
limit the number of banks in VIRAM-1. Also, because of
packaging considerations (the chip has a high aspect ratio),
total memory in VIRAM-1 is only 16 MBytes.

2.2. Vector Processor

In addition to embedded memory, IRAM also incorporates
a vector coprocessor. The coprocessor executes a set of in-
structions based on an extension of the MIPS ISA to a vec-
tor register architecture. Vector instructions perform a set
of identical operations on the elements of vector operands
located in a vector register file. For example, an instruction
such as vadd vr0, vril, vr2 would add all the elements in
vector register vri to the corresponding elements in vector
register vr2, and store them in vector register vr0.

On VIRAM-1, each vector register consists of 2048 bits,
and can be divided into 32 64-bit elements, 64 32-bit ele-
ments, or 128 16-bit elements. The ISA allows 258 8-bit ele-
ments, but 8-bit data types are not supported in VIRAM-1
(they will generate an unimplemented instruction excep-
tion). For vectors longer than the vector length, strip min-
ing is required. The ISA defines instructions and registers
that isolate the application from the details of the chip im-
plementation. Therefore, the application need not be aware
of the size of the vector register, only of the width of the
data type. IRAM also operates very efficiently on short
vectors.

VIRAM-1 contains 4 vector lanes, each containing 2
arithmetic units capable of operating on 64-bits at a time.
Peak performance at 200 MHz is 6.4 Gops for 16 bit inte-
ger data, 3.2 Gops for 32 bit data, and 1.6 Gops for 64 bit
data. Higher performance could be achieved by increasing
the number of vector lanes. Since the ISA does not expose
the number of lanes, programs need not be rewritten for
higher performance IRAM chip implementations.

o |} O o
Py Pyl Py Pyl
> > > >
< < < <
o = N w
ol Crossbar |
(<]
° =g
SO vro VL1 VL2 VL3
S
[Crossbar |
lw] o o o
X Y X a
> > > >
< < < <
» (6)] (o] ~

Figure 2: VIRAM-1 Floorplan

2.3. Advantages and Disadvantages

Instruction fetch, decode, and dispatch consume significant
power in conventional architectures. Since a single vector
instruction initiates many operations, far less power is used
with a vector architecture. This, combined with the power
savings from using embedded DRAM, leads to relatively
low power consumption on IRAM. VIRAM-1 will consume
approximately 2 watts of power, or more than 3 Gops /
watt at peak performance.

Another key advantage of IRAM is that it is a gen-
eral purpose processor. Although efficiency is certainly re-
duced if the code cannot be vectorized, it can still run.
This allows us to concentrate effort only on the computa-
tional kernels that get executed many times. Code that is
not executed frequently can be written using conventional
methods. Also, a version of the Cray vectorizing compiler
is available for IRAM, which allows coding in C, C++, and
Fortran. We envision three levels of coding for IRAM. At
the highest level, conventional C, C++, or Fortran will be
used. For inner loops and frequently called subroutines, the
source can be annotated (with #pragmas) to vectorize more
efficiently. Finally, for the most important computational
kernels, highly efficient hand-optimized library routines will
be provided. Several such kernels, including the fast Fourier
transform [8], motion estimation, and various linear algebra
operations are already available.

The primary disadvantage of VIRAM-1 from the speech
recognition viewpoint is the limited RAM. This is not a
limitation of the architecture, but rather of the current im-
plementation. IRAM can access off-chip memory, but it is
unclear at this time how much, if any, will be available.

2.4. Status

VIRAM-1 is in the final stages of design. Tape-out is sched-
uled for summer of 2001. Algorithm development and test-
ing is conducted on simulators, both at the instruction set
level, and a detailed, clock level performance simulation.
The simulators, especially the performance simulator, op-
erate fairly slowly, and are therefore mostly useful for test-
ing and analyzing computational kernels, rather than entire
programs.

3. AUTOMATIC SPEECH RECOGNITION

For SpeechCorder to operate as a portable unit, it is neces-
sary for the speech recognition algorithms to run efficiently
on IRAM. To this end, we have begun to implement a
speech recognition system with vectorized algorithms. We
based the system on our existing desktop speech recognition
algorithms.

Figure 3 shows a block diagram of ICSI’s hybrid speech
recognition system [4]. Sounds are digitized from a mi-
crophone, and are delivered to the Signal Processing unit,
typically at 16,000 values per second and 16 bits per value.

3.1. Signal Processing

The Signal Processing unit performs feature extraction, in
which the linear amplitude signal is converted to a sparser,
spectral-like representation.

Generally, vectorizing signal processing is fairly easy, as
the computational bottleneck is usually a filterbank, fol-
lowed by processing on independent channels. A filterbank
can be implemented as a Fast Fourier Transform (FFT).
Vectorization of the FFT has been extensively studied, and
an efficient implementation that has been validated against
the simulators is available for IRAM [8].

3.2. Phone Probability Estimation

The features produced by the Signal Processor are passed
to the Phone Probability estimator. This component es-
timates the probability that the given time interval repre-
sents a particular sound in the language (for example, was
the sound a /k/, or an /a/, or a /p/). For each sound
in the language (typically between 48 and 64 in English),
the Phone Probability Estimator outputs a value between
0 and 1, once every time interval. In some systems, a larger
number of sound units are used to represent the effects of
context and variation within a phone.

At ICSI, we implement the Phone Probability Estima-
tor using a multi-layer perceptron (MLP) neural network.
A somewhat more common approach incorporates gaussian
mixtures, but other groups have successfully used recur-
rent neural networks, decision trees, and support vector
machines.

An MLP is easy to vectorize. The operations consist
of multiplying an input vector by a weight matrix, and
then applying a non-linearity to each element of the re-
sulting vector. For efficiency, several input vectors are usu-
ally queued up, and a matrix-matrix multiply (rather than
a matrix-vector multiply) is performed. This is the com-
putational bottleneck of the Phone Probability Estimator.
Note that matrix-matrix multiply can be performed at high
speed on vector architectures [5], and an implementation
that achieves more than 90% of peak performance on the
simulator is available for IRAM.

3.3. Decoding

Conceptually, the decoder takes the sequences of estimates
of the phone probabilities, and compares them against mod-
els of every permissible word sequence. It then outputs the
most likely utterance. For unrestricted large vocabularies

16 kHz every 10 ms

AR

Speech - Signal /—\
Signal Sampled ; Spectral-like
9 Signal Processing Features
16 bits 20 floats

Phone Prob. Phone Decoder Recognized
Estimators | o /- ities HMM Tod
Neural Network
/a/ 0.263 “the”

veat”
wig”

/e/ 0.104
/k/ 0.002 % 5 B

Figure 3: ICSI’s hybrid speech recognition system.

as might be used in natural meetings, however, the search
space must be massively pruned for the process to be com-
putationally tractable.

The decoder is implemented as a Hidden Markov Model
(HMM) of concatenated sub-word units (e.g. phones), with
one HMM per word in the vocabulary. The sequence of
words is computed by combining the probability of each
individual word according to an HMM with the language
model, which provides a score for a given sequence of words
based on the likelihood of the sequence according to some
model of how words group in the language. Because of the
limited memory on VIRAM-1, it is likely we will use a either
a reduced language model, or, if off-chip memory or disk is
available, we will use a cached language model.

Once likely sequences of words have been computed, the
system must store the data so that indexing, querying, and
retrieval can be performed.

The decoder is usually the most computationally and
memory intensive component of an ASR system. It is also
the most challenging to vectorize. One approach is vec-
torize across words — N words with identical length are
computed simultaneously, where N is the vector length.
This approach has the advantage of being easy to vector-
ize. However, organizing the search for the best sequence of
words becomes very difficult and memory intensive. Since
VIRAM-1 is limited to 16 MBytes of memory, we are inves-
tigating another algorithm that vectorizes the Viterbi algo-
rithm during the extension phase of a stack decoder [7] (the
extension phase consists of checking every possible word
starting at a particular frame). This has the advantage of
using conventional scalar algorithms for the search portion
of the algorithm, and efficient vector code for the inner loop.
However, the algorithm is somewhat complex to code. We
are in the process of developing this algorithm, and have
tested one part on the IRAM simulator.

4. SUMMARY

We are in the process of designing and building Speech-
Corder, a portable device that records natural meetings in
real-time. Earlier versions of the recognition algorithms
showed sufficient accuracy to permit information retrieval
on the recorded speech. By using VIRAM-1, a new em-
bedded memory vector processor design, speech algorithms
should be able to run efficiently on a small platform with low
power consumption. To work effectively on IRAM, speech
algorithms must be vectorized. We have implemented a por-

tion of the speech recognizer, and tested it on the IRAM
simulators. The result was a performance that was 80% of
the peak predicted for the design. We are now in the pro-
cess of finalizing vectorization of the Decoder. Our IRAM
colleagues are nearly done with the chip design, and we ex-
pect to be testing the algorithms on the actual chip later
in the year. In a separate project, we are working on im-
proving far-field microphone recognition for data collected
during meetings at ICSI.

More information on SpeechCorder and IRAM can be
found on the web [1] [2].

5. ACKNOWLEDGMENTS

The authors would like to thank the IRAM group at Berke-
ley, DARPA, NIST, SRI, IBM, and the University of Wash-
ington for their participation in the project.

REFERENCES

[1] IRAM web pages. http://iram.cs.berkeley.edu.

[2] Meeting recorder web pages.
http://www.icsi.berkeley.edu/real/mtgrcdr.html.

[3] D. Abberley, S. Renals, and G. Cook. Retrieval of
broadcast news documents with the THISL system.
In Proceedings IEEE Int’l Conference on Acoustics,
Speech, & Signal Processing, pages 3781-3784, 1998.

[4] H. Bourlard and N. Morgan. Connectionist Speech
Recognition: A Hybrid Approach. Kluwer Academic
Publishers, 1993.

[6] F. G. Gustafson J. J. Dongarra and A. Karp. Imple-
menting linear algebra algorithms for dense matrices on
a vector pipeline machine. SIAM Review, 26:91-112,
1984.

[6] Christoforos E. Kozyrakis and David Patterson. A new
direction in computer architecture research. IEEE Com-
puter, November 1998.

[7] D. Paul. An efficient A* stack decoder algorithm for
continuous speech recognition with a stochastic lan-
guage model. In Proceedings IEEE Int’l Conference on
Acoustics, Speech, & Signal Processing (ICASSP-92),
pages 25-28, San Francisco, 1992.

[8] R. Thomas and K. Yelick. Efficient FFTs on IRAM. In
Proceedings of the 1st Workshop on Media Processors
and DSPs (MICRO-32), Haifa, Israel, November 1999.

