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Abstract
A critical step in encoding sound for neuronal processing

occurs when the analog pressure wave is coded into discrete
nerve-action potentials. Recent pool models of the inner hair
cell synapse do not reproduce the dead time period after an
intense stimulus, so we used visual inspection and automatic
speech recognition (ASR) to investigate an offset adaptation
(OA) model proposed by Zhang et al. [1].

OA improved phase locking in the auditory nerve (AN)
and raised ASR accuracy for features derived from AN fibers
(ANFs). We also found that OA is crucial for auditory pro-
cessing by onset neurons (ONs) in the next neuronal stage, the
auditory brainstem.

Multi-layer perceptrons (MLPs) performed much better
than standard Gaussian mixture models (GMMs) for both our
ANF-based and ON-based auditory features. Similar results
were previously obtained with MSG (Modulation-filtered Spec-
troGram) auditory features[2]. Thus we believe researchers
working with novel features should consider trying MLPs.
Index Terms: offset adaptation, auditory sound processing,
feature extraction, acoustic modeling

1. Introduction
One of the most critical processing steps during auditory sound
processing occurs at the inner hair cell (IHC) synapse: here the
mechanically pre-filtered analog sound signal is converted into
discrete nerve action potentials which propagate along the audi-
tory nerve fibers (ANFs) to the brain. This conversion induces
massive information loss – or to phrase it positively – informa-
tion reduction. As any information lost during this process is
no longer available for neuronal processing, it is important to
understand and model the underlying principles correctly.

In our previous work, we have developed a model of hu-
man auditory sound processing, which codes sound signals into
trains of nerve-action potentials. The model includes outer- and
middle ear frequency responses, inner ear hydrodynamics, a
compression stage, IHCs, and ANFs [3]. We used automatic
speech recognition (ASR) tools to measure how well our model
codes speech in noise [3]. When we investigated models of
onset neurons (ONs) in the auditory brainstem, we discovered
that we could not obtain realistic responses to amplitude mod-
ulated signals above 3 kHz. Detailed analysis of the responses
revealed a flaw in the synapse model between inner hair cells
and the auditory nerve: recent pool models fail to reproduce a

realistic offset adaptation [4, 5].
In this paper we therefore extend our model with a model

of offset adaptation following the proposal of Zhang et al. [1]
and analyze how it improves the coding of speech signals. We
also compare the ASR performance of Gaussian mixture mod-
els (GMMs) and multi-layer perceptrons (MLPs) to see which
handles features derived from our auditory model better.

2. Modeling synaptic adaptation
In this section, we focus on the synaptic processes between
IHCs and the auditory nerve.

The observed time course in the firing rate of ANF re-
sponses to tone bursts can be characterized by two exponential
components [6] (see Fig. 2):

Ron(t) = Asus +Are
−t/τr +Aste

−t/τst (1)

whereAr andAst are two exponential components of rapid and
short term adaptation, τr and τst are the respective decay time
constants, and Asus is a steady-state component.

We implemented a pool model as proposed by Meddis [4,
7]. The model has three reservoirs: the immediate store (q), the
synaptic cleft (c), and the reprocessing store (w) (see Fig. 1).
The model output is proportional to the rate of transmitter re-
lease from the immediate store (q) to the synaptic cleft (c), given
by k(t)q(t), where k(t) is the only stimulus dependent variable.
k(t) describes the fusion rate of synaptic vesicles (mediated by
Ca2+-influx into the cell) which is specified as a function of
intracellular IHC voltage [5].

The model output can be represented by Eq. 3 in the
Laplace domain and solved analytically using a high-frequency
tone burst as the stimulus input. The IHC voltage is assumed to
be constant after the onset (denoted as k2). q(0−),c(0−), and
w(0−) are the reservoir concentrations before the onset. For
more details please refer to the paper from Zhang et al. [1].

The resulting characteristic function of q(t) is:

q(t) = Φ0 + Φ1e
−t/τ1 + Φ2e

−t/τ2 (2)

where −1/τi are poles of Q(s). The values τi and Φi can be
calculated from Q(s) directly.

Note that Eq. 2 has two exponential components which are
the same as in Eq. 1. Therefore, the analytical relationship be-
tween model parameter and adaptation characteristics is estab-
lished. Any desired adaptation responses can be achieved using
appropriate model parameters, and vice versa.

Q(s) =
(sq(0−) + yM)(s+ x)(s+ l + r) + c(0−)rxs+ w(0−)xs(s+ l + r)

s(s+ x)(s+ y + k2)(s+ l + r)− k2rxs
(3)
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Figure 1: Schematics of the IHC-AN model. The immediate
store q (maximum size: M ) is refilled by the global pool at a
rate of y[M − q(t)] and by the reprocessing store (w) at a rate
of xw(t). The transmitter in the synaptic cleft c is lost at a rate
of lc(t) or recycled at a rate of rc(t) into the reprocessing store.

The pool model uses the same characteristic function for
both offset and onset adaptation. Since q(t) can not be nega-
tive in Eq. 2, the model can not reproduce a “dead-time” period
as found in physiological experiments. Instead, the rapid com-
ponent of the model recovery function causes the synapse to
recover immediately exponentially after stimulus offset.

In order to achieve a more physiologically consistent offset
adaptation, Zhang et al. proposed adding a shift value Ashift
to allow for negative output. In a next step negative outputs are
set to 0, which represents the dead-time period. Therefore, the
characteristic function of the output becomes:

R(t) = max{k(t)q(t)−Ashift, 0}; (4)

As we intend to improve offset adaptation while keeping
onset adaptation as it is, the synaptic output becomes,

k(t)q(t) =Ron(t) +Ashift

=Ashift +Asus +Are
−t/τr +Aste

−t/τst (5)

The parameters of the model are then recalculated for
the new adaptation parameters and Ashift is subtracted from
k(t)q(t) to get the output of the pool model, as in Eq. 4.

Thus, by including this shift, the same equation can be used
to represent the onset and offset adaptation in the model. In
summary, the new model achieved the desired offset adaptation
while keeping onset adaptation untouched.

3. Feature extraction and ASR task
We derived features for ASR directly from discrete spike trains
for 91 frequency channels of our model using a total of 17,200
high spontaneous rate (HSR) nerve fibers and 182 onset neu-
rons. We temporally averaged the output of each channel with
a 25 ms Hanning window advanced in 10 ms steps. The output
derived from ANFs are very similar as conventional short-term
spectra, whereas ONs code distinct temporal features, e.g., they
are driven best by amplitude modulated stimuli. We applied a
discrete cosine transform (DCT) to reduce the spectral resolu-
tion and to decorrelate the feature vectors. We kept the first 12
cepstral coefficients, including C0.

The automatic speech recognition tests were carried out
on a version of ISOLET database with artificially added noise
(noisy ISOLET). One of eight different noise types was added
to each utterance at one of six different SNRs: clean, 20 dB,
15 dB, 10 dB, 5 dB and 0 dB. We kept the original division of
the ISOLET database into five subsets, and used a five-way

cross-validation to increase the statistical significance of our re-
sults [3]. We used the first of the five splits to tune SPRACH-
core decoder options (we found that tuning HTK decoder op-
tions had no significant effect for this task). We reported results
on the remaining four splits, 6240 words total.

We used two speech recognizers: one built with
Cambridge’s HTK using GMMs, and one built with
SPRACHcore [8] using MLPs [9] . The recognition
scripts and noisy ISOLET corpus that we used are avail-
able at www.icsi.berkeley.edu/Speech/papers/
eurospeech05-onset/isolet. With HTK we used six
states per word (one state for the pause model) and eight
diagonal-covariance Gaussians per state, and with SPRACH-
core we used 1600 MLP hidden units. In earlier work (not
using identical features), we found that increasing GMM and
MLP acoustic model sizes beyond this had only a minor effect.

We augmented the feature vectors with first and second or-
der delta coefficients, calculated over nine frames (four frames
each for past and future context). When using HTK for our
auditory features (not for MFCC features1), to make the fea-
tures easier for a GMM to model, we gaussianized the feature
distributions prior to delta calculation, using the SPRACHcore
pfile gaussian tool. MLPs used a five-frame context window.

We tried MLP acoustic modeling because we hoped avoid-
ing the statistical assumptions of the GMM approach would
provide useful flexibility when working with our model-based
features [10]. While we did try to decorrelate and Gaussianize
our features for the GMMs, we knew this might not be enough
– for example, those transformations worked with global distri-
butions while GMMs model state-conditional distributions.

4. Results
The modified IHC-AN synaptic model produces the same onset
adaptation but a physiologically more realistic offset adaptation.
The time constants for rapid adaptation and short term adapta-
tion are 1 ms and 54.7 ms, respectively. Fig. 2 compares the tra-
ditional and enhanced model of adaptation with physiological
data. Traditional adaptation model only showed a depression of
spontaneous activity and an exponential recovery after a tone
burst. For the enhanced adaptation model, ANF responses were
silenced during the dead-time period after signal offset and then
slowly recovered to spontaneous activity, in accordance with
physiological experiments [11]2.

Analysis of the synchronization index showed that the mod-
ified auditory nerve fiber model generates more precise phase
locking to amplitude modulated stimuli. The synchronization
index takes values from zero, where all spikes occur randomly
throughout the stimulus, to 1, where all spikes are synchronized
to the stimulus.Both models achieve high synchronization in-
dices in the low frequency region (≤1 kHz) with values in the
range of measurements [12]. In the original model, the synchro-
nization index degrades drastically in the frequency range above
1 kHz and lies far below experimental data (compare Fig. 4).
The model of offset adaptation greatly improved the synchro-
nization and the fit to experimental data.

The enhanced phase-locking of ANF responses is vi-
tal for further neuronal processing stages. We connected

1With gaussianization ASR results slightly improved for auditory
features, but worsened a little for MFCC features. See also results for
MSG features [10].

2Note that the enhanced adaptation model adds only one parameter,
Ashift. The model is tuned to keep the spontaneous rate of the fibre
constant; the driven rate changes slightly.

www.icsi.berkeley.edu/Speech/papers/eurospeech05-onset/isolet
www.icsi.berkeley.edu/Speech/papers/eurospeech05-onset/isolet
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Figure 3: Responses from ANFs (upper row) and ONs (lower row) for our model of auditory sound processing with (right column) and
without (left column) offset adaptation. For each frequency channel, we have plotted responses of 60 ANFs and one ON innervated by
them. The stimulus was an “a” from a female speaker (ISOLET). The number of spikes falling in 1 ms time bins was represented in
gray scale for the ANF response (see color bar top right).
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Figure 2: Response of an auditory nerve fiber (black area, from
[11]) to a tone burst (characteristic frequency 10.34 kHz, sound
pressure 39 dB re 20µPa) and model output with enhanced off-
set adaptation (red line). After the tone burst the spontaneous
activity is silenced for about 15 ms and recovers slowly there-
after, which is not predicted by the adaptation model of Sumner
et al. [5] (blue line).

cochlear nucleus ONs, modeled with a detailed Hodgkin-
Huxley model [13], to the ANFs, and found that they responded
in the frequency region above 3 kHz only when offset adapta-
tion was included in the IHC-AN model (compare panels c and
d in Fig. 3). ONs require a quiet period of about 1−2 ms before
they fire [14], an effect for which offset adaptation is essential.

Fig. 5 shows speech recognition results as a function of
SNR using features extracted from auditory nerve (panel a) and
onset neuron (panel b) spike-trains. As onset neurons respond
more strongly to voiced speech, we tested them only on the
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Figure 4: Synchronization index of auditory nerve action poten-
tials. Input stimuli are pure tones at different frequencies. Syn-
chronization indexes were calculated from output spike trains
of neurons whose characteristic frequencies corresponded to
the input stimuli. Modeled results are shown with and without
adaptation, together with measurements from Johnson [12].

vowel subset (a, e, i,o, u and y) of ISOLET.
Using MLPs instead of HTK resulted in major performance

improvements for all our auditory model-based features (see Ta-
ble 1). All the improvements were statistically significant us-
ing a difference of proportions significance test (P < 0.0001).
With MFCC features, for the full set there was no statistically
significant difference between MLP and HTK, while for the
vowel subset using HTK reduced word error rate (WER) con-
siderably (this was statistically significant, P < 0.002).

Including the offset adaptation model resulted in very
large performance improvements for features derived from
ONs, and large improvements for features derived from ANFs.
This shows the enhanced offset adaptation not only provided
more useful input for ONs but also improved speech coding
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Figure 5: Speech recognition results as a function of SNR. Panel
a shows results on the full noisy ISOLET task for features de-
rived from 17,200 ANFs. Panel b shows results on the vowel
subset (a, e, i, o, u and y) for features derived from 182 ONs.

HTK MLP
MFCC 82.8 83.3

Full noisy ISOLET no OA 71.3 79.1
(17200 HSR ANFs) enhanced OA 74.9 83.2

MFCC 95.2 94.0
Vowel subset no OA 76.3 84.9
(182 ONs) enhanced OA 85.1 90.7

Table 1: Recognition results (OA: offset adaptation)

per se. All the improvements were statistically significant
(P < 0.0001). With the MLP, ANF features with offset adap-
tation performed similarly to MFCC features.

5. Discussion
Physiological auditory nerve measurements show offset adapta-
tion with a “dead-time” period following the end of a tone burst.
This effect is not replicated by commonly used pool models of
synaptic transmission, which predict an immediate exponential
recovery without a “dead-time” period.

We used an improved model of offset adaptation primarily
because without it onset neurons located in the auditory brain-
stem were not responsive in the frequency region above 3 kHz
We found that offset adaptation also improved phase locking
of ANFs, and ASR results showed it improved speech coding
by ANFs. We believe that these improvements in ASR perfor-
mance are caused by shifting the working point of the synapse
by offset adaptation especially during intense stimuli. This en-
hances the dynamic range of the synapse and the coding of am-
plitude modulations of speech sounds. As a result, the ONs
responded more strongly, especially above 3 kHz, and the ASR
performance of the ON features greatly improved.

Another important finding is that MLPs performed much
better than GMMs for both ANF-based and ON-based auditory
features. This is consistent with past results on MSG auditory

features [10, 2]. However, when using MFCCs on the vowel
subset, GMMs outperformed the MLPs. MLPs are also very
easy to use in a multi-stream approach, something we hope to
exploit in the future to combine features derived from different
groups of neurons. And other researchers have found a tandem
MLP/GMM approach to be an effective way of incorporating
auditory-inspired TRAPs features into a GMM system, while
still taking advantage of the GMM system’s strengths such as
speaker adaptation [15]. Thus we believe researchers working
with novel features should consider trying MLPs. Our MLP
and HTK ISOLET recognition scripts are available online for
use with other features.
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