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Abstract

One of the sources of difficulty in speech recognition and understanding
is the variability due to alternate pronunciations of words. To address
the issue we have investigated the use of multiple-pronunciation models
(MPMs) in the decoding stage of a speaker-independent speech un-
derstanding system. In this paper we address three important issues
regarding MPMs: (a) Model construction: How can MPMs be built
from available data without human intervention? (b) Model embed-
ding: How should MPM construction interact with the training of the
sub-word unit models on which they are based? (c) Utility: Do they
help in speech recognition?

Automatic, data-driven MPM construction is accomplished using a
structural HMM induction algorithm. The resulting MPMs are trained
jointlywith a multi-layer perceptron functioningas a phonetic likelihood
estimator. The experiments reported here demonstrate that MPMs can
significantly improve speech recognition results over standard single
pronunciation models.

1 INTRODUCTION

The lexicon for a speech recognition system is composed of a set of
models that represent the pronunciations of words. Most current speech
recognition systems use lexicons comprised of a single pronunciation
for each word that is to be recognized. When one considers the variety
of realizations that a word may have depending on such factors as its
phonological context, the dialect of the speaker, etc., it seems obvious
that word models that allow for multiple alternate pronunciations of a
word should perform much better in a speech recognition system than
single-pronunciationword models. For example, a single-pronunciation
model for the word “the” can only represent either the pronunciation [dh
iy] or the pronunciation [dh ax], where a multiple-pronunciation model
(MPM) could represent both. Another major factor accounting for
variation is the speaker’s dialect/idiolect. For example, “often” has two
standard variants, one with a [t] and one without, apart from more subtle
differences such as whether or not stops are realized with or without
closures, are flapped, etc.

Despite the seemingly obvious advantage of MPMs, there has been
conflicting evidence as to whether they can improve the performance of
speech recognition systems. Some researchers [1] have not shown any
improvements in recognition performance through the use of MPMs.
Others [2, 3] have demonstrated significant improvements in perfor-
mance.

There are several factors that likely contribute to these conflicting
reports. One such factor is the difficulty in constructing the MPMs. For
example, how does one derive alternate pronunciations for a word? How
can we represent the fact that certain pronunciations are more likely than
others? Our approach to these problems begins with the construction of
an initial set of Hidden Markov Models (HMMs) representing alternate
pronunciations for words, and then automatically adapts these HMMs
in conjunction with the acoustic training of the sub-word unit models.
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We have tested our approach within the context of the Berkeley
Restaurant Project (BeRP) [4]. BeRP is a medium-sized vocabulary,
speaker-independent speech understanding system whose domain is
knowledge about restaurants in the city of Berkeley. The BeRP sys-
tem is similar to other spontaneous speech understanding systems that
have been developed recently [5, 6].

One of the distinguishing characteristics of BeRP is that it uses a
speech recognizer that combines neural networks and Hidden Markov
Models (HMMs). The neural network is a Multi-layer Perceptron (MLP)
which is used to estimate the acoustic likelihoods for the HMMs [7].

In the next sections we present the details of this approach. Following
that we give experimental results showing that MPMs do indeed improve
recognition performance significantly in the BeRP system.

2 MODEL CONSTRUCTION

2.1 Constructing General Models

The first step in the model construction process is to create a general
pronunciation model for each word. This general pronunciation model
consists of a series of unique state sequences or paths: one for each of
the alternate pronunciationsof the word. The probabilitiesof each of the
paths through the model are assigned uniformly, reflecting the fact that
we have no information regarding the likelihoodof these pronunciations.
Figure 1 shows an example of a word model for the word “and” with
three alternate pronunciations.

In order to construct the general pronunciation models, one needs
to have a “source” for the alternate pronunciations which comprise
the model. There are many pronunciation sources available including:
pronunciations created “by-hand,” pronunciations from text-to-phoneme
systems, or pronunciations from dictionaries.

2.2 Pronunciation Adaptation

Given a set of general multiple-pronunciation word models, the goal
is to adapt these models to a particular application, while at the same
time replacing the a priori estimates of the likelihood of each of the
alternate pronunciations of a word, with estimates that provide a better
match between the models and the training data. The two processes
of adaptation and reestimation are carried out sequentially and may be
iterated in order to further tailor the models to the speech recognizer and
the training data.

Adaptation. The adaptation procedure begins with a Viterbi [8] align-
ment of the training data to the general word models. During Viterbi
alignment, a single path representing one of the alternate pronunciations
of a word is chosen for each instance of the word in the training corpus.
This path represents the pronunciation that best matched the outputs of
the phonetic likelihood estimator (the MLP) for that particular occur-
rence of the word. Some of the pronunciations that are represented in
the general word model may never be chosen if they have a poor match
to the outputs of the phonetic likelihood estimator compared to other
pronunciations for the word.

Thus, the adaptation step produces a set of paths representing the pro-
nunciations that had the best match between the outputs of the phonetic
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likelihood estimator and the alternate pronunciations of a word. These
sets of paths can then be used to reestimate the likelihood of each of the
alternate pronunciations of a word as described in the next section.

Reestimation. The technique that is used to reestimate the probabil-
ities of each of the paths through an HMM is based on an algorithm
for automatically inducing HMM structure from a set of samples [9].
The algorithm begins with the construction of an initial HMM that just
replicates the data (i.e. the paths representing the alternate pronunci-
ations). Each path contains one state for each of the phonemes in the
pronunciation. For example, Figure 1 shows the initial HMM for the
following paths:

ae n
ae n
q ae n d
ae n d
ae n d
ae n d

Start

nae

dnaeq

dnae

End

0.33

0.17

0.50

1.00

1.00

1.001.001.001.00

1.00

1.001.00

Figure 1: An HMM showing three possible pronunciations for the word
“and.” (The symbol “q” represents a glottal stop.)

In this HMM there are as many transitions out of the initial start
state as there are unique paths, each one corresponding to an observed
pronunciation. The probability of each of the paths is equal to their
observed relative frequencies. Thus, since three of the six paths con-
tained the pronunciation [ae n d], a probability of 0.5 is assigned to
the transition from the initial start state to this path. It is easily seen
that this initial configuration maximizes the model likelihood given the
observed data.

Once the initial HMM has been constructed, it is made more com-
pact, and possibly more general, by successively merging states.1 (See
Figure 2). The goal of the algorithm is to find an HMM structure that
maximizes the model’s posterior probability, which is given by Bayes’
rule as ������� �	��
 ������� ��������������	�

(1)

(The denominator is constant given the data and can be ignored in the
maximization.) The model likelihood

������� ��
expresses the quality

of the fit between model and data, and is maximized by the initial
model, as we have seen. The prior model probability

������
represent a

bias towards smaller models. While it would be conceivable to encode
very specific preferences for certain model topologies etc. in

������
,

we only use a rather non-informative prior that generally favors models
with fewer states and parameters.2 The highest posterior probability is
achieved by the HMM structure that represents the ‘best’ compromise
between model fit and simplicity, according to the chosen prior.

In practice, we perform the posterior probability maximization in
a greedy search that always chooses pairs of states for merging so

1For MPM construction purposes, we only consider merging states that have the same
labels and which preserve the left-to-right character of the HMM. In the full algorithm,
there are no such constraints, and arbitrary HMM structure can be found in principle.

2This approach expressesour ignoranceabout ‘correct’ pronunciationmodels, but also
leads to very efficient computational solutions. The prior used is a combination of a term
involving the description length (number of bits needed to encode) the model’s structure,
and a Dirichlet prior over the transitions and emissions [9].

as to give the currently best posterior. The parameters of the prior
are tunable to determine the degree of generalization; in particular,
the algorithm may be used to simply minimize the HMM structure
without introducing new pronunciations. Once the HMM structure with
a (locally) maximal posterior is found, the HMM parameters are set
using standard maximum-likelihood estimation [10].

Start q dae n End
0.17

0.83

1.00 1.001.00

0.33

0.67

Figure 2: A merged HMM for the word “and.”

One of the features of the HMM merging algorithm is that it can
induce an HMM that is capable of generalizing to previously unseen
pronunciations. For example, consider the following possible set of
observed pronunciations for the word “have”:

[hv ae v]
[hh ae v]
[hv ae f]

In this set of data, there are two phones that can occur at the beginning of
the word – � hv,hh � , corresponding to a voiced /h/ and an unvoiced /h/
respectively. There are also two phones that can occur at the end of the
word – � v,f � . There is one possible pronunciation – [hh ae f] that may
not have actually been observed in the data, e.g., due to undersampling.
Depending on the precise observed frequencies involved and the prior
parameters used, the HMM merging algorithm can infer a generalized
model structure that allows for the unobserved pronunciation and assigns
it a probability based on its similarity with the observed pronunciations
(see Figure 3).

Start fhh

hv

ae

v

End
1.001.00

1.00 1.00
0.67

0.33

0.67

0.33

Figure 3: A possible HMM for the word “have” with a pronunciation –
[hh ae f] that was not observed in the data.

3 MODEL EMBEDDING

The word models that result from the HMM merging can now be used as
input to a second Viterbi alignment. The outputof this Viterbi alignment
can be used as the input to HMM merging, and yet another set of word
models can be constructed. This iterative process is shown schemat-
ically in Figure 4, and coincides with the iterative process used for
the generation of training labels for the Multi-layer Perceptron (MLP).
Thus the generation of multiple pronunciation word models is easily
integrated into the MLP’s training procedure.

The embedded training procedure needs initial MLP weights, as well
as an initial source of pronunciations. The initial pronunciation inven-
tory varies with the experiment, as described below. For the MLP, we
generally use the weights from a network independently trained on the
TIMIT speech database for bootstrapping. The same TIMIT weights
are also used to initialize the MLP in each round of training, which we
found to give better results than using the final MLP parameters from
the previous iteration (this procedure should help avoid the danger of
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Figure 4: A schematic outline of the embedded training for MLPs and
multiple pronunciation lexica.

reaching a local minima during MLP training). The MLP training uses
cross-validation to avoid overfitting; 10% of the total training corpus are
typically set aside for this purpose.

We can view this iterative embedded training procedure as an ap-
proximate version of the Expectation Maximization (EM) algorithm
commonly used for maximum-likelihood estimation with incomplete
data [11]. The Viterbi alignment step approximates the E-step, estimat-
ing the unobserved labels at each time frame, whereas the MLP training
and word model induction realize the M-step, i.e., maximizing model
parameters relative to the estimates of the E-step.

The implementation of both steps is inexact, however, for various
reasons having to do with efficient implementation. Indeed, we have
observed that the best results are obtained by combining the lexicon
obtained in the first iteration with the MLP trained in the second iteration.

4 MODEL EVALUATION

4.1 Multiple vs. single pronunciations

Previous experiments using the approach described here [3] addressed
whether multiple-pronunciation modeling in the BeRP system could
give improvements over the traditional single-pronunciationHMM word
models. This comparison was based on a 2,319 training utterance corpus
and a 364 utterance test set. The test set was gathered from 8 speakers, 4
males and 4 females, each providing approximately 45 utterances. The
speech is spontaneous and was not screened to remove any disfluencies
or out-of-vocabulary words.

During Viterbi decoding (recognition) a simple bigram language
model was used. The bigram model contained only observed word
co-occurrence frequencies, without any smoothing.3

The single pronunciation (SP) version of the system was training
using the embedded procedure, but keeping the lexicon fixed. The

3For this reason it is not meaningful to calculate perplexity for this particular corpus,
but in [3], the perplexity of a 227 sentence subset screened for out-of-vocabulary words
was estimated as 10.6. Roughly one-third of the sentences in the test set had either out-of-
vocabulary words or out-of-grammar word pairs. Thus, this task is much more difficult
than this perplexity suggests.

lexicon consisted of single pronunciations generated by a text-to-speech
system. The multiple pronunciation (MP) version, on the other hand
was bootstrapped from a collection of pronunciation sources, including
the same text-to-speech system, the TIMIT database, a pronunciation
lexicon from LIMSI-CNRS, the Resource Management pronunciations,
and hand-crafted pronunciations (for some words). The MPMs obtained
from the embedded training were slightly pruned by removing paths
accounting for less than 10% of the total probability mass, which was
found to improve performance somewhat.

System Error Rate Ins Dels Subs

SP 38.6 4.6 10.6 23.4
MP 32.1 7.3 5.9 18.9

Table 1: Performance of fixed single vs. multiple pronunciations

Table 1 shows the results from this comparison, in terms of word
error percentage, and broken down by word substitutions, deletions
and insertions. The improvement found with MPMs over the single
pronunciation version is significant at the .01 level.

4.2 Multiple vs. most likely pronunciations

The SP lexicon used in the previous comparison was derived from an
independent source and held fixed while adapting the other parts of the
system. Other research [2] suggest that a substantial improvement can
be gained by simply selecting the single most likely pronunciation for
each word (as opposed to, say, one obtained from a dictionary).

Choosing the most likely pronunciation from a training corpus is a
simple form of adaptation within the space of SP models. We therefore
carried out a second experiment to see whether the the advantage of
MPMs would hold up against the most-likely SP approach.4

The training corpus consisted of 912 sentences. There were 554
sentences in the test set. The word models induced from the training
corpus were complemented by fixed, rule-based MP models for unob-
served words, taken from a comprehensive default lexicon so as to avoid
out-of-vocabulary words in the test set. These fixed default pronuncia-
tions were kept identical across all test conditions, and helped minimize
recognition errors not directly related to the comparison of the learned
word models. The lexicon used in bootstrapping was also based on dic-
tionary pronunciations and rules for standard phonetic variations. The
language model used for all recognition tests was a simple bigram as
before, derived from an independent corpus.

The SP models were built from the training by choosing the most
frequently observed label sequence for each word, as given by the forced
Viterbi alignment. The MP models were obtained from merging the
Viterbi pronunciations as described above, without additional pruning
of unlikely paths. Two MP versions were tested: merging without
generalization, i.e., the lexicon contained only observed pronunciations,
and merging with generalization. The prior parameters, and hence the
amount of generalization were not specially tuned for this task; we
reused a configuration from a previous experiment involving TIMIT
data [9]. The embedded training procedure was identical except for the
use of different word models in each alignment step.

System Error Rate Ins Dels Subs

Most likely SP 27.1 3.8. 8.0 15.3
MP 25.2 4.4 7.1 13.8
Generalized MP 25.3 4.2 7.1 14.0

Table 2: Performance of most likely and multiple pronunciations

Table 2 gives the error percentages obtained using the three system
configurations. As can be seen, the MP system still enjoys an advantage
over the (most likely) SP version (significance ��� 0 � 05). Generaliza-
tion seems to have virtually no effect on this particular task, except for
slightly reducing insertions at the expense of substitutions.

4This experiment used a different corpus and bootstrap conditions than the previous
one, and incorporated numerous unrelated improvements to the system; therefore the
results are not directly comparable.
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It is interesting to compare some statistics of the generated MP mod-
els. The total number of words in the training corpus, and hence word
models, was 644. The simple MPMs had a total of 7205 states and
7679 transitions, with an average number of pronunciations per word
of 1.56. As expected, the generalized models were smaller (5133 states
and 5668) and produced more pronunciations (1.86 on average).5 . The
average number of pronunciations is generally low due to the large num-
ber of words (369) that have only a single pronunciation, many of which
(269) appeared only once in the corpus.

4.3 Discussion

Multiple pronunciation modeling is interesting for both speech recogni-
tion and linguistics. Regarding the former, our experiments have shown
that significant improvements over SP models can be realized using
MPMs, as one would expect. From a linguistic perspective, the auto-
mated buildingof MPMs can be seen as a form of phonological learning;
as such, it should be compared to alternative learning approaches, such
as inducing pronunciations based on local phoneme contexts [12, 13].

Experiments on isolated TIMIT word pronunciations [9] have shown
a significant improvement (measured in phone perplexity) when using
the merging algorithm to infer new pronunciations from observed ones.
The fact that generalization did not produce any improvements in the
recognition experiments reported here could be an artifact of the small
size or relative uniformity of the data; and needs further investigation.

It is important to realize that the underlying model for pronunciation
variability used so far is quite limited. For example, we assume word
pronunciations vary independent of their context. In reality there are
obvious context effects, e.g., due to co-articulation involving adjacent
phonemes from preceding and following words.

In principle this can be addressed by refining (at least some of) the
word models to be specific to a phonetic context. However, in doing so
care must be taken to not run into data sparseness problems.

The assumption that the various pronunciations of a word occur with
fixed probabilities from one occurrence to the next is also flawed. At a
minimum, one would expect systematic co-variation of all words of a
given type, depending on such factors as speaker identity, accent, rate of
speech, etc. We are currently studying adaptive approaches that change
the prior probabilities of the paths in a word model based on estimates
of the speaker’s accent type, especially for native vs. non-native speak-
ers [4]. More fine-grained synchrony among pronunciation variants
is also likely, e.g., whether a speaker generally tends to flap certain
stops. Modeling such subword regularities would require revising the
straightforward word-based approach.

In summary, we believe that data-driven multiple pronunciation mod-
eling is a rich subject for research and potential improvements of speech
systems, and anticipate seeing more probabilistic modeling and learning
techniques applied to this task.
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