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ABSTRACT

This paper describes the architecture and performance of the
Berkeley Restaurant Project (BeRP), a medium-vocabulary,
speaker-independent, spontaneous continuous speech under-
standing system currently under development at ICSI. BeRP
serves as a testbed for a number of our speech-related research
projects, including robust feature extraction, connectionist pho-
netic likelihood estimation, automatic induction of multiple-
pronunciation lexicons, foreign accent detection and modeling,
advanced language models, and lip-reading. In addition, it has
proved quite usable in its function as a database frontend, even
though many of our subjects are non-native speakers of English.

1 OVERVIEW

The BeRP system functions as a knowledge consultant whose
domain is restaurants in the city of Berkeley, California. As a
knowledge consultant, it draws inspiration from earlier consul-
tants like VOYAGER [15]. Users ask spoken language questions
of BeRP, which directs questions to the user and then queries a
database of restaurants and gives advice to the user, based on such
use criteria as cost, type of food, and location.

The BeRP recognizer consists of six components: the RASTA-
PLP feature extractor, a multilayer perceptron (MLP) phonetic
likelihood estimator, a Viterbi decoder called Y0, an HMM pro-
nunciation lexicon, a bigram or SCFG Language Model (LM) and
the natural language backend, including a database of restau-
rants. The whole system runs on a SPARCstation, although for
speed we usually offload the phonetic likelihood estimation (the
MLP forward pass) to special purpose hardware. Figure 1 gives
an overview of the architecture.

Figure 2 gives some statistics that give the reader a feeling for
the BeRP system as implemented.

2 FEATURE EXTRACTION

BeRP uses RASTA-PLP [7] to extract features from digitized
acoustic data. RASTA-PLP is a speech analysis technique that
is robust to steady-state spectral factors in speech such as those
imposed by different communication channels (i.e., different mi-
crophones). The fundamental idea of RASTA is to bandpass
or highpass-filter each spectral trajectory to reduce the affect of
stationary convolutional errors. In the case of RASTA-PLP this
filtering is done for critical bands output after processing by a
log or log-like nonlinearity. RASTA-PLP’s robustness is an im-
portant feature for our frontend, since we bootstrap our system
on databases collected under different recording conditions than
those at ICSI; in general, we can change microphones fairly easily
without severely impacting performance.
�
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Figure 1: The BeRP Architecture

Training Corpus 4786 sentences + TIMIT
Test Corpus 563 sentences
Vocabulary 1274 words
Data Base 1 database table, 150 restaurants
Bigram Perplexity 10.7 with 77% coverage
Grammar 1389 handwritten SCFG rules
Implementation 18,000 lines of C++
Performance Recognition 32.1% error

Parsing 63% training 61% test
Understanding 34% error

Figure 2: BeRP Status in June 1994

3 PROBABILITY ESTIMATION

The BeRP system uses a discriminatively-trained Multi-Layer
Perceptron (MLP) in an iterative Viterbi procedure to estimate
emission probabilities. [2] and [10] show that with a few assump-
tions, an MLP may be viewed as estimating the probability ���	��
 ��

where � is a subword model (or a state of a subword model) and
� is the input acoustic speech data. We can then compute the
likelihood ���	��
 ��
 needed by the Viterbi algorithm by dividing by
the prior ���	��
 , according to Bayes’ rule; we ignore ������
 since it
is constant in time-synchronous Viterbi:

���	��
���
�� ������
���
	���	��

���	��
 (1)

Results with our architecture on the speaker independent DARPA
Resource Management database for MLP monophone estimators
[4] yield competitive performance (4–6% word error with the
standard perplexity 60 wordpair grammar).

The estimator consists of a simple three-layer feed forward
MLP trained with the back-propagation algorithm (see Figure 3).
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The input layer consists of 9 frames of input speech data. Each
frame, representing 10 msec of speech, is typically encoded by 9
RASTA PLP coefficients, 9 delta-RASTA PLP coefficients, and
an energy term and a delta-energy term. Typically, we use 500-
1000 hidden units. The output layer has 61 units, one for each
of the context-independent phonetic classes used in our lexicon.
The MLP is trained on phonetically hand-labeled speech (TIMIT)
to produce the initial state alignments, and then trained in the
iterative Viterbi procedure (forced-Viterbi providing the labels)
with the BeRP corpus.

...

2 61 Output Layer
61 Phones

...

Current Frame
Left Context Right Context
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Connected Units
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161−1−

Input Layer:
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Figure 3: Phonetic Likelihood Estimator

In order to perform the phonetic likelihood estimation quickly,
we usually offload the computation to special-purpose hardware,
the Ring Array Processor (RAP) [9], although we have recently
completed a vector-quantized single-layer perceptron version
which runs in real-time on the SPARC. Recognition performance
of the VQ system is lower than our RAP-based system (46%
relative error) but as both systems improve, the VQ system may
become good enough for on-line use.

4 VITERBI DECODER

Our decoder, called Y0, implements the standard synchronous
Viterbi algorithm. It has two non-standard features. One is the
ability to efficiently perform backtraces on-line, so we can pass
backtraces to the SCFG LM on each frame (see � 6). Another is
the use of a technique borrowed from the word-spotting litera-
ture to make the recognition more robust to the unknown words,
fragments and repairs that occur in spontaneous speech.

The idea is to add a new word model, the garbage word,
which is designed to match unknown words and word fragments.
However, instead of generating garbage likelihoods through some
trained model, we use the method of [1] to generate virtual like-
lihoods. At each frame, the phone probabilities for the garbage
word are computed by averaging the top N phone probabilities
from the MLP. Thus at each frame, the local distance of the
garbage word will be worse than any word which matches the
best few phones. But if no word can transition into the top few
phones, the garbage word will have a greater local distance than
other words, and will be selected. This should happen just in the
case where no word adequately models the current frame, such as
unknown word or fragments. The transition probabilities for the
garbage word are computed by averaging the bigram transition
probabilities for the top N words, with the same rationale. We
generally use a value of N=10 for both local distance and word
transition computation.

5 LEXICON

The BeRP system uses a multiple-pronunciation HMM lexicon,
which we build by combining two lexicon-production methods.

In the first method we use the model merging algorithm [11] to
induce a word model directly from a set of pronunciations for the
word culled from TIMIT, various dictionaries, and other sources.
The algorithm begin with a very specific HMM producing exactly
the set of input pronunciations, constructed by stringing together
each observed phone sequence between a start and end state.
Next, this initial model is simplified and generalized by repeatedly
merging states until we reach a model with (locally) maximum
posterior probability. See [14] for more details.

Our second method augments this bottom-up approach with
top-down information. Following [5], we manually develop
phonological rules and automatically apply them to a set of base-
form or “dictionary” pronunciations, to automatically generate
multiple pronunciations for any word in the dictionary. We then
add these pronunciations to the set of pronunciations from TIMIT
and other sources, and apply the merging algorithm.

Figure 4 shows the initial multiple-pronunciation model for the
word waiting, computed from the samples in the TIMIT and other
corpora and dictionaries, while Figure 5 shows the automatically
merged model. Table 1 shows the significant improvement which
our multiple pronunciation models provide over the single pro-
nunciation models. (Note that our most recent results reported in
� 10 are somewhat improved from these.)
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Figure 4: Unmerged HMM for the word “waiting”
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Figure 5: Merged HMM for the word “waiting”

System Word Error Ins Dels Subs

Single Pron 40.6 5.2 10.3 25.1
Multi-Pron 32.1 7.3 5.9 18.9

Table 1: Performance of Pronunciation Models.

6 LANGUAGE MODEL

The Y0 recognizer uses a number of different language models,
including a simple bigram as well as two advanced suites of
methods. The first of these advanced methods uses an SCFG and
an SCFG parser/generator to provide more sophisticated language
information. The 1389 rules in the grammar are written by hand,
but the rule probabilities are learned from the 4786-sentence BeRP
corpus with the EM algorithm. We have experimented with a
number of ways to use the SCFG information:

1. Smooth the bigram grammar by augmenting the corpus with
a pseudo-corpus of sentences generated from the SCFG (ex-
tending the method of [15] for training word-pair grammars).
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2. Use the characteristic bigram of the SCFG, which can be
generated in closed form [12].

3. Use the SCFG directly as the LM for the recognizer, by
using the probabilistic parser to compute word transition
probabilities directly from the SCFG [8].

4. Mix the SCFG and smoothed bigram probabilities directly
to provide word transition probabilities on each frame.

Table 2 presents our word error results, showing the results of ap-
plying these four methods. Note that the SCFG gave a significant
4.1% improvement in word error over the bigram. The SCFG and
the SCFG-smoothed bigram performed equally, and the mixture
model was slightly but not significantly better than either SCFG
model; compiling the SCFG into a bigram seems to preserve most
of the useful information.1

Word Error
Bigram 33.7
SCFG-Smoothed Bigram 29.6
SCFG 29.6
SCFG/Bigram Equal Mixture 28.8

Table 2: SCFG Performance

In our most recent language model experiment, we train
pragmatic-context-specific bigrams. Because BeRP is a mixed-
initiative system, users often respond to questions asked by the
system. For each question the system can ask, we build a sub-
corpus of responses from our training set, and train a bigram
(smoothed with responses to other questions). Then during recog-
nition, we switch among these bigrams depending on the system’s
latest question.

7 NATURAL LANGUAGE BACKEND

The BeRP natural language backend transforms word strings from
the Y0 decoder into database queries. The architecture is con-
trolled by a template-filling dialog manager, which asks ques-
tions of the user in order to determine certain restaurant features,
(such as cost, distance, and type of food) which are used to fill a
query-template, and thus to query the database. For each template
slot the system prompts the user with a question, although the user
may choose not to answer the question. Consider the following
user response:

i’d like to have indian food today

The bottom-up stochastic chart parser first computes all pos-
sible parses and semantic interpretations of the input, along with
their grammatical probabilities. It uses a stochastic context-free
attribute grammar in which simple semantic rules are encoded in
the attributes, written in a generalization of the PostQuel database
query language used by the BeRP database backend.2 The parse
tree for the input above is shown in Figure 6.

Each node of the parse tree is automatically annotated with a
partial semantics. The semantics for the top node in Figure 6 is
passed directly to the context module, which fills out all context-
dependent and scope-dependent operators, such as temporal de-
ictics (“now”, “today”) and negation (“not far”). The resulting
semantics shown below indicates that the user is interested in an
Indian restaurant which is open Monday (“REST.mon”) for any
meal (breakfast ("B"), lunch ("L") or dinner ("D")):

(REST.rest_type = "INDIAN") and (REST.mon ˜ "[BLD]")

1These results are on a slightly different system than that used for the
multiple-pronunciation and semantic performance tests.

2Our ‘semantic’ grammar encodes more information in the context-free por-
tion than is common in purely ‘syntactic’ grammars by allowing very specific
non-terminal symbols, which lowers the perplexity of the grammar. We are
currently working on a unification-based augmentation.
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Figure 6: The parse-tree produced by the interpreter

An important consideration in the parser is robustness to gram-
matical and lexical gaps as well as recognizer errors. The BeRP
parser bases its robustness on a bottom-up algorithm for pars-
ing combined with a heuristic for combining parse fragments.
The simple bottom-up algorithm (the CYK or bottom-up chart
algorithm) will find every constituent which occurs in the input
sentence, even those which are in ungrammatical contexts. Then
if a sentence is not completely parsable, our greedy fragment com-
bination algorithm iteratively builds a maximum partial covering
by repeatedly selecting the constituent which covers the great-
est number of input words without overlapping with the current
covering set. If two non-overlapping constituents both cover the
same number of words, the algorithm chooses the most informa-
tive one, (greatest number of semantic predicates) or on further
ambiguity the one with the higher probability.

8 DATA COLLECTION

The BeRP system was bootstrapped with a Wizard of Oz3 system
[6], allowing us to collect naturalistic data before the first ver-
sion of the system was built. The test subjects interacted with a
windowing system monitored by the hidden operator (wizard) in
another room. The wizard used an interface tool which helped
formed database queries and generate canned responses to the
user. With the 723 sentences collected from this system, we
trained the MLP and the bigram LM for our recognizer and built
a natural-language backend to serve as our prototype system, us-
ing this system in a second data-collection phase. Finally, we
used the data from these first two efforts to build a third system,
and collected further sentences.

Data was collected in a semi-quiet office, with no attempt at
suppressing the environmental noise in the room. Speech was
recorded digitally at 16 kHz sampling rate using a Sennheiser
close-talking microphone. In all of our data-collection efforts,
participants are first given an instruction sheet which gives them
the task of finding information about one or more restaurants in
Berkeley. The average age of our subjects was 32, and their native
languages are summarized below:4

Language Spkrs Language Spkrs Language Spkrs

American 71 British 9 French 3
German 29 Hebrew 4 Spanish 2
Italian 11 Mandarin 4 Japanese 2

Table 3: Speaker’s Native Languages in the BeRP corpus

9 ACCENT

As Table 3 shows, the users of the BeRP system, like the citizens
of the United States, speak English with a broad variety of accents.

3or PNAMBC (Pay No Attention to the Man Behind the Curtain).
4Plus one speaker each of Cantonese, East Indian English, Polish, Konkani,

Turkish, Greek, Bulgarian, Kannada, and Australian.
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In order to improve our robustness to accents, we have built base-
line systems for automatically detecting and modeling foreign
accents of English, while retaining high performance with na-
tive American English speech. We are focusing for the present on
German-accented English, by building HMM word models which
include German pronunciations, and using accent-detection algo-
rithms to determine what weight to assign the foreign versus
native pronunciations.

To build HMMs which include foreign pronunciations, we aug-
mented the lexicon induction procedure ( � 5) with hand-written
multi-language phonological rules. Given a set of canonical pro-
nunciations as input, the rules generate a broad variety of multiple
pronunciations which are then trained separately on German and
American portions of the BeRP corpus. The procedure success-
fully found that final devoicing of stop consonants and fricatives
was used only by Germans, while nasal and dental flapping were
used by American but not Germans. Our database of German
speech is still too small for conclusive quantitative results, how-
ever.

To detect foreign accent, in order to know when to use the
foreign pronunciations, we have focused on acoustic-phonetic and
syntactic information. Our initial acoustic-phonetic detector is an
MLP with one output unit for each accent (the same architecture
as in Figure 3 but with only two output units). The accent of
the speaker who produced the input frame is used as the desired
output. During test, we accumulate the MLP outputs over the
course of a sentence to estimate the probability of each accent.
Our initial system achieves 67 � 9% correct speaker-independent
accent identification at the sentence level on an accent balanced
test set. Our second detector uses syntactic information about
the slightly different dialects used by native versus non-native
speakers to help distinguish them. We trained different SCFGs
for the German and American speakers, and used our probabilistic
chart parser to compute ��� �������	��
 
 ��
 and ����
 ������������
 
 ��
 for
each sentence � . The syntactic detector functions at 60% on the
same test set as the phonetic detector.

We have just begun experimenting with combining accent de-
tection and modeling. Our first experiment (see Table 4) used
accent information to choose between an American-tuned sys-
tem and a German-tuned system. Our preliminary conclusions
are that while using all the data for training is a potent method,
explicit accent information could be useful, as the true accent
system (nonsignificantly) outperformed all others.

Information Used Lexicon
To Choose System Single Pron Multiple Pron

Accent ID 32.1 30.0
Sentence Probability 31.0 28.5
None (combined training only) 30.6 28.8
True Accent 29.3 28.3

Table 4: % word error on 554-sentence accent balanced test set.

10 RESULTS AND CONCLUSIONS

The BeRP system has proved quite successful as a framework for
our speech-related experiments. In addition, it has proved quite
usable in its function as a database frontend, with a word error
rate of 32.1% and a semantic sentence error rate of 34.1%.5

The table below shows the system’s overall sentence semantic
error rate, measured by comparing with a hand-designed correct
query component for each sentence. This correct query is com-
pared to the query produced by the entire system and also to the
query produced by just the backend operating without the recog-
nizer on hand-transcribed sentences. Finally we show the results

5These numbers do not include our recent tight-coupling augmentations.

of comparing the recognizer output with the output produced by
the natural language on perfect strings, to get an idea for the
semantic performance of the recognizer.

Semantic Error Rate
BeRP system 34.1
Backend alone 18.1
Recognizer alone 27.7

Table 5: BeRP semantic performance

We are currently extending the BeRP system to use visual
data from the speakers’ lips, either to aid in recognition, or to
help determine when a speaker has started speaking [3]. Further
details of the BeRP system are presented in [13] and [8].
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Thanks to Emily Bender, Hervé Bourlard, Jerry Feldman, Hana Filip,

Hynek Hermansky, Ron Kay, Yochai Konig, Robert Moore, Steve Omo-
hundro, Patti Price, and Liz Shriberg. This work was partially funded
by ICSI, an SRI subcontract from ARPA contract MDA904-90-C-5253,
and ESPRIT project 6487 (The Wernicke project).

References

[1] J. Boite, H. Bourlard, B. D’hoore, and M. Haesen. A new approach
towards keywordspotting. In Proceedings of Eurospeech 93, 1993.

[2] H. Bourlard and N. Morgan. Merging multilayer perceptrons &
Hidden Markov Models: Some experiments in continuous speech
recognition. In E. Gelenbe, editor, Artificial Neural Networks:
Advances and Applications. North Holland Press, 1991.

[3] Chris Bregler, Stephen Omohundro, Yochai Konig, and Nelson
Morgan. Using surface-learning to improve speech recognition
with lipreading". In Proc. 28th Annual Asilomar Conf. on Signals,
Systems, and Computers, Pacific Grove, CA, 1994. To appear.

[4] M. Cohen, H. Franco, N. Morgan, D. Rumelhart, and V. Abrash.
Hybrid neural network/Hidden Markov Model continuous speech
recognition. In ICSLP-92, 915—918, Banff, Canada, 1992.

[5] M. H. Cohen. Phonological Structures for Speech Recognition.
PhD thesis, University of California, Berkeley, 1989.

[6] N. M. Frazer and G. N. Gilbert. Simulating speech systems. Com-
puter Speech and Language, 5:81–99, 1991.

[7] H. Hermansky, N. Morgan, A. Bayya, and P. Kohn. RASTA-PLP
speech analysis technique. In IEEE ICASSP-92, I.121–124, San
Francisco, CA, 1992.

[8] Daniel Jurafsky, Chuck Wooters, Gary Tajchman, Jonathan Se-
gal, Andreas Stolcke, and Nelson Morgan. Integrating advanced
models of syntax, phonology, and accent/dialect with a speech
recognizer. In AAAI Workshop on Integrating Speech and Natural
Language Processing, Seattle, 1994. to appear.

[9] N. Morgan. The ring array processor (RAP): A multiprocessing
peripheral for connectionist applications. Journal of Parallel and
Distributed Computing, 14:248—259, 1992.

[10] S. Renals, N. Morgan, H. Bourlard, M. Cohen, H. Franco, C. Woot-
ers, and P. Kohn. Connectionist speech recognition: Status and
prospects. TR-91-070, ICSI, Berkeley, CA, 1991.

[11] Andreas Stolcke and Stephen Omohundro. Best-first model merg-
ing for hidden Markov model induction. TR-94-003, ICSI, Berke-
ley, CA, January 1994.

[12] Andreas Stolcke and Jonathan Segal. Precise � -gram probabilities
from stochastic context-free grammars. In Proceedings of the 32nd
ACL, Las Cruces, NM, 1994. To appear.

[13] Charles C. Wooters. Lexical Modeling in a Speaker Independent
Speech Understanding System. PhD thesis, University of Califor-
nia, Berkeley, CA, 1993. available as ICSI TR-92-062.

[14] Chuck Wooters and Andreas Stolcke. Multiple-pronunciation lex-
ical modeling in a speaker-independent speech understanding sys-
tem. In ICSLP-94, 1994. To appear.

[15] Victor Zue, James Glass, David Goodine, Hong Leung, Michael
Phillips, Joseph Polifroni, and Stephanie Seneff. Integration of
speech recognition and natural language processing in the MIT
VOYAGER system. In IEEE ICASSP-91, I.713–716, 1991.

4


