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Abstract
Both human and automatic processing of speech require recogniz-
ing more than just the words. We describe a state-of-the-artsys-
tem for automatic detection of “metadata” (information beyond the
words) in both broadcast news and spontaneous telephone conver-
sations, developed as part of the DARPA EARS Rich Transcription
program. System tasks include sentence boundary detection, filler
word detection, and detection/correction of disfluencies.To achieve
best performance, we combine information from different types of
language models (based on words, part-of-speech classes, and au-
tomatically induced classes) with information from a prosodic clas-
sifier. The prosodic classifier employs bagging and ensembleap-
proaches to better estimate posterior probabilities. We use confu-
sion networks to improve robustness to speech recognition errors.
Most recently, we have investigated a maximum entropy approach
for the sentence boundary detection task, yielding a gain over our
standard HMM approach. We report results for these techniques on
the official NIST Rich Transcription metadata tasks.

1. Introduction
Although speech recognition technology has improved significantly
in recent decades, current speech systems still output simply a
“stream of words”. Unlike written text, this unannotated word
stream leaves out useful information about punctuation anddisflu-
encies. Such structural information is important for humanread-
ability of speech transcripts [1]. It is also crucial to applying down-
stream natural language processing techniques, which are typically
based on the assumption of fluent, punctuated, and formattedin-
put. Recovering structural information in speech has thus become
the goal of a growing number of studies in computational speech
processing [2, 3, 4, 5, 6, 7].

To this end, the metadata extraction (MDE) re-
search effort within the DARPA EARS program (see
http://www.darpa.mil/ipto/programs/ears/) aims to enrich speech
recognition output by adding automatically tagged information on
the location of sentence boundaries, speech disfluencies, and other
phenomena. In this paper we focus on metadata encoding structure
at the word level, and will not touch on speaker change detection
and labeling, which are also part of the broader MDE effort.

In this paper, we describe the ICSI-SRI-UW metadata extrac-
tion system, which yielded the best performance on most MDE
tasks in the most recent NIST 2003 Fall MDE evaluation. We intro-
duce the MDE tasks and scoring approach in this section. Section
2 describes our basic system, including the knowledge sources and
modeling techniques employed. Section 3 shows the results using
confusion networks for the SU1 detection task. Section 4 describes

1SU stands for sentence-like units; see LDC’s annotation guidelines [8]
for the definition of an SU.

our recent investigation of the maximum entropy modeling for de-
tecting SUs. Conclusions appear in Section 5.

1.1. MDE Tasks

The Rich Transcription structural MDE framework includes four
tasks.� “Sentence unit” (SU) detection aims to find the end point

of an SU. SUs correspond to either complete or incomplete
sentences.� “Edit word” detection aims to find all words within the
reparandum region of a speech repair, or the word region
that when deleted yields a “fluent” version of the utterance.� “Filler word” detection aims to identify words used as filled
pauses (FP) or discourse markers (DM).� “Interruption point” (IP) detection aims to find the inter-
word location at which point fluent speech becomes disflu-
ent.

The following example shows a transcript with metadata
marked: ‘/’ for SU boundaries, ‘<>’ for fillers, ‘ [ ]’ for edit words,
and ‘*’ for IPs.

and < uh > < you know > wash your clothes
wherever you are / and [ you ] * you really
get used to the outdoors /

Each task is evaluated separately. Systems are evaluated on
both reference (human) transcriptions and the output of an au-
tomatic speech recognition system. Scoring tools first align the
reference and hypothesis words, then map metadata events, and
then calculate the errors. For the edit and filler word detection,
the errors are the average number of misclassified referenceto-
kens per reference edit or filler word token. For SU and IP de-
tection, the errors are the number of misclassified points (missed
and falsely detected points) per reference SU or IP. When recog-
nition output words do not align perfectly with those in refer-
ence transcripts, an alignment that minimizes the word error rate
is used and then the hypothesized metadata events are mappedto
the reference metadata events. Further description is provided in
http://www.nist.gov/speech/tests/rt/rt2003/fall/.

1.2. MDE Corpora

Evaluation is performed on two corpora that differ in speaking style:
conversational telephone speech (CTS) and broadcast news (BN).
Training and test data are those used in the DARPA Rich Transcrip-
tion Fall 2003 evaluation.2 The CTS data set contains roughly 40

2We used both the development set and the evaluation set as thetest set
in this paper, in order to increase the test set size to make the results more
meaningful.



hours of speech for training and 6 hours (72 conversations) for test-
ing. The BN data contains about 20 hours for training and 3 hours
(6 shows) for testing. Training and test data are annotated with
metadata events by LDC, using guidelines detailed in [8].

2. Baseline System and Performance
2.1. Previous Framework

Boundary detection problems may be viewed as classificationtasks.
In the training data, SU boundaries and IPs are marked by annota-
tors using both the information in the transcription and therecorded
speech. For testing, given a word sequence (human transcription or
speech recognition output)W1 W2 ... Wn and the speech signal,
we use various knowledge sources (e.g., prosody and lexicalinfor-
mation) to determine whether a given inter-word boundary should
be a marked event (SU boundary or IP) or a nonevent.

Our boundary classifier has three components: the prosody
model, the hidden event language model (LM), and various strate-
gies for combining these models [9]. The prosody model is a prob-
abilistic classifier that estimates the conditional probability of a
boundary class at each word boundary, given features associated
with that boundary. The features reflect prosodic patterns,includ-
ing duration, fundamental frequency (F0), energy and pause. We
chose a decision tree classifier to implement the prosody model.

A hidden event LM [10] models the joint distribution of bound-
ary types and words. For a sequenceW1 E1 W2 E2 ... Wn, where
the metadata eventsEi are included as pseudo-word tokens, the LM
models the joint probability of the word and event sequence.Stan-
dard N-gram modeling techniques can be applied to implementthe
hidden event LM.

The most successful integration approach from our past workis
based on a hidden Markov model (HMM) defined by the transition
probabilities given by the hidden event LM and observation prob-
abilities estimated by the prosodic model. Posterior probabilitiesP (EijFi) estimated by the prosodic decision tree are converted to
likelihoodsP (FijEi) for this purpose. Thus the integrated HMM
models the joint distributionP (W;F;E) of word sequenceW ,
prosodic featuresF , and the hidden event sequencesE. Standard
algorithms are then applied to extract the most probable event type
at each inter-word location̂Ei = argmaxEi P (EijW;F ), given
the word sequenceW and the prosodic featuresF .

2.2. System Description

Based on the general approach described above, we enhanced the
language modeling of the system with a part-of-speech (POS)based
hidden event LM, a hidden event LM based on automatically in-
duced word classes, and a repetition detection LM [11]. POS tags
are obtained from TnT taggers [12], trained using the Switchboard
Treebank data and the broadcast news corpus. Automaticallyin-
duced classes are obtained using the algorithm described in[13].
Additionally, we have a large Broadcast News recognizer LM that
is trained from a large text corpus [15]. These various hidden-event
LMs are combined via linear interpolation.

For the prosody model, in order to address the imbalanced data
problem (since there are many fewer metadata events than non-
events at inter-word boundaries), we use a downsampled training
set. Additionally, we employ ensemble bagging to reduce thevari-
ance of the prosodic classifier. In this method, several downsampled
training sets are generated, and each is resampled multipletimes
and corresponding classifiers are combined via bagging [14]. This
substantially improves the performance of the prosody model.

We build separate two-way classifiers for each task: SU vs. non-
SU, edit IP vs. non-IP, FP vs. non-FP, DM vs. non-DM. During

testing, the prosody model and multiple LMs are combined to ob-
tain the best hypothesis for each inter-word boundary. For edit word
detection, we use the IP hypotheses and work backwards, looking
for words that match the word following the IP.

Since we use separate classifiers for each task, there are possi-
bly conflicts between different classifiers’ decisions at aninter-word
boundary. We reconcile the SU and edit IP decision conflict by
looking at the posterior probability of SU detection (whichis more
accurate than the IP classifier); when it is higher than a predefined
threshold, the SU hypothesis is preserved; otherwise the IPhypoth-
esis is used. Hypothesized IPs are also added at the beginning of
filler words in a post-processing step.

2.3. System Performance

Table 1 shows system performance for all structural metadata tasks
on both BN and CTS, and using both reference transcription (REF)
and speech recognition output (STT). STT output is obtainedfrom
the SRI recognizer [15], with a word error rate of 12.1% on BN and
22.9% on CTS.

BN CTS
REF STT REF STT

SU 48.72 55.37 31.51 42.97
Edit 51.37 100.39 59.22 87.99
Filler 9.22 52.45 18.07 47.97

IP 17.51 74.47 27.13 65.75

Table 1: System performance (error rate in %) for all the structural
MDE tasks on CTS and BN test sets.

As shown, performance degrades dramatically in the face of
recognition errors for all the tasks. Note, however, that the degrada-
tion on the SU detection task is less than on other tasks, which could
be due to several reasons. For one thing, the prosody model, which
is more robust to recognition errors, was found to be especially ef-
fective for the SU task. Also, the language model for SUs is not as
dependent on just a few key words or patterns as in the case of filler
word detection or disfluencies (which are cued by repeated words).
For edit disfluencies and IPs the reference condition provides word
fragments, which constitute very reliable cues, but are completely
absent in automatic recognition output. Finally, SU eventshave a
higher frequency than the other metadata events, thereby making
model estimation relatively more robust for this task.

2.4. Contributions of Knowledge Sources

Table 2 presents the contributions from different components for
SU detection for the two corpora. We focus here and in all further
sections on only the SU task, due to space constraints. The SUtask
is a good choice, because unlike the disfluency tasks, SU events are
frequent in both CTS and BN data.

As shown, performance improves as knowledge sources are
added. A better prosody model using ensemble bagging (‘prosody-
ens-bag’ in the table) generates better posterior probabilities given
the prosodic features, and thus combines better with LMs, than us-
ing a single downsampled training set (‘prosody-ds’ in the table).
Class-based LMs (POS and automatically induced classes) provide
some additional gain when combined with the word-based LM, pre-
sumably by addressing the sparse data problem and by capturing
some amount of syntactic or semantic information. Also apparent
from the table is the finding that word recognition errors degrade
the LMs relatively more than they degrade the prosody model.Us-
ing recognized rather than true words is more of a problem forCTS



BN CTS
REF STT REF STT

word LM 68.16 72.54 40.56 51.85
word LM + prosody-ds 53.61 59.69 35.05 45.30

word LM +
prosody-ens-bag 50.03 56.17 32.71 43.71
prosody-ens-bag 72.94 72.09 61.23 64.35

word + POS+ class LM
+ prosody-ens-bag 48.72 55.37 31.51 42.97

Table 2: Contributions of components for SU detection for both
CTS and BN tasks, REF and STT conditions. Results are shown in
error rate (%).

than for BN; this is most likely attributable to the word error rates
on CTS, which are about twice as high as for BN recognition.

3. Confusion Networks
The significant degradation in performance on MDE tasks whenus-
ing the best recognizer hypothesis (versus the true words) motivates
an approach that can integrate information from multiple word hy-
potheses. Multiple word hypotheses are valuable because while the
top recognizer output is optimized to reduce word error rate, alterna-
tive hypotheses may together reinforce alternative (more accurate)
predictions of metadata events. We focus on CTS because of its
relatively higher WER.

In recent work, we have examined the use of confusion net-
works [16] to leverage multiple recognizer hypotheses in predicting
SUs. For each hypothesized word sequence, an HMM is used to
estimate the posterior probability of an SU at each word boundary.
The hypotheses are combined using confusion networks to deter-
mine the overall most likely event at each boundary [17].

Table 3 shows SU error rates for a system that includes bagged
trees and an interpolated class LM. The system combines hypothe-
ses from a pruned n-best list that utilizes the top 90% of the recog-
nizer hypotheses (by posterior mass) in order to limit the processing
time required. System performance on the single best hypothesis
from this pruned list is given for comparison.

Single Best Single Best (pruned) Confusion Nets
43.62 44.29 43.11

Table 3: SU error rates (%) for 1-best recognition versus theconfu-
sion network approach for CTS with WER 22.9%.

Combining predictions from multiple hypotheses reduces error
rates relative to 1-best predictions. Gains compared against the sin-
gle best system are smaller than against the pruned single best, be-
cause only a portion of the hypotheses are used in the latter.Produc-
ing hypotheses for the entire n-best list may lead to furthergains. In
ongoing work we are moving from n-best confusion networks toa
lattice framework, allowing us to consider a much larger hypothesis
space.

4. Maximum Entropy Modeling
A weakness of the HMM-based model combination approach de-
scribed earlier is that it assumes independence of lexical (N-gram)
and prosodic features given the metadata events. We have therefore
begun to explore maximum entropy (maxent) models as an alterna-
tive approach to feature integration. Here we report on maximum
entropy modeling for the SU detection task.

4.1. Maxent Model Description

The maxent model for SU boundary detection assigns a posterior
probability for SU boundary at each inter-word boundary, given the
features associated with each boundary. The maxent estimator finds
a model that satisfies all feature expectation values derived from the
training data, while being maximally smooth (i.e., having maximum
entropy). This model has the following exponential form:p(yjx) = 1Z(x)exp(Xi �ifi(x; y)) (1)

whereZ(x) = Py exp(Pi �ifi(x; y)), fi(x; y) is the indicator
function for featurei, y is the metadata event type, andx represents
the context associated with the sample.

Maxent modeling has been employed in many natural language
processing tasks [18]. For a language processing task, the features
are generally easy to define, and mostly characterize the context of
an event. The power of the maxent approach stems from the fact
that multiple features can apply to the same event, without having
to model explicitly the joint occurrence of such features.

For SU detection we utilize both textual features and features
derived from the prosody model.

Word: We use various combinations of word contexts to repre-
sent word features. The features include different lengths
of N-gram and different positional information for a loca-
tion i, e.g.,<wi>, <wi+1>, <wi; wi+1>, <wi�1; wi>,<wi�2; wi�1; wi>, and<wi; wi+1; wi+2>.

POS: POS tags are the same as used for the HMM approach. Fea-
tures capturing POS information are similar to those used for
words.

Chunk: Chunks are obtained from a TBL chunker trained on the
Wall Street Journal corpus [19]. Each word has an associated
chunk tag, such as the beginning of an NP, inside a VP, etc.
We use the same combination of contexts for chunk tags as
used for word and POS tags. This type of feature is used only
on the BN task because of the poor chunking performance on
CTS.

Class: We also use similar features coming from automatically
induced classes.

Turn: Since speaker changes are very indicative of SU boundaries,
we use this binary feature indicating speaker change.

Prosody: To keep the prosodic classifier as a separate model com-
ponent, and since the maxent classifier is most conveniently
used with binary features, we encode the posterior proba-
bilities from the prosodic decision tree into several binary
features through thresholding. Equation (1) shows that the
presence of each feature in a maxent model has a monotonic
effect on the final probability (raising or lowering it by a con-
stant factor). It is therefore best to define binary featuresen-
coding the decision tree posterior probabilitiesp in a cumu-
lative fashion:p > 0:1, p > 0:3, p > 0:5, p > 0:7, p > 0:9,
with heuristically chosen thresholds. This representation is
also more robust to the mismatch between the posterior prob-
ability in training and test sets, since small changes in the
posterior value affect at most one feature.

LM: It is convenient to include posterior event probabilities
from additional LMs (obtained using the HMM framework),
rather than encoding the LM information as a large number
of features in training. This is especially attractive for LMs
trained from text-only sources, such as the large Broadcast



News recognizer LM. The LM posterior probabilities are en-
coded as binary features similar to the decision tree posteri-
ors.

To date, we have not fully investigated compound features that
combine different knowledge sources and are able to model the in-
teraction between them explicitly. We included only a limited set
of such features, such as the combination of the decision tree’s hy-
pothesis and POS contexts.

4.2. SU Results Using Maxent

Table 4 shows SU detection results using maxent and HMM ap-
proaches individually, as well as their combination. The combina-
tion is carried out by a simple interpolation of posteriors from the
two models. We observe that on the REF condition, for both BN
and CTS, maxent achieves slightly better performance than HMM,
and worse results on the STT condition. Maxent better modelsthe
overlapping textual information. However, the prosodic informa-
tion is incorporated only through the rough thresholding; therefore,
prosody information is not completely preserved and is under-used
in the maxent approach. Because of the different errors madeby the
two approaches, the combination of maxent and HMM yields the
best performance for all the test conditions.

HMM Maxent Combination
BN REF 48.72 48.61 46.79

STT 55.37 56.51 54.35
CTS REF 31.51 30.66 29.30

STT 42.97 43.02 41.88

Table 4: SU detection results (error rate in %) using maxent and
HMM individually, and their combination.

5. Conclusions
We have described various knowledge sources and modeling ap-
proaches for automatic detection of metadata events in bothcon-
versational and broadcast news speech. Our HMM-based system
achieved state-of-the-art results in a recent government-sponsored
evaluation. Prosodic model performance was greatly improved
by using sampling and ensemble techniques to make better use
of inherently skewed data. Different class-based languagemodels
yielded an additional gain beyond a word-based language model
alone.

We have also explored new modeling techniques to try to ad-
dress two types of problems. To address the problem of errorful
speech recognition output, we have explored the use of multiple
recognition outputs for finding locations of likely metadata events.
An approach based on confusion networks has shown improve-
ments on CTS recognition output. To better account for feature
dependence across models, we have begun to investigate maximum
entropy modeling. This approach outperforms our previous HMM-
based integration on the reference condition of both BN and CTS.
Furthermore, combining the system output from both the maxent
and the HMM approach achieves the best performance across all
the test conditions.
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