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Abstract
We investigate machine learning techniques for coping with
highly skewed class distributions in two spontaneous speech
processing tasks. Both tasks, sentence boundary and disfluency
detection, provide important structural information for down-
stream language processing modules. We examine the effect
of data set size, task, sampling method (no sampling, down-
sampling, oversampling, and ensemble sampling), and learning
method (bagging, ensemble bagging, and boosting) for a deci-
sion tree prosody model. Results show that (1) bagging benefits
both tasks, but to different degrees, (2) the benefit from ensem-
ble bagging decreases as data size increases, and (3) boosting
can outperform bagging under certain conditions.

1. Introduction

Current speech recognition systems leave out structural in-
formation about the location of punctuation and disfluencies,
which is often assumed to be available for downstream language
processing modules. This paper investigates the use of machine
learning methods for the detection of sentence boundaries (SU)1

and disfluency interruption points (IP) given the speech signal
and its transcription. The following example shows a transcrip-
tion with SU boundary and IP events annotated.

yeah <SU> we really haven’t tried

camping with <IP> with our daughter

yet <SU> we <IP> we’d like to now that

she’s getting a little bit older <SU>

In the training data, SU boundaries and IPs are hand-
marked by annotators using both word transcripts and the
recorded audio [1]. In testing, given a word sequence (provided
by human transcription or speech recognition output)W1 W2
... Wn and the speech signal, the task is to determine a class
for each inter-word boundary. The possible orthogonal classes
we consider are (1) SU boundary, (2) IP, or (3) neither (fluent,
within-SU).

For transcriptions, we can use either human transcriptions
or the output of a speech recognizer. Because we focus here

1In spontaneous speech “sentences” are different from written text.
We use “SU” to represent these sentence-like units. See [1] for details.

on gains from machine learning for a prosodic classifier, before
and after combination with a language model, we have chosen
to report results using hand-transcribed words throughout. This
represents a “best-case” scenario for the language model, and
factors out the impact of recognition errors on our investigation.

Our general approach [2] has three components: a prosody
model, a hidden event language model, and a method for com-
bining the models. The prosody model is a word-boundary clas-
sifier. Each word has an associated feature set, and the classi-
fier learns to discriminate SU boundaries from non-SU bound-
aries, or IPs from non-IPs by using these features. The features
reflect prosodic information, including pause, duration, pitch,
and energy patterns. In this paper we focus on building better
classifiers using the current feature set rather than findingbetter
prosodic features. We use decision trees for our prosody model
because they perform well, can combine categorical and con-
tinuous features (including those that are partially undefined),
and are interpretable. A hidden event LM [3] models the joint
distribution of boundary types and words in a hidden Markov
model (HMM) with the hidden variable being the boundary
type. An integrated HMM approach models the joint distribu-
tionP (W;F;E) of the word sequenceW , prosodic featuresF ,
and hidden event typesE.

For both the SU and IP detection tasks, we encounter an im-
balanced data set problem, because these events are much less
frequent than nonevents. This causes classifiers to “ignore” in-
herent properties of the smaller class. Thus, we need some way
to help our classifiers cope with the highly skewed distributions.
Although the machine learning community investigated meth-
ods for addressing the imbalanced data set problem, e.g., [4],
our data is different from many data sets studied in the machine
learning community in that it uses speech, the data set is large
and noisy, and the results from the classifier (i.e., the prosody
model) are combined with an LM for final decisions.

This paper is organized as follows. Section 2 describes the
machine learning techniques and our experimental set up for
the two tasks. Section 3 reports results for each task. Section
4 summarizes our findings. A companion paper [5] describes
our full SU and IP detection systems, and reports results for
recognized words and other metadata tasks.



2. Methods and Experimental Setup
2.1. Approaches Used for SU and IP Detection

Previous work on a small data set [6] investigated a variety of
sampling approaches, as well as bagging and ensemble meth-
ods for detecting SU boundaries. In the present study we exam-
ine the impact of using more data, and compare results on the
SU detection task to results using the same machine learning
techniques on the new task of IP detection. The following is a
brief description of the machine learning approaches we apply
to both tasks:� Sampling:

– original set: use the original training set as it is,
i.e., no sampling is used.

– downsampling: randomly sample the majority
classes to have the same number of instances as
the minority class.

– oversampling: replicate the minority classes to
match the number of instances in the majority
class.

– ensemble sampling: split the majority class intoN sets, each of which is combined with all of the
minority class samples to make a balanced training
set to train a classifier. The final decision is made
by combining allN classifiers.� Bagging:

– bagging on downsampled set: Bagging [7] com-
bines different classifiers that are trained from dif-
ferent samples from a training set (with replace-
ment). We applied bagging to the downsampled
training set.

– bagging on ensemble sampling: for each balanced
training set formed from the ensemble sampling
approach, apply bagging. The final result interpo-
lates the output from all the classifiers.� Alternating Decision Tree Boosting: On many machine

learning tasks, the application of boosting to decision
trees has resulted in improved classification accuracy.
Boosting [8] combines multiple weak learning algo-
rithms. Each classifier is built based on the output of the
previous classifiers, mostly by focusing on the samples
for which the previous classifiers made incorrect deci-
sions. In contrast to bagging, boosting generates clas-
sifiers sequentially, and thus it cannot be implemented
in parallel and is computationally more expensive. Fre-
und and Mason [9] proposed an alternating decision tree
(ADT) learning algorithm based on boosting that pro-
duces a single tree that is a generalization of the decision
trees. We applied this ADT approach to SU boundary
and IP detection tasks.

SU IP
Small set Large set Large set

Training set 128K 428K 428K
Test set 16K 53K 53K

Percentage of
minority event (%) 13.0 13.56 4.54

Table 1: Statistics on the data sets used for the SU and IP detec-
tion tasks. The small set used in the previous study [6], shown
in the second column, is a subset of the large set used in this
paper.

2.2. Experimental Setup

We used data from the Switchboard conversational telephone
speech corpus [10]. The corpus in our experiments is the train-
ing data used for the 2003 Fall DARPA Rich Transcription eval-
uation. We split the 754 conversations into training and testing
sets. These conversations were annotated with SUs and IPs [1].
The same conversations are used for both the SU and IP tasks.
Table 1 shows the experimental setup, including the training and
testing set sizes (number of inter-word boundaries) and theper-
centage of the minority class in the data set for each task. For
comparison, we also include the data description for the smaller
set used in the previous investigations of the SU task [6].

We started with about 100 prosodic features representing
duration, pitch, and energy. For each task, we trained a decision
tree from a randomly downsampled training set, and then used
only the features selected by this decision tree for the other sam-
pling or bagging approaches. This was done in order to mini-
mize computational effort. Note that this feature selection ap-
proach is suboptimal; other more sophisticated techniquesmay
be able to select a better feature subset.

We evaluate performance using classification error rate,
which is defined as the ratio of word boundaries that are classi-
fied incorrectly to the total number of word boundaries. When
using speech recognition output for the experiments, due toin-
sertion, deletion, and substitution word errors, it is not straight-
forward to align the reference SU boundaries or IPs with the
system output. This is one of the reasons why we choose
to report results on the reference transcriptions and factor out
alignment errors. In the official NIST-EARS evaluation of the
SU and IP tasks a different but correlated evaluation metric
is used. See http://www.nist.gov/speech/tests/rt/rt2003/fall/ for
details of that metric.

3. Experimental Results and Discussion

3.1. SU Detection Sampling and Bagging Results

Table 2 shows SU detection results using both the prosody
model alone and in combination with the LM. If training uses
a sampled set that differs from the test set in class distribution,
the posterior probabilities from the decision tree need to be ad-
justed accordingly [6]. We include the results from our previous
study [6] on the smaller corpus in order to examine the impact



Method Small set (LM alone 5.02%) Large set (LM alone 5.27%)
Prosody alone Prosody+LM Prosody alone Prosody+LM

original 7.33 4.08 7.45 4.53
sampling downsampled 8.48 4.14 8.05 4.42

oversampled 10.67 4.39 8.46 4.64
ensemble sampling 7.61 4.18 7.86 4.47

bagging on downsampled 7.10 3.98 7.26 4.29
on ensemble 6.93 3.89 7.22 4.35

Table 2: SU detection results in error rate (%). LM is trainedfrom the original training set without any sampling.

of the data size on the sampling and bagging results.

As the data set size increases, we expected that the gain
from using the original training set might be lost and the benefit
from ensemble sampling might decrease, since the downsam-
pled training set might be more representative of the data set.
Table 2 shows that contrary to our expectation, using the origi-
nal training set yields the best results, although it has a greater
cost in training time. As expected, the gain from ensemble sam-
pling is diminished as the data set size increases. When the data
set is small, ensemble sampling has the advantage of making
use of the full data set within the ensemble. As the data set
increases and is inherently more representative, the ensemble
benefit decreases.

Similar to using the smaller data set, oversampling is com-
putationally expensive and does not yield a performance im-
provement. Downsampling the training set performs reason-
ably well, and has the advantage of saving computation. This
is important when the training set size is large, i.e., hundreds of
thousands of data samples.

For both data sets, bagging outperforms the single classifier.
This shows that the combination of multiple classifiers for this
task can reduce the variance relative to that of a single classifier
or that in a randomly sampled training set.

Notice from the table that the combination of prosody
model and LM achieves better performance than using either
knowledge source alone. However, the gain from applying a
sampling or bagging method on the prosody model may be di-
minished after combination with the LM.

3.2. IP Detection Sampling and Bagging Results

Table 3 shows results of the sampling and bagging approaches
for the IP detection task. In addition to the results on the origi-
nal test set, we show results on the downsampled test set when
using the prosody model alone.

If the original training set is used, then because the IP sam-
ples comprise an extremely small portion of the training set, the
decision tree does not split. The classifier is not able to learn
the characteristics of the minority class. Therefore the classifier
performs at chance on the original test set and does not provide
any information when it is combined with the LM. This differs
from the SU detection task, in which the best performance is
achieved by using the original training set among the different
sampling approaches. However, when the downsampled train-

Method Prosody alone Prosody+LM
DS Original Original

original 50 4.36 2.34
sampling downsampled 23.76 4.36 2.27

oversampled 27.69 4.36 2.31
ensemble 22.07 4.36 2.24

bagging on DS 20.64 4.36 2.25
on ensemble 20.20 4.36 2.24

Table 3: IP detection results in error rate (%). Chance perfor-
mance is 4.36% on the original test set. The error rate of using
LM alone is 2.34%. ‘DS’ denotes ‘downsampled’.

ing set is used, the IP classifier performs substantially better
than chance on the downsampled test set.

As with results for the SU detection task, bagging and en-
semble bagging perform significantly better than the other ap-
proaches on the downsampled test set when using the prosody
model alone. Yet on the original test set, when the priors are
taken into consideration, none of the approaches (downsam-
pling, bagging, ensemble) is able to beat the bias of the majority
class. Despite achieving only chance performance on the IP de-
tection task when used alone, the prosody model provides added
information after it is combined with the LM. However, the rel-
ative error rate reduction is smaller for the IP detection task than
for the SU detection task, i.e., 4.3% versus 18.6% respectively.

Figure 1 shows the ROC curves for the IP and SU detection
tasks for the original test set using the downsampled training
set, bagging, and ensemble bagging. These curves suggest that
bagging indeed improves the performance over using a single
randomly downsampled training set. The ROC curve from en-
semble bagging is similar to that using bagging on one down-
sampled set. Notice also from the curves that the improvement
on the IP detection task is larger than on the SU task, suggesting
that bagging improves the generality of decision tree classifiers
more on the noisy IP task than on the SU task.

3.3. ADT Boosting for SU and IP Detection Tasks

Results using the ADT algorithm for the prosody model alone
are shown in Table 4. The model is trained using the down-
sampled training set and tested on the downsampled test set.
Since the algorithm does not generate posterior probabilities of
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Figure 1: ROC curves for IP and SU detection using the prosody
model alone.

Bagging Boosting ADT
SU 14.3 14.8
IP 20.6 19.3

Table 4: SU and IP detection results in classification error rate
(%) using the ADT learning algorithm and bagging.

class membership for each test sample,2 we do not report results
on the true test using the prosody model alone, or when com-
bining the prosody model with the LM, since both conditions
require classifiers that output posterior probability estimates.
Compared to the performance of bagging, the ADT boosting
algorithm improves performance on the IP task but not on the
SU detection task. This highlights the difference between the
SU and IP tasks, suggesting that the metric of reducing clas-
sification errors used by the ADT learning algorithm may be
better for the noisy IP task, while the information gain usedin
classical decision tree learning is more appropriate for the SU
task.

4. Conclusions

We have examined machine learning techniques for addressing
the imbalanced data problem in two spontaneous speech tasks.
We investigated the impact of data set size on sampling ap-
proaches for an SU detection task. This is extremely important
since most speech processing problems have a large trainingset
and finding the best sampling and bagging approach is crucial
to building a good classifier. Similar results were found when
the data size increases; however, the gain from ensemble sam-

2In future work, we will investigate methods for converting the score
of the ADT learning algorithm to a posterior probability.

pling diminishes as the data set is enlarged. Our investigation of
the IP task highlights differences between the IP and SU tasks,
which could be due to differences in the magnitude of skew, in-
herent differences in cues to the phenomena, or both. We found
that sampling techniques are more important in the case of the
IP task, where the data skew problem is much more severe. Bag-
ging approaches substantially improve the accuracy of bothSU
and IP detection. Finally, our initial investigation of boosting
with alternating trees highlights additional differencesbetween
the SU and IP detection tasks.
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