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ABSTRACT

We investigate automatic approaches to finding “hidden” sponta-
neous speech events, such as sentence boundaries and disfluencies,
in multi-party meetings. Hidden events are characterized prosod-
ically by a large array of automatically extracted energy, dura-
tion, and pitch features, and are modeled by decision tree classi-
fiers; lexical cues are modeled by N-gram language models. Both
sources of information are combined in a hidden Markov model
framework. Results show that combined classifiers achieve higher
accuracy than either single knowledge source alone. We also study
classifiers that use only the preceding context for predicting events,
simulating online processing. We find that prosodic features are
more robust than are language model features to this constraint. Fi-
nally, we examine the effect of automatic word recognition errors,
in both training and testing, on classification accuracy. We find that
lexical models degrade much more severely than do prosodic mod-
els in this case, again showing the relative robustness of prosodic
information for hidden-event detection in natural conversation.

1. INTRODUCTION

Speech researchers have recently taken a greater interest in the
automatic processing of natural multi-person meetings. Meetings
constitute a ubiquitous form of human communication, and present
unique research challenges [1, 2]. While better word recognition
is an important goal in much of this work, interest is also shift-
ing toward higher-level tasks, such as information extraction and
summarization. For such tasks to succeed, information in text but
not currently in speech recognition output, such as punctuation and
disfluencies, must be available.

In past work we have demonstrated that prosodic information,
especially when combined with lexical cues, can be effective in
detecting “hidden events”, such as unmarked sentence boundaries
and disfluencies, in broadcast speech and in two-person telephone
conversations [3]. In this paper we extend and compare those re-
sults to the new domain of multi-party meetings. Such meetings
are presently recognized with high word error rates. Prosodic cues
are less dependent on word identity, and should therefore be more
robust to recognition errors than are lexical cues. Also, antici-
pating the emergence of artificial conversational agents that will
ultimately participate in meetings [4], we investigate how well a
system can detect hidden events when it must work online, in real-
time, and therefore has access only to the past history at any given
time.

Table 1. Data used in study, and word recognition error rates
(WER) obtained: Even Deeper Understanding (Bed), Meeting
Recorder (Bmr) and Robustness (Bro) meetings. Speech duration
excludes long silent regions, but counts overlapped speech multi-
ple times. “Spurts” are stretches of speech separated by at least 0.5
second of silence.

Bed Bmr Bro Total
Meetings 7 13 12 32
Speech duration 7.0h 13.7h 11.2h 31.9h
Transcribed words 67,546 145,150 94,261 306,957
Speech spurts 8,254 15,414 11,821 35,989
Native speakers

Channels 20 61 41 122
WER 48.0% 43.9% 46.1% 45.2%

Nonnative speakers
Channels 18 20 24 62
WER 62.5% 76.4% 79.2% 72.2%

2. METHOD

2.1. Data and Annotations

We processed and analyzed data from multi-party meetings col-
lected as part of the ICSI Meeting Recorder Project [2]. We
drew data from three types of Berkeley group meetings: “Meet-
ing Recorder” (Bmr) , “Robustness” (Bro), and “Even Deeper Un-
derstanding” (Bed), with between 3 and 8 speakers each. Table 1
summarizes the amount of data in each of these meeting types. We
split our corpus into a training and a non-overlapping test portion.
The test portion consisted of 1 Bed, 2 Bmr, and 2 Bro meetings,
chosen so as to make the total amount of data (number of words) in
the test set about 18% of the total, keeping roughly equal propor-
tions of data by meeting type across train and test data. Although
the speech in training and test sets is disjoint, several speakers do
appear in both sets. However, we consider this not atypical of real
world applications, where meetings will involve a mix of recurring
and unknown participants.

2.2. Automatic speech recognition and time alignment

After meetings were recorded, they were processed by an auto-
matic segmentation routine [5] to detect regions of speech activity.
These regions were passed to human labelers who made segmen-
tation corrections as necessary, and then created word transcripts.



Additional labelers then added and corrected various annotations
involving punctuation, disfluencies, and incomplete sentences.

The Meeting Recorder Project collects signals from both
close-talking and far-field microphones. In this study we used only
data from close-talking microphones, since automatic recognition
from far-field microphones is currently far too errorful. Even for
studies involving forced alignment of correct words, we prefer to
use the high-quality signals, in order to obtain the best possible
time alignments and prosodic features.

Our prosodic features rely on phone-level time alignments,
which we obtained in two different ways. In experiments based on
automatic speech recognition (ASR), we obtained word hypothe-
ses and time alignments using a simplified version of the SRI Hub-
5 large-vocabulary conversational speech recognizer [6]. The rec-
ognizer uses a single decoding pass, and performs channel-based
vocal-tract length and cepstral normalization. It also performs un-
supervised speaker adaptation using a phone-loop model. Both
acoustic and language models were unchanged from the Hub-5
system, which is trained mainly on Switchboard data.

We found that fully automatic meeting segmentation currently
incurs at least a 10% degradation in recognition accuracy [5], due
to missed speech regions and false recognitions of nonspeech.
Since we were interested in the effects ofword recognition (as
opposed to segmentation) errors on our prosodic feature extrac-
tion and modeling, we chose to perform recognition on the output
of automatic segmentation with hand-corrected boundaries. ASR
word error rates for each of the meetings types are also shown
in Table 1; they are about 45% for native speakers and 72% for
nonnative speakers. A second set of time alignments was derived
from forced alignment of the reference transcripts, using the same
recognition engine and acoustic models. Though not perfect, these
alignments are much more accurate than those derived from ASR
output, and serve as a baseline for our event-detection experiments.

2.3. Prosodic features

This section describes some of the features used in the classifica-
tion tasks. Because of space limitations, only the most cursory
explanations are given here; the reader is referred to [3] for a more
detailed discussion of these features, although additional features
are used in the present work.

The features can be divided into four main groups: pause and
duration features, pitch (F0) features, energy features, and other
contextual features. Pause features were computed based on align-
ments, and are fairly robust to recognition errors. Phone durations
were obtained from ASR or forced alignments, and were normal-
ized by phone duration statistics obtained from the Switchboard
corpus. F0 features were computed by creating linear fits from me-
dian filtered raw F0 values, which were extracted using the ESPS
pitch trackerget f0 [7]. Line fits were used to more succinctly
describe general prosodic trends, since slopes can easily be deter-
mined from this data. Minimum, mean, and maximum processed
F0 values were computed for any given word, and were normal-
ized by baseline F0 values determined by a log-normal tied mix-
ture model [8]. Features were also computed from only the last F0
value, or using a windowed range starting from the last frame of
a word and stretching backN frames (N = 10; 20; 50; 80; 100).
Windowed F0 values provide robustness against short word du-
rations or noisy time boundaries. Using theget f0 RMS val-
ues, we computed minimum, maximum, and mean energy features
over a word. These features were then normalized by statistics
computed for the channel, in order to account for variability in mi-

crophone gain, or inherent speaker loudness. Finally, a number of
non-prosodic contextual features, including speaker name, meet-
ing type (Bmr, Bed, Bro), speaker gender, whether the speaker is
a native speaker, and whether or not the speech was in a region
of speaker overlap—were included as potential features for the
prosodic model, as certain events and the prosodic features them-
selves can correlate with these contextual features.

2.4. Prosodic and language models

As in earlier work, we used CART-style decision trees [9] as clas-
sifiers to predict classes and their posterior probabilities from input
features. This is a greedy algorithm, however, and in order to avoid
globally suboptimal feature combinations, we used a feature selec-
tion algorithm to search for an optimal subset of input features [3].
Trees were built for both raw class distributions and distributions
that had class probabilities equated by downsampling. Downsam-
pling to a uniform class distribution allows more sensitivity to
the minority classes and avoids skewing posterior probabilities to-
wards decisions that correspond to the majority class. Also, as dif-
ferent meeting types may exhibit different majority/minority class
distributions, downsampling can be seen as a type of normaliza-
tion across meeting types. Finally, downsampling to equal priors
allows for direct integration with the LM-based classifier since its
posterior probability estimates are proportional to class likelihoods
[3].

To model lexical information about hidden events, i.e., their
cooccurrence with discourse markers, filled pauses, and high fre-
quency words (such as the pronoun “I” that often starts sentences)
we employed N-gram language models (LMs). We trained such
models on annotated transcripts, where each event is represented
by a tag, and is otherwise treated the same way as a word token.
In testing, when only the (transcribed or automatically recognized)
regular (non-event) “words” are available, the LM is evaluated as a
“hidden event N-gram”. That is, the event tags are treated as states
in a hidden Markov model (HMM), and their probabilities (con-
ditioned on the words) are computed via the forward-backward
algorithm [3]. In all our experiments we used trigram LMs, which
performed no worse than higher-order models given the amount of
available data. The LM training data was always identical to that
for the corresponding decision tree experiments.

Finally, we tested combinations of LMs and prosodic classi-
fiers. Here too we used the LM as an HMM, but in this case we
also computed likelihoods for the event states using the prosodic
decision trees, and factored them into the computation of event
posteriors. This method uses decision trees trained on downsam-
pled data, and is an effective and efficient way of combining both
types of models [3]. For comparison, we ran prosody-only experi-
ments by using the same downsampled trees combined with a un-
igram LM to adjust for event priors. We note that in this case, we
could have also used non-downsampled trees (thus incorporating
the event priors in training) without any LM in testing. Nondown-
sampled trees generally yield better results in this task, but were
too time-consuming to train; hence we report downsampled results
only, which underestimate the prosodic model performance.

2.5. True versus recognized words

As mentioned earlier, one of our interests was the effect of word
recognition errors on event detection, for both prosodic and lan-
guage models. We therefore performed each experiment in three
ways: using true (transcribed) words in training and in testing;
using recognized words in training and in testing; and using true
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Fig. 1. Event detection accuracy (in %) using different models and different train/test conditions. “True” = true words (forced alignment);
“ASR” = 1-best recognizer output; “LM” = language model.

words in training and recognized words in testing. We expect
degradation of performance in the latter two conditions relative
to the first, but it is not clear a priori whether it is better to train
on true or recognized words. Training on true words could lead to
“cleaner” models, while training on recognized words would al-
low the model to learn the error patterns and behave accordingly
in testing. Training on true words is also less costly than training
on recognized words.

Accuracy scoring for automatic speech recognition presents
some interesting problems, since hypothesized and true boundaries
are not in direct correspondence. We addressed this problem by
first aligning hypothesized and reference words using a distance
metric based on phonetic similarity, a method that can deal with
fairly high word error rates. Event labels for sentence boundaries
and disfluencies were then transferred to corresponding locations
in the hypothesized word string, and served as reference labels for
event scoring in ASR output. The same alignment procedure was
applied to the training data to obtain event-labeled transcripts for
training models from recognition output.

2.6. Online event classification

Both decision trees and language models can utilize cues from both
before and after events, assuming processing occurs in batch mode,
e.g., after the meeting has been fully recorded. However, there are
situations whereonlineprocessing is desired, for example, as part
of a computer system following an ongoing meeting in real-time,
possibly interacting with the participants [4]. In this situation the
system would have to classify events instantaneously, using only
information precedingthe location of interest. To simulate this
situation, we tested models using only features derived from the

left context of a given location. For prosodic models this means
limiting the available features to those computable from the region
preceding the word boundary. For language models, online pro-
cessing is simulated by predicting event probabilities using pre-
ceding words only (using forward probabilities only, rather than
forward-backward computation).

3. EXPERIMENTS AND RESULTS

We report results for a three-way classification task in which each
word boundary is to be labeled as either a sentence boundary, a
disfluency interruption point (including endings of incomplete sen-
tences), or a fluent sentence-internal word transition. In our test
set, about 9% of word boundaries were sentence breaks, 10% were
disfluencies or incomplete sentences, and the remaining 81% were
fluent boundaries. The latter number also represents the “chance”
accuracy of a classifier that always outputs the majority class.

Figure 1 shows the accuracy of three kinds of classifiers
(prosody only, LM only, and combined) and with different combi-
nations of true and recognized words in training and test. In each
panel, the results using all features are on the left, and simulated
online proceeding results (excluding forward-looking features) on
the right. All classifiers perform well above chance, with one ex-
ception: the LM without future context (in all conditions), which
cannot overcome the strong prior for the majority class in this con-
dition. However, all classifiers suffer from the lack of future fea-
tures. For example, using true words, the error rate (1 – accuracy)
of the prosodic tree increases by 18% relative, and for the com-
bined classifier by 65%. Overall, we can conclude that classifiers
based on lexical information degrade more than does the prosody-
only classifier when following context is removed.



We also observe prosodic classifiers to be more robust with
respect to word recognition errors. All classifiers degrade severely
when tested on ASR output, however the prosodic classifier less so
than the word-based ones. For example, when training and testing
using ASR output, the error rate of the prosodic classifier with all
features increases by 17% relative, whereas the increase is 70%
for the word-only classifier and 79% for the combined classifier.
Nevertheless, across all conditions, the combined classifiers out-
perform those based on prosody or words alone, confirming our
past results on other types of data.

Finally, there is an interesting difference in the way that us-
ing ASR output in training affects the different classifiers. The
LM-only classifier performs better on ASR output when it is also
trained on ASR output. We can surmise that the LM learns com-
mon word error patterns and how they relate to the overall event
distribution. The prosodic tree, on the other hand, performs better
when trained on correct words, possibly due to excessive noise in
feature values resulting from incorrect word alignments.

Inspection of the prosodic model’s feature usage in the differ-
ent experiment conditions reveals interesting effects due to both
true versus recognized words, and to the allowing of forward ver-
sus no forward features. We report feature usage as the percentage
of decisions that have queried the feature type; thus, features used
higher up in the tree have higher usage values. By feature type, we
refer to subsets of prosodic features (duration, pitch, etc.), as space
does not permit further detail. In the case of training and testing
on true words, the all-features model is quite simple, with 67%
of its feature usage from raw and normalized vowel and trivowel
durations, and 32.5% of its usage from pause information (pre-
dominantly from the pause following the boundary in question).
We note that the predominance of duration features for this task is
consistent with our previous results on event detection in Switch-
board [3]. This is not surprising, since we have found similarities
in speaking styles in Switchboard and meetings elsewhere [10].

When the following context is not allowed however, feature
usage changes. Raw and normalized vowel and trivowel dura-
tions still account for most of the decisions (52.7%), but the rest
of the usage is from pitch range and slope features (17.7%), nor-
malized energy features (12.5%),previouspause duration (9.9%),
and presence of speaker overlap (3.4%).The effect of removing
forward features is similar for the other two conditions, allowing
pitch and energy features to compensate for the omission of the
following pause feature. Finally, allowing no forward context and
using recognized words causes the appearance of the speaker name
feature to be used for about 15% of the time, presumably because
the prosodic model has exhausted robust features and thus begins
to utilize variations in speaker priors for the various events.

4. CONCLUSIONS

We have investigated the use of prosodic and word-based classi-
fiers for locating sentence boundaries and disfluencies in multi-
party meetings. We find that combining these two information
sources yields the best results, and that word recognition errors
lead to significant performance degradation, even though prosodic
classifiers are less affected than word-based ones. Prosodic classi-
fiers also degrade less than do language models when restricted to
using only past information, as required for online processing.
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