
SPEECH MODELING USING VARIATIONAL BAYESIAN MIXTURE OF GAUSSIANS

Panu Somervuo

International Computer Science Institute Neural Networks Research Centre
Berkeley, California, USA Helsinki University of Technology, Finland

panus@icsi.berkeley.edu panu.somervuo@hut.fi

ABSTRACT

The topic of this paper is speech modeling using the Varia-
tional Bayesian Mixture of Gaussians algorithm proposed by Ha-
gai Attias (2000). Several mixtures of Gaussians were trained for
representing cepstrum vectors computed from the TIMIT database.
The VB-MOG algorithm was compared to the standard EM algo-
rithm. VB-MOG was clearly better, its convergence was faster,
there was no tendency to overfitting, and finally, it gave consis-
tently better likelihoods for unseen test data using any given num-
ber of the mixture components.

1. INTRODUCTION

Mixture densities are commonly used in the feature modeling. The
components of the mixtures are typically simple parametric mod-
els such as Gaussians. There are various methods for training the
models, each with a different optimization criterion. The fun-
damental problem in the modeling is how to choose the optimal
model complexity. In case of the mixture models we may ask what
is the optimal number of the mixture components.

Maximum likelihood (ML) estimation is a commonly used
training method. However, it suffers from the overfitting if there
are too many free parameters in the model compared to the size
of the training data. In that case the model fits very well to the
training data but lacks the generalization ability so that it doesn’t
tolerate noise or other deviations from the expected training data.
As a consequence, the model cannot be used for making infer-
ences about the new data. Overfitting can be reduced by adding a
penalty term to the ML objective function. The basic idea is that
the penalty term becomes larger as the model complexity grows.
However, some penalty terms are heuristic or valid only for large
sample sizes. Another way to control the overfitting is crossvali-
dation. The original training data is then divided into subsets and
the model is trained using all subsets except the one which is saved
for the evaluation. This can be repeated with different partitions of
the data to the training and validation sets. When comparing the
models, that structure is chosen which gives the best performance
to the validation data. Although this is straightforward to imple-
ment, it can be very time consuming, especially if the number of
the partitions is large.

Many estimation methods are based on point densities. For
instance, ML estimation gives a single model corresponding to the
highest (may be local) peak of the likelihood function. The MAP

This work was supported by the Academy of Finland, project no.
44886 “New information processing principles” (Finnish Centre of Excel-
lence Programme 2000-2005).

estimation gives the highest (again possibly local) peak of the pos-
terior probability function. The problem with the point estimates
is that they do not measure the probability of the model which in
practice is of importance. For instance, the model based on a single
density peak can be overfitted. Bayesian modeling gives a more
rigorous and disciplined way to carry out the parameter estima-
tion and model selection. In this framework, an entire model class
with all its possible parameter combinations are handled together.
Sometimes the term Bayesian modeling is used when only adding
priors to the ML estimation (i.e. as a synonym to the MAP esti-
mation), however, the main challenge is moving from the models
based on point density estimates to the models which are averaged
over the entire parameter posterior probability distribution. This is
the way the Bayesian modeling is applied in the current work.

In the experiments, cepstrum vectors computed from speech
were modeled using the mixtures of Gaussians. Bayesian frame-
work was used for training and comparing the models. When using
the models in the full Bayesian setting, all models with different
structures can be used together for making inferences about new
data. The value of the well-defined objective function can also be
used for selecting one best model structure, in this case the optimal
number of the mixture components.

2. VB-MOG ALGORITHM

In the paper of Hagai Attias [1], by means of the calculus of vari-
ations, an expectation maximization (EM) type learning algorithm
is derived for probabilistic graphical models. In particular, an al-
gorithm for training a mixture of Gaussians was presented. This
algorithm, Variational Bayesian Mixture of Gaussians (VB-MOG)
is described below.

Let
���������
	�����������

denote the � visible data observation
nodes, � ����� � 	������� � �

the hidden nodes, and � the parame-
ters (additional hidden nodes) of a Bayesian network. A structure
parameter � controls the number of the hidden nodes (the number
of the mixture components). The joint distribution ��� ��	 ��� � 	 �! 
defines now a model.

The Gaussian mixture model with � mixture components is
expressed as:

��� ��" � � 	 �! �$#%
&(' � ���

��" � ) "*� ) 	 �+ ,���-) ".� )/� �+ 	 (1)

where
� "

denotes the 0 th data vector and ) " the hidden compo-
nent that generated it. Each mixture component is a Gaussian,
��� � " � ) " � ) 	 �+ �21 �433 3 & 	65 5 5 &  , where 3 3 3 & is the mean,

5 5 5 & is
the precision matrix (inverse of the covariance matrix 7 7 7 & ), and
���-) ".� )/� �+ �98 & is the mixture weight.



In Bayesian modeling we try to compute the parameter pos-
terior distribution ���-�.� � 	 �! . Since this is in general intractable,
the true posterior is approximated by a tractable form � . In the
approximation, the parameters and hidden nodes are assumed
to be independent so that � can be factorized: � � � 	 �.� �  �� � ��� �  � � � �.� �  .

In the Variational Bayesian framework, the model parame-
ters need not be assumed to be e.g. normally distributed, in-
stead, the functional form of � results from the free-form opti-
mization of an objective function. This optimization gives the best
approximation to the true posterior within the space of distribu-
tions having the factorized form. If the parameter priors have the
same functional forms as the parameter posteriors in � , they are
called conjugate priors. For parameters � � ��8 & 	 3 3 3 & 	65 5 5 & � the
following priors are used: the mixture weights are jointly Dirich-
let, � � ��8 & �  ��� ������ , the means conditioned on the precisions
are Normal, ��� 3 3 3 & � 5 5 5 &  � 1 �	�� �
� 	�� � 5 5 5 &  , and the precisions are
Wishart, ��� 5 5 5 &  �� ����� 	�� � � � . In [1] Wishart distributions were
used, but in the present work where the data vectors consist of
cepstral coefficients, diagonal covariance matrices can be used for
the Gaussian mixture components (cepstral coefficients are fairly
decorrelated). In this case the Wishart distribution can be replaced
by the product of the Gamma distributions ����4' ��� ��� � 	�� �  , where� � � � ��� � ,

� � �!� �� � � ,
� �� denoting the " th diagonal element of

the matrix
� � � � , and # is the dimension of the data vector (notice that

the Gamma distribution is sometimes defined as
� ��� 	%$ � �  instead

of
� ��� 	��  ).

The objective function to be maximized is:&
#
�(' � � �  � �-�+ *)	+ � � � 	 ��� �+ � � �! � �-�+ # �,# � 	 (2)

where � is conditioned on
�

(although not explicitly shown).
The EM-like algorithm [1] consists of two steps: In the E-
step, the posterior over the hidden nodes is computed by solving- &
# � - � � �! �(.

to get:� � �! 0/21 35476985:<; =
>?6A@CB DFE 85: � 8 � (3)

In case of the mixture model (1) where the Gaussians have diago-
nal covariances, the responsibility of the mixture component ) for
the data vector

� "
is:

G "& � � �-) " � ) � � "  0/IHKJ
LNMPO � 8 &  RQSO � % &�T 8 & T  U # ��V O � � &�  RQW)	+ � 8 Q �YX �&[Z
Q $� �% �,' � )9+ � &��� U � & �\X �&�� � ��" � Q]�� � &��  _^a` 	

(4)

where
��" � and � � � &�� denote the " th component of the vectors,� &�� is the " th diagonal component of matrix

� � � & , and O is the
digamma function #b)9+ 5 �dc  � #
c . The responsibilities sum to unity:e & G "& �f$

for all 0 .
In the M-step the posterior distribution over the parameters is

computed by solving
- &
# � - � �-�+ �2.

to get:� �-�+ g/I1 3 476ADh:K; =?>*6 @CB DFE 8P: � D ���-�+ � (5)

The parameter posterior is computed in two stages: First the pa-
rameters � are updated:

i8 & � $
�

�%
" ' �

G "& 	 i3 3 3 & � $i� &
�%
" ' �

G "& � " 	
i7 7 7 & � $i� &

�%
" ' �

G "& � � " Q i3 3 3 &  �� � " Q i3 3 3 &  �j 	 (6)

where
i� & � � i8 & . Then the posterior parameters are updated:� & � i� & U � � 	 � � � & � � i� & 3 3 3 & U � � � � � �  � � i� & U � �  	� & � i� & U � � 	 � & � i� & U � � 	 (7)� � � & � i� & i7 7 7 & U i� & � � � i3 3 3 " Qk� �� �  �� i3 3 3 " Qk� �� �  j � � i� & U � �  U � � � � �

The training proceeds by iterating the equations (4), (6), and
(7). The final values of the posterior parameters are the result of
the algorithm and they can be used for making inferences about
new data

�
. Integrating out the parameters of the model results in

the predictive density [1]:

��� � � �  � #%
&(' �

i8 &�l�m
n � � � � � � & 	<o &  	 (8)

where each mixture component is a Student-t distribution with the
degrees of freedom p & � � & U $ Qq# , the mean � � � & , the covarianceo & � �(� � & U $  � � & p &  � & , and mixture weight

i8 & � � & � e & T � &�T .
The objective function which is needed for comparing the

models is derived next. In the paper of Attias (2000) this was
omitted. However, without the value of the objective function, the
model comparison is not possible. The objective function (2) can
be written as&

#
� ' � � �! � �-�+ 
)9+ ��� � 	 ��� �+ � � �! # �,# �2Q ' � �-�+ 
)9+ � �-�+ 

���-�+ # �
� ' � � �  � �-�+ *)	+ �r

" ' � ���
� " 	�� " � �+ s# �t# �

Q ' � � �! *)	+ � � �! s# ��Q ' � �-�+ *)	+ � �-�+ s# �U ' � �-�+ 
)9+����-�+ s# � � (9)

The first term in the righthand side of (9) equals to�%
" ' �

#%
&(' �

' � �-�+ 
)	++� � � � " � ) ".� ) 	 �+ ,� �-) " � )/� �+ ( *# � 	 (10)

where the integral is the same that occurs in (3) and has been eval-
uated in (4) (but now no exponentials are used and the sums of the
terms over ) are not normalized to unity). The second term is

Q ' � � �! 
)9+ � � �! s# � � Q �%
" ' �

#%
&(' �

� �-) "*� )� 
)9+ � �-) " � )  	
(11)

where � �-) " � )� � G "& from (4) (note that G "& sum to unity). For
the two remaining terms we need to evaluate the integrals having
the form uwv%xy)9+zv�{ , where v�x and v�{ are Gaussians

1
, Gamma



distributions
�

, and Dirichlet distributions
�

. The following three
expressions are needed for these cases:' 1 �dc���3 x 	�� x  
)	+ 1 �dc���3 { 	�� {  s#
c �

Q $� )9+ � 8�� ^{ Q � 3Px�Q 3P{  ^ U � ^x� � ^{ 	
(12)

' � �dc�� � x 	�� x  *)	+ � �dc�� � { 	�� {  s#
c � � { )	+ � { Q )9+ 5 ��� {  U ��� { Q $  �� O ��� x  RQW)	+ � x  gQ � { � x0� � x 	 (13)

and '!� �dc�� ��� x & �  C)9+ � �dc�� ��� { & �  s#
c � Q #%
&(' � )	+ 5 � � { &  U

)	+ 5 � #% & ' � � { &  U #%
&(' � �

� { & Q $  zM O � � x &  QSO � #% �4' � � x �  ` � (14)

For # -dimensional vectors, (12) and (13) are computed compo-
nentwise and the partial results are summed (since in this work
diagonal Gaussians were used). These expressions are computed
using priors ���-�+ and posteriors � �-�+ as indicated in the last two
terms of (9) and summed over all mixture components (notice the
factorization )9+ � �-�+ � )	+ � � �8 & �  U e & )9+ � � 3 3 3 & � 5 5 5 &  U )	+ � � 5 5 5 &  ).

2.1. Implementational issues

Equations (4), (13), and (14) require the computation of the
digamma function O . This can be implemented using the algo-
rithm [2].

Equations (13) and (14) contain the logarithm of the gamma
function. The gamma function and the logarithm should not be
computed separately; the result of the gamma function may lead
to overflow. Instead, a combined function should be used, e.g.
gammaln in MATLAB or lgamma when using the C math library.

Equation (4) may cause numerical problems due to the terms� & � X �&�� � � " � Q � � � &��  ^ which relate to the weighted distance between
the kernel mean and the data vector. In the beginning of the train-
ing,

� � � & is equal to the prior
� � � � . If flat priors are used,

� &�� have
small values (corresponding to large variances in the Gaussians)
and the weighted distances can be large. This may result G "& to be
zero due to the underflow (the exponential is taken from a large
negative number). If this occurs to G "& with all values of ) , the sum
of G "& cannot be normalized to unity (division by zero occurs). A
remedy for this is to use a proper prior (not too small).

3. EXPERIMENTS

Conventional 12-dimensional cepstrum vectors were extracted
from the middle parts of the labeled phones of the TIMIT training
database, one feature vector from each phone segment. The result-
ing data set was then divided into three sets: 10,000 and 100,000
data vectors in the first two sets, and the remaining 61,271 data
vectors in the third set. Data vectors were then separately scaled
to have zero-means and unit-variances in each set.

Two sets of experiments were conducted, one when using the
10,000 training data vectors and another when using 100,000 vec-
tors for training the Gaussian mixture model. The following pri-
ors were used: �k� , � � , and ��� were equal to one, � � �
� was a 12-
dimensional vector with all components zero, and

� � � � was a unity

matrix. Each mean vector of the Gaussian mixture component was
initialized by the k-means algorithm [3]. For the smaller training
data set, the VB-MOG algorithm was then iterated until the rela-
tive change of the objective function was smaller than

$7. X	�
. The

EM algorithm needed considerably more iterations for the conver-
gence compared to the VB-MOG algorithm. For the larger training
set the maximum number of iterations was limited to 20 because
of the computational resources. For each model, twenty different
initializations were used. Fig. 1 shows the values of the objective
function for models with different number of mixture components.

For comparison to the VB-MOG, also a standard ML-based
EM-algorithm [4] was applied. The same initializations were used
for the EM algorithm as for the VB-MOG. In the EM-algorithm,
the mixture weights were initialized equally to the values

$ � � .
For variances, a small floor value for used for preventing them to
go near zero. The loglikelihood of the training data was penalized
by the Bayesian Information Criterion (BIC), Q ./��
� )9+ � , where�

is the number of the free parameters in the model and � is the
number of the training vectors [5], see Fig. 2.

Finally, it was tested how the models perform for unseen data.
Average loglikelihoods of the third data set with 61,271 vectors
using models trained by VB-MOG and EM algorithm are shown in
Fig. 3. It can be seen that both methods underestimate the optimal
model complexity but the results obtained by the VB-MOG are
consistently better.

4. CONCLUSIONS

Gaussian mixture models are commonly used in the speech mod-
eling. In the current work an algorithm based on the Variational
Bayesian framework, the VB-MOG [1], was applied to the train-
ing of the models. For comparison, a conventional ML-based EM-
algorithm was also used. For optimizing the number of the mix-
ture components in the ML-training, BIC penalization was used.
This is, however, valid only for large sample sizes. VB-MOG has
a better-defined objective function. In the experiments with the
cepstrum data, both methods seemed to underestimate the num-
ber of the mixture components which gave the best performance
for unseen data. The VB-MOG algorithm performed much better,
though. In addition, it converged faster and gave better likelihoods
for the test data using any given number of the mixture compo-
nents.

5. REFERENCES

[1] Hagai Attias, “A variational bayesian framework for graphical
models,” in Advances in Neural Information Processing Sys-
tems (NIPS), T. Leen et al, Ed., Cambridge, 2000, vol. 12, pp.
49–52, MIT Press.

[2] J. Bernardo, “As103 psi (digamma) function,” Journal of the
Royal Statistical Society (series C) Applied Statistics, vol. 25,
no. 3, pp. 351–317, 1976.

[3] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector
quantizer design,” IEEE Transactions on Communications,
vol. COM-28, pp. 84–95, 1980.

[4] A. Dempster, N. Lard, and D. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the
Royal Statistical Society, B, vol. 39, no. 1, pp. 1–38, 1977.

[5] G. Schwartz, “Estimating the dimension of a model,” Annals
of Statistics, vol. 6, pp. 461–464, 1978.



20 40 60 80 100 120 140 160 180 200
−1.94

−1.92

−1.9

−1.88

−1.86

−1.84

−1.82

−1.8

−1.78

−1.76
x 10

5

number of mixture components, m

lo
g 

P
r(

m
)

(a) 10,000 training vectors

100 200 300 400 500 600 700 800
−1.78

−1.77

−1.76

−1.75

−1.74

−1.73

−1.72

−1.71

−1.7
x 10

6

number of mixture components, m

lo
g 

P
r(

m
)

(b) 100,000 training vectors

Fig. 1. Objective function (9) of VB-MOG. Twenty plots correspond to the results from twenty different initializations. The largest mean
value of the objective function is around 110 mixture components for a 10,000-vector training set and 700 for a 100,000-vector training set.

20 40 60 80 100 120 140 160 180 200
−1.66

−1.64

−1.62

−1.6

−1.58

−1.56

−1.54

−1.52
x 10

5

number of mixture components, m

M
L−

B
IC

(a) 10,000 training vectors

100 200 300 400 500 600 700 800
−1.57

−1.56

−1.55

−1.54

−1.53

−1.52

−1.51

−1.5
x 10

6

number of mixture components, m

M
L−

B
IC

(b) 100,000 training vectors

Fig. 2. BIC-penalized loglikelihood for EM models. Twenty different initializations were used. ML-BIC suggests to use only 30 mixture
components for the smaller training data set and 100 (or less) for the larger set.

20 40 60 80 100 120 140 160 180 200
−9.85

−9.8

−9.75

−9.7

−9.65

−9.6

−9.55

−9.5

−9.45

−9.4

−9.35
x 10

5

number of mixture components, m

lo
gl

ik
el

ih
oo

d

VB−MOG 1 

VB−MOG 2 

EM 

(a) 10,000 training vectors

100 200 300 400 500 600 700 800
−9.2

−9.18

−9.16

−9.14

−9.12

−9.1

−9.08

−9.06

−9.04
x 10

5

number of mixture components, m

lo
gl

ik
el

ih
oo

d

VB−MOG 1 

VB−MOG 2 

EM 

(b) 100,000 training vectors

Fig. 3. Average loglikelihood of test data using VB-MOG and EM trained models. VB-MOG 1 corresponds to the predictive density (8)
with Student-t distributions and VB-MOG 2 corresponds to the mixture model with Gaussian components (i.e. without model averaging).
The results of VB-MOG 1 are consistently better using any number of the mixture components.


