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ABSTRACT
Far-field microphone speech signals cause high error

rates for automatic speech recognition systems, due to room
reverberation and lower signal-to-noise ratios. We have ob-
served large increases in speech recognition word error rates
when using a far-field (3-6 feet) microphone in a conference
room, in comparison with recordings from close-talking mi-
crophones. In an earlier paper, we showed improvements
in far-field speech recognition performance using a long-
term log spectral subtraction method to combat reverbera-
tion. This method is based on a principle similar to cepstral
mean subtraction but uses a much longer analysis window
(e.g., 1 s) in order to deal with reverberation. Here we show
that a combination of short-term noise filtering and long-
term log spectral subtraction can further reduce recognition
word error rates.

1. INTRODUCTION

When speech is recorded in a room with a far-field micro-
phone, the received signal is distorted by acoustic rever-
beration, since it consists of not only the direct path signal
but also delayed and filtered versions of the signal (due to
multiple reflections). Since reverberation has a long time
characteristic in comparison to the typical speech analysis
frame, this distortion is manifested as a temporal smear-
ing of the short-term spectra that are used as the basis for
speech recognition features. Additionally, the lower level of
received speech energy at a far-field microphone makes the
ambient additive noise much more significant than it would
be for a closer microphone.

When stereo information is available (i.e., both near and
far microphones), there are many methods available to im-
prove the ASR accuracy for the far-field signal. Similarly,
when comparable training data is available (or can be syn-
thesized given known information about the target environ-
ment, as in [1]), existing methods can yield greatly improved
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word error rates. However, in many plausible scenarios, it
will not be feasible to obtain training data that is comparable
to the test data (either through collection or transformation)
or to have a close-talking microphone. For this reason, we
have been focusing on improving recognition for the mis-
matched case in which the training data is relatively clean
(low noise and reverberation), and the test data has a realis-
tic level of both aspects of acoustic environmental degrada-
tion.

Previously [2], we reported results using a long-term log
spectral subtraction method that is based on a purely con-
volutional model, not incorporating additive noise. Model-
ing reverberation as a fixed linear time-invariant filter, the
received signal spectrumX(!) is equal to the product of
the speech spectrumS(!) and the filter spectrumC(!). In
practice, processing is based on a short-term Fourier trans-
form X(n; !) where n is the time index around which a
windowed DFT is taken. If the analysis window is long
and smooth enough then the product property still approxi-
mately holds [3]:X(n; !)� S(n; !)C(!). Taking the logs
of the magnitudes of both sides, we find that logjX(n; !)j� log jC(!)j + log jS(n; !)j, and thus in theory we can
approximately removejC(!)j, along with any constant por-
tion of the log speech spectrum, by subtracting the time av-
erage over n of logjX(n; !)j from log jX(n; !)j. We are
calling this approach long-term log spectral (mean) subtrac-
tion. This logic is also the basis for cepstral mean subtrac-
tion, which is commonly used to counteract the effects of
a time-invariant coloration such as a telephone channel fre-
quency response. However, in the latter case, the relevant
time constants can be measured in milliseconds so that a
short-term (e.g., 20 ms) analysis window can be used. For
room reverberation the typical time constants are hundreds
of milliseconds (or more), so we used much longer analysis
windows.

The authors of [4] found that long-term log spectral sub-
traction improved ASR performance, testing on simulated
reverberant test data. In [2] we tested on actual far-field test
data and found that the approach often produced substantial
performance improvements. Furthermore, in that work we
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found that the use of an analysis window longer than 32 ms
(i.e., longer than typically used for cepstral mean subtrac-
tion) was necessary for optimal performance.1

The error rates for far-field microphone speech were
still far worse than were obtained from the corresponding
close microphones. There could be many sources of this
increased error, but the most obvious deficiency in our con-
volutional model was the lack of an additive noise term. A
compensating step in our enhancement-based approach is
to apply a noise reduction module prior to log spectral mean
subtraction. While not necessarily optimal (since each com-
pensatory step is imperfect), the concatenation of two exist-
ing approaches to handle the combined sources of error was
a reasonable first step. Figure 1 shows our model for the
room acoustic effects followed by the compensatory steps
explored here.

2. METHODS

2.1. Noise reduction implementation

We used a noise reduction algorithm developed for an Au-
rora 2 front end proposal, a joint effort between ICSI, OGI,
and Qualcomm engineers, described separately in [5]. The
algorithm performs Wiener filtering with typical engineer-
ing modifications such as a noise over-estimation factor,
smoothing of the filter response, and a spectral floor. We
modified the algorithm to use a single noise spectral esti-
mate for each utterance, which was calculated over all the
frames judged to be nonspeech by the voice-activity de-
tection component of the Qualcomm-ICSI-OGI front end.
We invoked it independently for each utterance and used
overlap-add resynthesis to create noise-reduced output wave-
forms, which we either gave directly to the ASR system or
passed on to the mean subtraction algorithm.

2.2. Log spectral subtraction implementation

The log spectral subtraction was implemented by a stan-
dalone program which read in waveforms, performed spec-
tral analysis and subtraction, and produced output wave-
forms by overlap-add resynthesis. The output waveforms
were then given to the ASR system. Besides allowing the
algorithm to be used with existing ASR software, the use of
resynthesis is also a way of dealing with the mismatch in
time scale between the long-term analysis window and the
much shorter analysis windows used in ASR front ends.

Spectral analysis was performed using a Hanning-win-
dowed N-point DFT stepped by N/4 samples. In all exper-
iments we used a 1.024-second analysis window (N=8192
points at our 8000 Hz sampling rate). Following spectral
analysis the spectra were separated into phase spectra and
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magnitude spectra. For each analysis frame, the arithmetic
mean of the log magnitude spectrum was calculated by av-
eraging the log magnitude spectra of that frame and the pre-
vious 22 and next 22 frames (thus the mean was calculated
over a total of 12.288 s of input data). The mean calcu-
lated around each frame was then subtracted from the log
magnitude spectrum of that frame, and the result was then
re-combined with the original phase spectrum of that frame.

In order to simplify resynthesis and ensure an integer
number of analysis frames, we padded each long-time frame
with duplicate data samples at the beginning and end. After
resynthesis the extra samples were discarded.

2.3. Training and test corpora

The experiments were carried out on connected digit strings.
The training set consisted of 4220 male and 4220 female ut-
terances from the TIDIGITS [6] training set, downsampled
to 8000 Hz. This set was the same as the Aurora clean train-
ing set described in [7] except that we omitted the G.712
telephone bandwidth filtering.

For test data, a large subset of TIDIGITS digit strings
(7704 words) was read by native English speakers seated
around a conference table in a room we are using for record-
ing natural meetings. Simultaneous recordings were made
with close-talking mics and with a table-mounted PZM mic
that was 3-6 feet from each of the talkers. This test set was
collected as part of our Meeting Recorder project [8] and
we will refer to it as Meeting Recorder Digits. The far-
field waveforms have a significant amount of background
noise—NIST’s stnr tool [9] reports a 9.0 dB average SNR.

The TIDIGITS and Meeting Recorder Digits corpora
are segmented into single utterances. To improve the mean
estimates over what could be obtained from relatively short
utterances, we concatenated all utterances from the same
speaker into one long vector of samples prior to using the
mean subtraction algorithm, and then split the resynthesized
output back into single-utterance files for use by the ASR
system. For the Meeting Recorder Digits corpus the same
speakers re-appeared during different recording sessions, but
we only concatenated utterances that were produced by the
same speaker during the same session. This concatenation
of segmented utterances has the effect of removing some of
the inter-utterance silence, which could potentially improve
performance for the mean subtraction method.

In the tests presented here, we applied the noise reduc-
tion and log spectral subtraction algorithms to the training
set as well as to the test set.

2.4. ASR system

We used the Aurora reference system described in [7], which
is a Gaussian-mixture-based HMM recognizer (HTK) con-
figured to use word-level digit models with 16 states per
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Fig. 1. Model of acoustic degradation in the far-field signal and our compensatory processing. The speech signal is
filtered by the “room response” C(!) between the talker and the microphone. Background noise also arrives atthe
microphone. The resulting received signal is processed by noise removalfollowed by long-term log spectral subtrac-
tion.

Near Far
Baseline 4.1% 26.3%

Noise reduction 3.6% 24.8%
Log spectral subtraction 3.1% 8.2%
Noise r. + Log spectral s. 2.7% 7.2%

Table 1. Word-error rate results for the Aurora refer-
ence system combined with noise reduction and long-
term log spectral subtraction algorithms. For compar-
ison, this system has 1.0% WER when training and test-
ing on G.712-filtered TIDIGITS [7].

word and three Gaussians per state. (Pauses are modeled us-
ing fewer states and six Gaussian per state.) The reference
system front end uses mel frequency cepstral coefficients
with log frame energy and first- and second-order delta fea-
tures.

3. EXPERIMENTAL RESULTS

Table 1 gives the results in terms of word error rate. The
first and second columns show word error rate results for
Meeting Recorder Digits data (7704 words) collected with
close-talking (“near”) mics and the tabletop (“far”) mic re-
spectively. The rows correspond, respectively, to the base-
line system, noise reduction only, log spectral subtraction
only, and noise reduction followed by log spectral subtrac-
tion.

Clearly, both noise reduction and log spectral subtrac-
tion individually improve performance for both near and far
microphones, and log spectral subtraction is by far the most
useful in the far case. Combining them gives a further im-
provement in performance.

The noise reduction alone improves far-field performance
by similar absolute amounts whether done in combination
with log spectral subtraction (1.0% absolute reduction) or

alone (1.5% absolute reduction). While the SNR is mod-
erately low for these data, it could still be that for the con-
nected digits task the reverberation per se is the larger prob-
lem.

However, there were also limitations to the efficacy of
the noise reduction. In the far mic case, for 49 out of the
2350 utterances the voice-activity detection classified none
of the frames as nonspeech, and the noise reduction module
defaulted to a noise spectral estimate of zero. In this case
it performed no enhancement other than applying its DC
offset compensation filter. This happened for 741 of the
utterances in the near case, perhaps due to the occurence of
breath and other noises in the near mic data.

4. DISCUSSION AND CONCLUSIONS

As noted in [2], we have found that long-term log spectral
subtraction can help with ASR degradation due to room re-
verberation. However, the remaining error rates after log
spectral subtraction are still quite significant, and are much
greater than are observed for near-field microphone place-
ments. It is likely that at least some of this error is due
to additive noise. The experiments reported here show that
this appears to be true, in that Wiener filtering, a sensible
approach to reducing additive stationary noise, eliminates
some of the errors. This error reduction is observed whether
the log spectral mean subtraction is done or not. When these
two techniques were used in combination, the ratio of word
error rates for far and near conditions was reduced by over
50%. However, this resulting ratio was still 2.7, suggesting
that we have a long way to go to bring far-field performance
close to the near-field case.

It is likely that the simple concatenation of processing
steps described here is suboptimal, and that a better system
could be devised by jointly optimizing for both noise and re-
verberation. In the case of short-time convolutional effects
this has been done, for instance, in J-RASTA [10]. Addi-
tionally, it may not be possible to completely compensate



for the room acoustic differences between near and far mi-
crophone performance when the “near” signal is not avail-
able, and when the “far” signal is not spatially enhanced
with array techniques. However, we have also found in
the past that modifying the feature extraction to yield fea-
tures that are more invariant to reverberation and noise can
help ASR performance [11]. In future work we intend to
combine such techniques with the more explicit approach
of dereverberation and denoising described here.

Finally, we are currently working to adapt these tech-
niques to a near real-time application, a demonstrator for
the SmartKom project [12]. In this case, we will need to
make use of coarser estimates of room acoustics in the ear-
lier parts of a session [13].
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