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ABSTRACT

Our feature extraction module for the Aurora task is based
on a combination of a conventional noise supression tech-
nique (Wiener filtering) with our temporal processing tech-
nigues (linear discriminant RASTA filtering and nonlinear
TempoRAI Pattern (TRAP) classifier). We observe better
than 58% relative error improvement on the prescribed Au-
rora Digit Task, a performance level that is somewhat better
than the new ETSI Advanced Feature standard. Further-
more, to test generalization of our approach to an indepen-
dent test set not available during development, we evaluate
performance on American English SpeechDatCar digits and
show 10.54% relative improvement over the new ETSI stan-
dard.

1. INTRODUCTION

The European Telecommunication Standards Institute (ETSI)
initiated the standardisation of an advanced front-end for
DSR, under the name “Aurora” [1]. Evaluation comprises
of connected digit recognition tasks under a range of noise
conditions on six languages. The challenge is to design a
front-end that gives a significant reduction in Word Error
Rate (WER) compared to the MFCC standard [3] within
limited computational resources and a restricted algorithmic
delay.

In this paper, we propose a robust front-end based on
spectral and temporal processing. In the terminal, robust
cepstral features are computed using a modified Wiener fil-
ter followed by temporal filtering. A Multi-Layer Percep-
tron (MLP) based Voice Activity Detector (VAD) is used to
detect the non-speech frames. Features are compressed us-
ing the split Veector Quantization (VQ) algorithm and trans-
mitted at a datarate of 4800 bps. At the server, two fea-
ture streams are generated. The first consists of the decom-
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pressed cepstral features, and the second consists of TRAPS
[2] based features. The cepstral features are mean and vari-
ance normalized and concatenated with TRAPS based fea-
tures. We compare the performance of the proposed algo-
rithm with the ETSI adopted advanced front-end standard
[4]. Figure 1 shows the block diagram of the proposed front-
end. The following sections describe the feature computa-

tion blocks.
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Fig. 1. Robust feature extraction for DSR

2. TERMINAL FEATURE EXTRACTION

The speech signal is sampled at 8kHz, segmented into frames
of 25 ms with a shift of 10ms. A Hamming window is ap-
plied to each frame and 256 point FFT is computed. Only
the first 129 points are retained after computing the short
term power spectra.

2.1. Noise Compensation

To improve the Signal to Noise Ratio (SNR) of the signal,
a modified Wiener filter algorithm is applied to the power
spectra. Here the noise is assumed to be additive and un-
correlated. An estimate of the noise power spectrum is ob-
tained using a first order recursion and frame energy based
update. An instantaneous Wiener filter, given by the follow-



ing equation, is estimated every frame:
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where | X (k,m)|? and [W (k,m)|? are the power spectral
estimates of noisy speech and additive noise signal respec-
tively (k and m are the time and frequency indices). The
spectral floor parameter 5 = 0.01 avoids negative or very
small transfer function components. The noise overestima-
tion factor v(k) is a function of the local aposteriori SNR.
(k) = 3.125 for SNRpost(k) < 0dB and v(k) = 1.25
for SN Rgpost (k) > 20dB. Between 0dB and 20dB, (k)
varies linearly according to the equation:

—1.875

The instantaneous filter estimate is smoothed in time and
frequency to reduce variance due to erroneus noise spectral
estimates. Since the recursion introduces a group delay to
the filter estimate, the smoothed filter is not synchonized
with the instantaneous filter. We estimate this asynchrony
to be 2 frames. The clean speech power spectral estimate,
|S‘(k,m)|2, is obtained by multiplying the smoothed filter
and noisy speech power spectrum.

SN Rqpost (k) + 3.125 )

1S(k,m)|? = maz (| X (k,m)*.|H(k,m)]%a)  (3)

where o = 0.001.[W (k, m)|? is the noise floor.

The clean power spectral estimate is weighted by 23
triangular weighting functions simulating Mel-scale spaced
filter banks. A natural logarithm is applied to the outputs of
the Mel filterbank.

2.2. Temporal filtering using RASTA-LDA filters

The filter coefficients are derived using the LDA technique
on the phonetically labeled OGI-Stories database as described
in [5]. Car noise at 10 dB SNR is artificially added to the
database. The noisy speech files are cleaned using the noise
compensation technique mentioned in Section 2.1. A 101
point feature vector, centered and labeled by one of the forty
one phoneme classes at the current frame, from the 7th mel
band is used for LDA. Each phoneme is divided uniformly
into three states and each state is used as a class, resulting in
a total of 123 classes. The leading discriminant vector from
the 7th band is used as a temporal RASTA filter. To reduce
the latency, the filter is truncated to a 51 point causal fil-
ter. Finally, it is convolved with a 25 Hz low-pass filter and
further truncated to 30 points. Figure 2 shows the impulse
and magnitude response the LDA filter. The filter is applied
to the log Mel-filterbank outputs and fifteen cepstral coef-
ficients are calculated using a Discrete Cosine Transform
(DCT).
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Fig. 2. RASTA-LDA filter and its magnitude frequency re-
sponse

2.3. Voice Activity Detector (VAD)

The VAD is a single hidden-layer feed-forward MLP. It is
trained to discriminate between speech and non-speech frames
using the backpropagation algorithm. Training is done of-
fline using a noisy database. The MLP uses 9 frames of
6 ceptral coefficients computed from low-pass filtered log-
energies of the 23 Mel filters. The output of the trained MLP
gives an estimate of the posterior probability of the current
frame being speech or non-speech.

3. FEATURE COMPRESSION AND
DECOMPRESSION

Fifteen cepstral coefficients and the silence probability are
concatenated to form a single feature vector. The feature
vector is downsampled by two in time. The final feature
vector is compressed using a split Vector Quantization (VQ)
algorithm. The LBG algorithm is used for training of the
codebook. The codebook is initialized with the mean value
of the entire training data. At each step, each centroid is
split into two and their values are re-estimated. Splitting is
performed in the positive and negative direction of the stan-
dard deviation vector multiplied by 0.2. To determine the
index, the closest VQ centroid is found using the Euclidean
distance. The number of bits required for the description
of one frame after packing indices to the bit stream is 76.
These 76 bits are protected with 16 bits of CRC. This CRC
together with indices creates a frame packet of 11.5 octets.
Refer to [3] for further details on bit stream formatting.

At the server, the received bitstream is decompressed to
regenerate the speech feature vectors. Synchronization se-
quence detection, header decoding and feature decompres-
sion are implemented as in [3]. To protect the transmitted
data against channel errors, Fire’s correction code is used.
This code is able to repair error bursts of up to five bits and
to detect six bits long error bursts.

4. SERVER FEATURE GENERATION

Two streams of features are generated from the decompressed
features. The first stream consists of cepstral coefficients



that are upsampled, mean and variance normalized and aug-
mented with first and second delta coefficients. The second
stream consists of TRAPS based features. In [2], it was
shown that augmenting cepstral features with TRAPS based
features, significantly improves robustness. A threshold of
0.5 is applied to the silence probability to convert it to a bi-
nary VAD flag. The following sections explain these blocks
further.

4.1. Mean and Variance Normalization

In order to compensate for the shifts in mean and variance
caused by the additive and convolutive noise, a recursive
mean and variance normalization is applied to the cepstral
coefficients. The mean and variance are initialized using
the global mean and variance estimated on a noisy speech
database.The estimates of the local mean and variance are
updated for each frame marked as speech by the binary VAD
flag. The forgetting factor of the recursion is set to 0.01,
corresponding to roughly a 1 sec time constant.

4.2. TRAPS based features

TRAPs features are based on multi-band and multi-stream
approaches. For each mel-band, a feed-forward MLP is
trained to classify speech frames. The outputs of the MLPs
are combined using another MLP. All the MLPs are trained

to classify manner-based articulatory-acoustic categories (\Vowel,

Flap, Stop, Fricative, Nasal) as well as silence. Details of
the architecture of MLPs can be found in [6].

4.3. Final feature vector

The first and second delta features are derived from the nor-
malized cepstral features and appended to the static fea-
tures. They are concatenated with the six features from the
TRAPS stream. The final feature vector size is 51. The
VAD flag is smoothed using a median filter with a length
of twenty one points. The frames marked as silence by the
VAD flag after smoothing are not sent to the back-end rec-
ognizer.

5. EXPERIMENTS AND RESULTS

As part of the advanced front-end standardization, ETSI
defined development databases that contain digit strings in
six different languages. They are Aurora-2 (English) and
Aurora-3 (Italian, Finnish, Spanish, German and Danish).
For the work reported here, we created a test set consisting
of data that was not used during training or system develop-
ment. The new set comprised the connected digits record-
ing of SpeechDatCar (SDC) US English [7]. The connected
digits subset of SDC-US consists of 1 sheet number (5 +
digits), 1 spontaneous telephone number, 3 read telephone

numbers, 1 credit card number (14-16 digits), 1 PIN code (6
digits). The database contains 7658 recordings spoken by
more than 150 speakers. Recordings from close-talking and
far microphone are selected. The files are down-sampled
from 16 to 8 kHz followed by DC offset removal using
ITU-T software tools library. The speaker synchronization
beeps in the beginning of the files are cut off using an auto-
mated procedure. As in Aurora-3, three train/test configu-
rations are defined: the well-matched condition (WM), the
medium mismatched (MM) condition and the highly mis-
matched condition (HM). In the WM case, 70% of the entire
data is used for training and 30% for testing and training set
contains all the variability that appear in the test set. In the
MM case, only far microphone data is used for both train-
ing and testing. For the HM case, training data consists of
close microphone recordings only while testing is done on
far microphone data.

5.1. Results

The recognizer is the ETSI-specified HTK-based whole word
HMM system with 16 states per HMM and 3 components
per state with diagonal covariance matrices. Table 1 and
2 present the performance of the proposed front-end (QIO)
compared to the MFCC front-end with end-point detection
[8] for the Aurora databases. The relative improvement for
WM, MM and HM conditions are weighted by 0.40, 0.35
and 0.25 respectively. We achieve a WER reduction of
more than 58% relative to the MFCC system. In Table 3
we compare the performances of QIO and ETSI advanced
front-end standard relative to the MFCC system for Au-
rora databases. It also shows the performance of the pro-
posed front-end without TRAPS (QIO-NoTRAPS). Table
4 presents the WER (baseline MFCC results are not avail-
able for this database) of the two front-ends and relative im-
provement of QIO features relative to ETSI advanced front-
end standard. From the results it is evident that the pro-
posed front-end is better than the ETSI advanced front-end
standard for both the Aurora and new test sets. Finally we
present, in Tables 5 and 6, the performance relative to the
baseline provided for ICSLP submission. To permit replica-
tion of our results and application to other test sets, we have
made the proposed front-end available to interested people
at the OGI website. *

5.2. System Complexity and Latency

The overall algorithmic latency of the system is 185 ms,
where the terminal latency is 55 ms and the server latency
is 130 ms and requires approximately 6 kWords of memory.
The computational load is approximately 10 MOPS for the
terminal and 2 MOPS for the server.

Lftp://ftp.asp.ogi.edu/pub/download/Auroralgio-afe.tgz



6. CONCLUSIONS

For the official Aurora advanced front-end evaluation, we
submitted a scaled down (no TRAPS) version of our pro-
posed system, corresponding to QIO-NoTRAPS in Table
3. Here we have described methods and results for the
more complete system. We presented a feature extraction
scheme that incorporates noise robustness using Wiener fil-
tering, temporal discriminants using data-derived LDA fil-
ters, mean and variance normalization and TRAPS based
features. A voice activity detector is used to discard the
frames that are unlikely to contain speech. Our results show
a WER reduction of better than 58% relative to the MFCC
baseline on the Aurora databases. We show an improvement
over the new ETSI advanced front-end standard on Aurora
and SDC US databases. The proposed front-end has a low
latency and complexity. One of the key potential of the
proposed system resides in the multiband structure of the
TRAPS approach. We expect this alternate feature stream
to increase the robustness whenever the Wiener filter lacks
reliable estimates of the noise power spectrum. This can
happen on long portions of continuous speech during which
the noise level can change relatively quickly, a condition for
which state-of-the art noise spectrum estimation algorithms
do not perform well.
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Aurora 2 Relative Improvement (M FCC Standard)
Set A SetB SetC Overall
Multi 32.79% | 45.93% | 44.36% | 40.36%
Clean 69.60% | 74.67% | 69.56% | 71.62%
Average | 51.20% | 60.30% | 56.96% | 55.99%

Table 1: Aurora 2 Relative improvement for QIO.

Aurora 3 Relative | mprovement (MFCC Standard)

ITA FIN SPA | GER | DAN | Average
WM 59.79 | 60.38 | 64.89 | 40.56 | 56.54 | 55.97%
MM 69.14 | 51.42 | 67.38 | 42.88 | 48.30 | 55.05%
HM 68.24 | 77.60 | 78.24 | 55.87 | 69.35 | 71.45%
Overall | 64.13 | 61.55 | 69.10 | 45.20 | 59.52 | 59.52%

Table 2: Aurora 3 Relative improvement for QIO.

QIO-NoTRAPS QIO ETSI
Aurora-2(x40%) 49.84% 55.99% | 54.73%
Aurora-3(x60%) 56.62% 59.52% | 56.61%
Overall 53.91% 58.11% | 55.85%

Table 3: Relative improvement for QIO and ETSI front-ends for
Aurora databases.

QIO (WER) | ETSI (WER) | Improvement
WM 3.80% 4.44% 14.41%
MM 10.51% 11.42% 7.97%
HM 10.18% 11.06% 7.96%
Overall 7.74% 8.54% 10.54%
Table 4: Comparison of QIO and ETSI front-end for SDC US
database
Aurora 2 Relative Improvement (ICSLP Basdline)
Set A SetB SetC Overall
Multi 30.04% | 40.34% | 38.68% | 35.89%
Clean 68.40% | 74.51% | 65.44% | 70.25%
Average | 49.22% | 57.42% | 52.06% | 53.07%

Table5: Aurora 2 relative improvement for QIO.

Aurora 3 Relative Improvement (ICSLP Basdline)
FIN SPA | GER | DAN | Average

WM 56.34 | 62.75 | 39.20 | 52.99 | 52.82%
MM 46.64 | 67.94 | 38.24 | 43.76 | 49.15%
HM 75.75 | 78.58 | 55.35 | 67.14 | 69.21%
Overall | 57.80 | 68.52 | 42.90 | 53.30 | 55.63%

Table 6: Aurora 3 Relative improvement for QIO.




