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ABSTRACT plored in numerous previous studies. For example, beginning

The constant frame length in typical ASR front ends is too long td! th? 19507’ kn_?wle_dge-based atp))prozches o spgecn recn_gn |
capture transient phenomena in speech, such as stop bursts. H veloped classification systems based on acoustic-phonetic rules

ever, current HMM systems have consistently outperformed sy 1_h ' 13{ 4]_' tAn ?dva;:tagedqf Sl.JCh ar.:_proaches Wfﬁ thtatdthe acmletlc
tems based solely on non-uniform units. This work investigate% aracteristics for phone discrimination were not imited in resoiu-

an approach to “add back” such transient information to a spee ign. However, performance did not reach that of HMM-based sys-

recognizer, without losing the robustness of the standard acoustt'ie S using I(Iass sophlstlc;\ted(ljnformatlonSang iflei?i framehlengthb.
models. We demonstrate a set of phonetically-motivated acous ore recently, segment-based systems [5, 8, 1] address the prob-

features that discriminate a preliminary test set of highly ambig em of a constant frame length by representing phone segments us-

ous voiceless stops in CV contexts. The features are automaticafff & single feature vector—regardiess of segment duration. Th'.s.
roach allows for the use of heterogeneous, phone-class-specific

computed from data that had been hand-marked for consonant b8P . . . T
fgatures that focus on phonetically relevant information for discrim-

location and voicing onset (extension to automatic marking is als i th fusabl ds withi h | 7 10
proposed). Two corpora are processed using a parallel set of fi gating among the coniusablé sounds within a phone class [7. 10].
&plte of these advantages, however, segment-based systems alone

tures: conversational speech over the telephone (Switchboard), b bl p tth HMM-based
a corpus of carefully elicited speech. The latter provides an upp pve not been able to outperform state-of-the-art -based sys-

bound on discrimination, and allows for comparison of feature ugems:

age across speaking style. We explore data-driven approachesTtus work aims at combining the advantages of both segmental and
obtaining variable-length time-localized features compatible wittHMM systems, by using the HMM system to produce N-best hy-
an HMM statistical framework. We also suggest techniques for eypotheses with phonetic segmentations. Based on the HMM seg-
tension to automatic annotation of burst location, for computatiomentations, we compute additional phone-specific segment-based
of features at such points, and for augmentation of an HMM systefeatures to improve the discrimination of confusable phone classes.

with the added information. Probability models for the additional features are trained from seg-
mentations of training data. For recognition, probability scores for
1. INTRODUCTION each recogition hypothesis in the N-best list are combined with

Modeling of speech with hidden Markov models (HMMs) implies astandard HMM likelihood scores. We demonstrate a set of linguisti-
constant rate of information accumulation. Frames of a fixed leng@flly motivated features, based on non-uniform front-end extraction
are scored uniformly to compute the likelihood that a given utterdnits, that successfully discriminate a preliminary test set of voice-
ance is produced by the model. The common fixed frame lengliss consonantsin consonant-vowel (CV) contexts. The features are
of ~25 ms is the time-frequency trade-off in theesph representa- automatically computed from an extraction region carefully hand-
tion. It is well known that such a frame length is too long for capmarked by a linguist for burst location. The annotations and feature
turing information-bearing transient phenomena which may havextraction are applied to two parallel databases: (1) spontaneous-
durations as short as a couple oilliseconds. At the same time, conversational speech from the Switchboard corpus [6] and (2) a
stationary segments, such as vowels, have constant spectral chagggpus of carefully-elicited speech [9]. Inclusion of the latter cor-
teristics for much longer regions, on the order of 100 ms. Thedgus provides an upper bound on discrimination, and allows us to
observations motivate exploring techniques that can provide vagxamine differences in speech style and channédltgwehile fea-

able temporal resolution depending on the type of event. This woikre definition and extraction is held constantin the parallel corpora.
explores data-driven approaches to such front end adaptation for \4/& propose techniques for automatic location of such points in the
within the standard HMM framework. waveform, computation of features at such points, and augmenta-

. i f i i ion.
Approaches based on non-uniform frame lengths have been etggn of an HMM system with such information

The paper is organized as follows: In Section 2, we describe the
Phone classification task and the database. Features are introduced
In Section 3, and the resulting statistics from thegmsed features

*A longer version of this work appears in the Proceedings of the NIS
Speech Transcription Workshop, College Park, MD, 2000.



on the elicited and spontaneous speech databases are detailed in,
Section 4. Section 5 describes the decision tree classification of, | eictedspeecn Eiiited Speech
the stops in vocalic contexts via the set of proposed features. Fi

nally, the approaches are discussed from the perspective of auto:
matic speech recogion in Section 6.

2. TASK AND DATABASE

As a first, tractable task in this work, we chose the classification of |

el

Average Voice Onst
Average Number of Bursts

voiceless unaspirated stops (/p/, /t/, and /k/) in a CV context. We " o " o
also included /ch/ for comparison purposes. Acoustic information
relevant to the identification of stops resides in formant transitions, | sponancous speecn Spontaneous Speech

duration of closure and release of the stop burst, and also in more ...
. 15

transient phenomena such as the shape of the spectrum at the buest

and the presence or absence of multiple bursts [11]. In certain vo< o=

8

calic contexts, for example, preceding the high front vowkllong H
term cues may be neutralized, resulting in a dependence on the trarg™”
sient phenomena for the identification of stops, and a corresponding

increase in confusion rates for both humans and machines [9]. The W m CE I
set of voiceless stops in CV tokens presents a challenge to auto-

matic processing approaches that average transient information of

stops over many frames, and thus proves to be a good starting pdi@ure 1: Comparison of average VOT and average number of

for localized feature modeling. bursts for elicited and spontaneous speech. Values are averaged over

speakers and over vocalic context.
3. FEATURES OF A CV TOKEN

For the purposes of this cross-corpus study, we considered the fol-
lowing subset of acoustic features known to be important cues in
the identification of stop place [11]: (1) voice onsettime (VOT), (2)
multiplicity of bursts, and (3) gross shape of burst spectrum. VOT
is the duration of time the vocal cords take to begin periodic vibra-
tion after the release of a consonant. The predicted order of VOT
averages, derived from their articulation and manner, for voiceless
stops and the affricate /ch/ are: /p/, It/, Ik/, Ich/.

Average Number of Bursts

B

) o o Figure 2: Spectrum, linear, and piecewise linear fits for /pa/. The
Figure 1 shows the distribution of VOT and multiplicity of bursts«gjffyse-falling” shape of the spectrum is captured by the negative
for elicited and spontaneous speech. The bar graphs represent e of the linear fits. Note that the node lies below 2000 Hz.
ues averaged over all speakers and all vocalic contexts. VOT, as

predicted, is a strong function of stop identity for both elicited and 4. DECISION TREES

spontaneous speech. Mplicity of bursts, however, serves as a In this section we describe the analysis and visualization of the pro-

useful discriminant only for the elicited database, as the articulatio ed set of features via decision trees. For the classification prob-
of stops in spontaneous speech may have a faster release ove gﬁﬁ over the set (Ip/, /t/, Ik, /chf), we train CART-style decision

and thus velar stops may be less prone to the phenomena of m FEes, as in Figure 5. In Table 1, we show the classification perfor-

ple bursts. mance of the decision tree on a test set for elicited speech. The cor-
The constriction of the articulation of a voiceless stop and its reresponding performance summary on spontaneous speech is given
lease generate distinctive spectral characteristics at the burst tiraTable 2. The classification accuracies are around 84%.

are somewhat invariant across different vocalic contexts. Stop bu
spectrafor labials (/p/), alveolars, (/t/), and velars (/k/) have beend
scribed as “diffuse-falling” (majority of energy in the low frequency
region), “diffuse-rising” (majority of energy in the high frequency
region), and “compact” (peak of energy in the mid frequency re-
gion) [2]. Figures 2, 3 and 4 show examples of the spectrum at
the burst, as well as linear and piecewise linear fits to the spectrum,
for /pal, tal, and /ka/, respectively. Derived features include the
slopes of the linear and piecewise linear fits, the mean squared error
of the fits, and the location in the frequency range of the node for

the piecewise linear fit. The last feature is particularly helpful for ] ) o )
distinguishing /t/ from /k/ bursts. Figure 3: Spectrum, linear, and piecewise linear fits for /ta/. The

“diffuse-rising” shape of the spectrum is captured by the positive
slope of the linear fits. Note that the node lies above 4000 Hz.

We also rank and compare the usage of the features shown here as
{ell as formant transition information across elicited apdrda-




Elicited speech Spontaneous speech

| feature | usage]| feature usage]
_ VOT 0.57 VOT 0.54
fo 0.19 f, slope 0.29
number of burstsy 0.13 fo 0.12
burst node freq | 0.10 burst node freq | 0.05
fo slope 0.01 || number of bursts 0.00

Figure 4: Spectrum, linear, and piecewise linear fits for /ka/. The

prominent peak of the spectrum is captured by a high mean squared Table 3: Decision tree usage of features.
error of the linear fit and by the mid-frequency locati@d@0—-4000

Hz) of the fitted node.

Elicited speech database, accuracy = 84.11% (905/1076) g -1
| || P | T | K | CH | TOTAL | CORR|
243 | 16 9 1 269 243
37 | 180 | 49 3 269 180
12 | 37 [213] 7 269 213 S S
0 0 0 | 269 269 269

(@)
-| <

Figure 6: Adaptive frame length analysis by the best basis algo-
rithm.
Table 1: Decision tree classification of stops in vocalic contexts fogA

o s an important example of the signal processing issues involved,
elicited speech.

we demonstrate automatic localization of the voicing onset.

neous databases. Table 3 shows the frequency of usage of featugs have made use of the best basis algorithm [3] in segment-
in tree classification. VOT is the most prominent feature on botthg transient and stationary speech segments by an adaptive frame
elicited and spontaneous databases. The tree in Figure 5 shdesgth front end. In this framework, automatic voicing onset lo-
that VOT is especially helpful in classifying /ch/ and /p/. Burstcation is carried out by temporal segmentation into varying-length
multiplicity, as previously mentioned, is only useful in the elicitedframes depending on the stationarity of the underlying signal seg-
database, where it is used to classify velars from other stops. Theent (Figure 6). This type of front-end processing may also be
tree also contains information on formant transitions into the folsuitable for burst localization.

lowing vowel, which is found to be useful in both databases; here Einall we discuss possible wavs of augmenting an HMM svstem
picks out labials (which have characteristically low formant onsets . y: P Y 9 g y

) . - ‘ .
at the release of the burst) from other stops. The node frequencyvg)ﬂ‘th localized features. One straightforward way of augmentation

. o - . : iS via N- list r ring from alignmen shown in Figure 7.
the piecewise linear fit is also a consistently used feature in bothtS a N-best list rescoring from alignments as 9

clicited and spontaneous databases: here it functions to distinguishe CV context is bracketed by alignments; subsequently, the fea-
P ' 9 ures obtained from the CV are scored and used as an additional
velars from alveolars.

knowledge source in rescoring of the N-best list.
5. ASRPERSPECTIVE 6. SUMMARY AND FUTURE WORK
We have shown that hand-labeled acoustic events, some of wh

. - T . L‘I“pns work has explored data-driven approaches to temporal front
are temporally localized, provide features with rich information ) . I ;

e ) end adaptation. We have carried out statistical extraction and char-
content for the classification of easily confused phones. Here, we

discuss the issues in extending such an approach to ASR s Ste‘au:sterization of useful time-localized features obtained from data

- . 9 . ppr . Y .War'ld-labeled for relevant events. Such work constitutes a first step

The focus is on automatic location of information-bearing points in . ST .
the waveform and statistical extraction of localized features Ant_oward demonstrating the discrimination power of localized features

’ n a classification task, for both careful and spontaneous speech.

other fundament_al question is the determination of the_ best way e have also discussed signal processing techniques to automate
augment or modify current HMM systems to use such mformatlor}he accurate localization of information-bearing events, and possi-

Spontaneous speech, accuracy = 83.57% (234/280) ble methods of augmentation or modification of current HMM sys-
| [ P] T]K]CH]TOTAL [ CORR| tems to use localized features as side information.
P 61| 6 3 0 70 61
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Figure 5: Decision tree for classification of stops in vocalic contexts.
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