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ABSTRACT 
This paper focuses on modeling pronunciation variation in two 
different ways: data-derived and knowledge-based. The 
knowledge-based approach consists of using phonological rules 
to generate variants. The data-derived approach consists of 
performing phone recognition, followed by various pruning and 
smoothing methods to alleviate some of the errors in the phone 
recognition. Using phonological rules led to a small 
improvement in WER; whereas, using a data-derived approach 
in which the phone recognition was smoothed using simple 
decision trees (d-trees) prior to lexicon generation led to a 
significant improvement compared to the baseline. Furthermore, 
we found that 10% of variants generated by the phonological 
rules were also found using phone recognition, and this 
increased to 23% when the phone recognition output was 
smoothed by using d-trees. In addition, we propose a metric to 
measure confusability in the lexicon and we found that 
employing this confusion metric to prune variants results in 
roughly the same improvement as using the d-tree method. 
 

1. INTRODUCTION 
 
Approaches to modeling pronunciation variation can be roughly 
divided into pronunciation variants being either derived from a 
corpus of pronunciation data or from pre-specified phonological 
rules based on linguistic knowledge [1]. In this study, we 
investigate both approaches. In addition to comparing the 
different WER results, we also compared the lexica obtained 
through the different approaches; to analyze how much of the 
same pronunciation variation is modeled by the approaches. 
 
One of the problems that you encounter when modeling 
pronunciation variation, which holds for both the knowledge-
based approach as well as the data-driven approach, is that the 
confusability within the lexicon increases when variants are 
added. This problem has been signaled by many researchers in 
the field of pronunciation variation [1]. Confusability is often 
introduced by statistical noise in phonetic transcriptions. One 
commonly used procedure to alleviate this is to smooth the 
phonetic transcriptions – whether provided by linguists [2] or 
phone recognition [3] – by using decision trees to limit the 
observed pronunciation variation. Other approaches [4, 5] 
combat confusability by rejecting variants that are highly 
confusable on the basis of phoneme confusability matrices, or 
for instance in [6] a maximum likelihood criterion is used to 
decide which variants to include in the lexicon.  
 
However, in none of these approaches a measure for 
confusability is given. In this paper, we propose a metric that 
calculates the confusability in a lexicon given a set of training 

data. In first instance, the metric was intended only to compare 
confusability in lexica obtained through the different 
approaches. However, we also carried out experiments to see if 
the metric could be employed to reduce WERs.  
 

2. SPEECH MATERIAL 
 
In this study, we focus on segmental (phonetic) variation within 
VIOS [7], a Dutch database, which consists of recordings of 
interactions between man and machine in the domain of train 
timetable information. Our training and test material, selected 
from the VIOS database, consisted of 25,104 utterances (81,090 
words) and 6,267 utterances (20,489 words), respectively. 
 

3. LEXICA GENERATION 
 
The starting point is the baseline lexicon (1_Baseline). It 
contains one pronunciation for each word. This lexicon is based 
on the baseline lexicon used at A2RT [8]. All of the lexica 
described in the following sections were created by merging the 
baseline lexicon with the new variants. Prior probabilities for 
the variants were based on their frequency counts in the training 
data.  
 
3.1. Knowledge-based  lexicon 
 
In a knowledge-based approach, the information about 
pronunciations is derived from knowledge sources, for instance 
handcrafted dictionaries or the linguistic literature. In this study, 
we selected five Dutch phonological processes, which are 
described in the literature, to formulate rules with which 
pronunciation variants were generated. The rules are context 
dependent and are applied to the words in the canonical lexicon. 
The resulting variants are added to the lexicon (2_PhonRules). 
Table 1 shows the five phonological rules and their contexts for 
application. For a detailed description of the processes see [8]. 
 

Rule Context for application 

/n/-deletion1 n →  ∅  / @ ___ # 
/r/-deletion r → ∅  / [+vowel] ___ [+consonant] 
/t/-deletion t → ∅  / [+obstruent] ___ [+consonant] 
schwa-deletion @ →  ∅  / [+obstruent] ___  [+liquid] [@] 
schwa-insertion ∅  → @ / [+liquid] ___  [-coronal]  

Table 1: Phonological rules + context for application. 

                                              
1 Sampa phoneme notation, see: 
http://www.phon.ucl.ac.uk/home/sampa/dutch.htm 



3.2. Data-derived  lexica 
 
In a data-derived approach, the information used to develop the 
lexicon is in some way distilled from the data. The approach we 
use is similar to other methods used in the field: phone 
recognition is carried out on the training data to supply the raw 
information on pronunciations. In this type of recognition task, 
the lexicon does not contain words, but a list of 39 phones and a 
phone bigram grammar is used to provide phonotactic 
constraints. The output is a sequence of phones; no word 
boundaries are included. Therefore, the next task is to insert 
these boundaries. This is done by aligning the phone recognition 
output to a reference transcription that contains word 
boundaries. A distance measure based on binary phonetic 
features was employed to align the strings of phones and insert 
the word boundaries at the most appropriate places in the string.  
 
These alignments are used as the base information for 
generating the data-derived lexica. First of all, we made a 
lexicon in which all the variants generated by the phone 
recognition were added to the baseline lexicon (3_PhoneRec). 
 
One of the drawbacks of using the phone recognition output to 
generate new lexica in this way is that the phone transcriptions 
contain errors, which means a lot of "incorrect" transcriptions 
are included in the lexicon.  To get an indication of how much 
of the output might be noise, we compared the phone 
recognition to the reference transcription, and found 68% phone 
accuracy. Although a great deal of this may be noise, we also 
know that a lot of reduction takes place in spontaneous speech 
so that part of the “errors” must be the pronunciation variation 
that we are interested in. Therefore, we sought for ways to 
eliminate the “incorrect” transcriptions whilst keeping the 
relevant information about pronunciation variation. 
 
One of the techniques we used was to make a pre-selection of 
the utterances prior to generating the lexicon, instead of using 
all of the phone recognition output. The pre-selection criteria 
were based on the alignment between the phone recognition and 
the reference transcription. For each utterance the phone error 
rate was calculated. Using this information it was possible to 
incorporate the following two selection criteria: 

• = an utterance must contain less than 40% errors, and 
• = words with more than two deleted phones in a row 

were excluded.  
Thus, a lexicon was created based on what we expect to be less 
noisy data. (4_PhonRec_Sel) 
 
The other approach we used to remove some of the noise in the 
transcriptions was by using decision trees [10] to smooth the 
phone recognition before generating a lexicon. We used very 
simple decision trees (d-trees) in order to match the type of 
contexts used in our phonological rules. Thus, we did not use 
more complex features like syllable structure (as was done in 
[3]) but simply used the identity of the left and right phones as 
features. 
  
In short, the method works as follows. For each of the 39 
phones a d-tree was built. The d-tree model is trying to predict: 

P (realization | left context, right context). 

We allowed for automatic sub setting of feature values while 
generating the d-trees. Next, using the distributions in the d-
trees, finite state grammars (FSG) were built for the utterances 
in the training data. Those FSG were realigned with the training 
data, and the smoothed phone transcriptions were used to 
generate a new lexicon. In order to compare the d-tree approach 
to the phone recognition approach we used the same selection 
criteria to restrict the data that was used as input to the d-trees. 
The resulting lexicon is referred to as 5_Dtree_Sel.  
 
3.3. A measure of confusability 
 
As we mentioned in the introduction, one problem that we were 
concerned about was the addition of pronunciation variants that 
might make a word confusable with other words within the 
recognizer. We therefore created a metric by which we could 
judge the confusability of individual pronunciations, as well as 
the overall confusability of a lexicon. 
 
The metric is calculated as follows: first a forced alignment of 
the training data is carried out using the lexicon for which the 
confusability is to be determined. Then, we compute the set of 
word pronunciations that match any sub string in the alignment, 
producing a lattice of possible matching words; this gives an 
overestimate of the confusability of the lexicon. 
 
For example, in Figure 1, we compute the forced alignment of 
the word sequence "this is a test". We can then find all 
pronunciations in the lexicon that span any sub strings, e.g., the 
word "the" corresponding to the pronunciation "dh ih". The 
confusability metric is calculated by considering the number of 
words that correspond to each phone (as shown in Figure 1 in 
the row marked “All confusions”). The average confusability for 
the lexicon is then obtained by summing up the number of 
“confused” phones per phone and dividing by the total number 
of phones in the forced alignment. This is the average 
confusability that we present in the following section for the 
various lexica. 
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Figure 1: Example of part of the lattice used to compute the 
average confusion. 
 
As described above, this metric overestimates the number of 
possible confusions, since it doesn't take into account that some 
words would be pruned during decoding because of a dead-end 
path in the word lattice: for example, the word "the" in Figure 1 
doesn't have any appropriate following word in the lattice.  The 
"exact confusion" metric ameliorates this somewhat by only 
counting confusions that occur at the word boundaries provided 
by the forced alignment.  Since this is an underestimate of the 
amount of confusion in the lexicon, one can use this as a lower 
bound. 
 
To investigate what the effect is of removing highly confusable 
variants we created two new lexica. First we took the lexicon 
4_PhRec_Sel, and removed all words which had a confusion 



 

 
count of over 100 (6_ PhRec_Sel_100). We did the same for 
3_PhRec, resulting in 7_ PhRec_100. We ensured that baseline 
variants were not removed from the lexica, in order to keep the 
comparison with the other lexica fair. Due to time constraints 
we have not yet carried out the same experiments for the 
knowledge-based approach. 
 

4. CSR  
 
All of the experiments were carried out with the ICSI hybrid 
ANN/HMM speech recognition system [10]. The baseline 
neural network was bootstrapped using alignments of the 
training material obtained with the baseline recognition system 
used at A2RT [8, 9]. The main difference between these two 
systems is that in the ICSI system acoustic probabilities are 
estimated by a neural network instead of by mixtures of 
Gaussians, as is the case in the A2RT system.  
 
For the front-end acoustic processing we use 12th-order PLP 
features [11] and energy, which are calculated every 10 ms, for 
25ms frames. The neural net uses the input features and 
additional context from eight surrounding frames of features to 
estimate the probability that the input corresponds to each of the 
defined categories. The categories that we use are 39 context-
independent phones for Dutch. The neural network had a hidden 
layer size of 1000 units and the same network was employed in 
all experiments. Finally, a bigram language model was used 
which was also based on the A2RT alignments. 
 

5. RESULTS 
5.1. Lexica 
 
In Table 2, the statistics for the various lexica are shown. The 
second column shows the number of words in the lexicon, the 
third column shows the confusability of the lexicon, i.e. the 
average phone-level confusion over all words in the training 
data. The final column shows how long it takes to run a 
recognition test using the specific lexicon. It is expressed in N 
times real time (x RT).  
 
Lexicon # entries Confusability Timing (x RT) 

1_Baseline 1198 1.5 4.5
2_PhonRules 2066 1.7 6.1
3_PhRec 20347 65.9 48.7
4_PhRec_Sel 2682 4.4 9.4
5_Dtree_Sel 4184 2.7 12.3
6_ PhRec_Sel_100 2558 2.1 8.5
7_ PhRec_100 15424 3.1 29.7
Table 2: Size of lexica, average confusability in the lexica, 
decoding time: N times real time (RT). 
 
Note that confusability does not correlate that well with timing, 
this indicates that we may want to include other decoding 
influences, such as the language model in future revisions of 
this measure. 

5.2. WER 
 
Table 3 shows the results in terms of WER for the various lexica 
on the VIOS test set. 
 

Lexicon WER 

1_Baseline 10.7 
2_PhonRules 10.5 
3_PhRec 10.9 
4_PhRec_Sel 10.6 
5_Dtree_Sel 10.0 
6_ PhRec_Sel_100 10.6 
7_ PhRec_100 10.1 

Table 3: WER results for the different lexica. 
 
(1) The baseline result obtained with the ICSI recognition 
system is an improvement compared to the results, which have 
been previously found in [8]. (2) Incorporating five 
phonological rules in the recognition process leads to a small 
improvement. Unlike the results obtained in [8] adding variants 
to the language model or retraining the acoustic models (in this 
case the neural net) does not lead to an additional improvement 
(results not shown here).  
 
(3) Using the phone recognition output to generate a lexicon 
leads to deterioration in WER compared to the baseline.  The 
deterioration is not as large as one might expect, but it should be 
kept in mind that the lexicon does not only contain variants 
from phone recognition because, like all the other lexica, it is 
merged with the baseline lexicon. As one would expect though, 
and as can be seen in Table 2, the decoding time is greatly 
increased. (4) Making a selection of the phone recognition data 
before generating the lexicon improves the WER to about the 
same level as the baseline result. (5) When in addition to this, d-
trees are used to smooth the phone recognition prior to lexicon 
generation, a significant improvement compared to the baseline 
is found. (The result is significant at the 0.02 level using a 
difference of proportions significance test.) 
  
The results of pruning the most frequently confused variants 
(those with a confusion count of more than 100) leads to a 
substantial improvement in (7) but no improvement at all in (6). 
It seems removing the most confusable variants from a lexicon 
that is already based on a pre-selection of phone recognition 
output does not have much effect in terms of WER, even though 
the average confusability in the lexicon is halved. However, 
when the raw phone recognition lexicon is used to calculate 
confusability and all variants with a confusability count higher 
than 100 are removed from the lexicon, the drop in average 
confusability is extremely large and the resulting WER is a 
significant improvement (p < 0.05) compared to the baseline 
result. In addition to this, the decoding time is reduced by 1.6. 
 
It would appear; at least for the simple d-trees we are using that 
removing confusable variants via the confusability metric is 
roughly as effective as smoothing via d-trees. 



5.3. Comparison between Lexica 
   
Table 4 shows the overlap between the phonological rule 
lexicon and two of the data-derived lexica: phone recognition 
and d-trees, respectively. The number of variants generated by 
each of the phonological rules is shown in column 2 of Table 4. 
Combi indicates those variants that are the result of a 
combination of rules applying to a word.  For the phone 
recognition and the d-trees lexicon, the number of variants for 
each of the rules was determined by comparing them to the 
phonological rule lexicon and counting the overlap. In columns 
4 and 6, the percentage of variants in the phonological rule 
lexicon that is covered by the phone recognition and d-trees 
lexica, respectively, is shown. 
 

 Phon.rules Phone rec. d-trees 
 # vars # vars % # vars % 

/n/-del 283 35 12% 83 29%
/r/-del 240 33 14% 71 30%
/t/-del 61 9 15% 19 31%
Schwa-del 18 1 6% 0 0%
Schwa-ins 64 1 2% 2 3%
Combi 201 10 5% 22 11%
Total 867 89 10% 197 23%

Table 4: Number of variants present in the phonological rules 
lexicon, as a result of phone recognition, and after smoothing 
phone recognition with d-trees. Percentages indicate the 
proportion of variants in the phonological rule lexicon that is 
covered by the other two lexica. 
 
Table 4 shows us that in total 10% of the variants present in the 
phonological rule lexicon are also found in the phone 
recognition lexicon. Using d-trees to smooth the phone 
recognition leads to 23% overlap between the phonological rule 
variants and the data-derived variants. This indicates that the d-
trees are learning phonological rules. Therefore, in a further 
study we will investigate the effect of adding more linguistic 
information to the d-trees. 
 

6. CONCLUSIONS 
 
In this paper, we employed two different approaches to dealing 
with pronunciation variation. Our baseline performance is an 
improvement on what was found previously in [8], although, we 
did not find a significant improvement using the knowledge-
based approach to generate new variants, as was the case in [8]. 
As far as the data-derived lexica are concerned, using the phone 
recognition output to add new variants to the baseline lexicon 
led to deterioration in WER. This was to be expected because of 
the noise that is present in the phone recognition. Removing 
some of the errors by pre-selecting the utterances used for 
generating the lexicon brings the WER back down to the level 
of baseline performance. Taking this lexicon and subsequently 
smoothing the phone recognition using simple d-trees before 
lexicon generation leads to a significant improvement compared 
to the baseline. Finally, we found that using the confusion 
metric to prune variants results in roughly the same 
improvement as using the d-tree approach. 

 
The comparisons we made between the phonological rule 
lexicon and the data-derived lexica showed that some of the 
variation described by the five phonological rules is also found 
in the data-derived lexica. Using d-trees results in more overlap 
with the phonological rules than the phone recognition does.  
 
Finally, we conclude that although the metric that we proposed 
for measuring confusability in the lexicon can be quite helpful it 
is definitely not perfect and in the future we want to extend it to 
make it a more useful tool in the process of modeling 
pronunciation variation.  
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