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ABSTRACT

We have developed a system that breaks input speech into
segments using an acoustic similarity measure.  The aim is to
detect the time points where the acoustic characteristics
change, usually due to speaker changes but also resulting
from changes in the acoustic environment. We have also
developed a system to cluster the segments generated by the
first system into clusters composed of homogeneous acoustic
conditions. In this paper, we present a technique to improve
the robustness of the acoustic change detection by feeding
back the results of the segment clustering, exploiting the
extra information available in the distance between the two
clusters to which the segments belong. The interaction
between the acoustic change detection and clustering systems
gives us a substantial improvement over results previously
reported on the 1997 Hub-4 Broadcast News test set that we
employed [1][2]: Feedback of clustering information
improved the Equal Error Rate (EER) of our acoustic change
detection (ACD) system from 26.5% to 18%.

1. INTRODUCTION

We have been working with the well-know Broadcast News
database [4] of TV and radio recordings.  This material
contains multiple speakers, a wide range of speaking styles,
and varied acoustic conditions such as background music,
telephone channels etc.  For a number of reasons, the task of
acoustic change detection (ACD) is particularly important for
this data. ACD consists of finding the time points where
there is a speaker change (or more generally, an acoustic
environment change). We can then cluster the segments
defined by these time points into clusters containing
homogeneous acoustic conditions, for instance, all the
speech by a particular speaker in the same acoustic
environment. This could ultimately be used to label the
segments with the appropriate speaker/condition tags,
giving us both the acoustic change points and the
recognition of the acoustic condition in each segment.

One important motivation for ACD is to obtain segments of
homogeneous speech. These segments are well suited to
short-term adaptation in order to improve recognition
accuracy. Another possibility is for the recognition language
model to be "reset" at these break points to originate a new
sentence [2]. With segments clustering we will of course
obtain larger amounts of homogeneous speech material to be
used for model adaptation. But most significantly for the

current work, the clustering information may be used to
improve the robustness of subsequent decisions on acoustic
environment identity and can be fed back to the ACD system
to perform better segmentation decisions. Completing the
tasks with speech recognition and understanding, we could
use these labels as indexes for information retrieval.

This paper is structured as follows.  Section 2 presents the
overall segmentation system architecture.  In section 3 we
discuss our ACD algorithm and present the way in which
clustering information is fed-back within the segmentation.
Section 4 describes our experiments and results, and section 5
forms our conclusions.

2. SYSTEM ARCHITECTURE

The segmentation system is composed of the following
modules: 1) Feature extraction modules calculating both PLP-
smoothed cepstra [5] used by the break-point hypothesis
generator (Feature Extraction 1 in figure 1) and unsmoothed
cepstra for ACD and clustering (Feature Extraction 2 in figure
1); 2) A break-point hypothesis generator based on a broad-
class phonetic recognizer and subsequent filtering; 3) ACD
based on the Bayes Information Criterion (BIC) acoustic
similarity measurement; 4) A cluster generation and
optimization algorithm for the acoustic segments. This
architecture is shown in figure 1.

Figure 1: Block diagram of the system.

2.1 Speech Features Extraction Modules

The first blocks are speech feature extraction modules that
extract a vector of features for each frame of the input
waveform. We have depicted two different feature extraction
modules because we found that the features best suited to our
broad-class phonetic classifier were different from the
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features most successful in segment change detection.  We use
12th order PLP-smoothed cepstra for the phonetic classifier,
the features we have found best for our full speech recognition
system. For ACD and clustering, we used unsmoothed cepstra.
We experimented with using between 6 and 19 cepstral
elements and found stable behavior between 11 and 15
parameters; table 1 shows our baseline ACD results as a
function of the feature vector size, quoted as the equal-error
rate (EER) over the test set described in section 4.

Number of features %EER

6 32.0
7 30.5
8 29.5
9 29.5

10 27.5
11 26.5
12 26.5
13 26.5
14 26.0
15 26.5
19 27.0

Table 1: ACD performance evolution for different numbers
of cepstral features and full covariance models.

2.2 Break-point hypothesis generator

Based on our Broadcast News speech recognizer [3], the
hypothesis generator uses a feed-forward multi-layer
perceptron with a single hidden layer of 1600 units.  The
input is 9 consecutive feature frames, and the outputs estimate
the posterior probability of four broad acoustic-phonetic
classes: vowels+nasals, fricatives, obstruents, and non-
speech.  The ACD algorithm considers placing breakpoints
only at sequences of 3 or more frames labeled as non-speech.
This approach means that in a test set of 686069 frames,
only 5180 candidate break points (or 0.76% of the frames)
need be examined.

3. THE ACOUSTIC CHANGE DETECTOR

3.1. Acoustic Similarity Test based on the
Bayesian Information Criterion

 For adjacent acoustic segments (delimited by candidate break
points from the hypothesis generator), an actual break point
is inserted by comparing the fit of a single multidimensional
Gaussian model for the entire segment with separate models
for each side of the break.  We compare these alternatives
using the Bayesian Information Criterion (BIC) [1], a
likelihood measurement penalized by the complexity of the
assumed model. Given a set of N vectors X={ xI : i=0..N-1}
that we are trying to represent through a model M, the BIC
score would be:

 BIC M L X M M N( ) log ( , ) # ( ) log( )= [ ] − ⋅ ⋅λ
2

 where the penalty weight λ should theoretically be 1. #(M)
measures the complexity of the model by its free parameter
count, and L(X,M) is the likelihood of data X under model M .
The segmentation decision depends on a comparison of a
hypothetical division of X into two subsequences, with
separate models for each and hence more parameters, and the
null hypothesis of using a single model for the entire set.
Using Gaussian models, we have the following hypotheses:

 H0: x0 ... xN-1 ~ N (µ , Σ )

 H1: x0 ... xN
1
-1 ~ N (µ1 , Σ1 )

     xN
1
 ... xN-1 ~ N (µ2 , Σ2 )

 Using the BIC, and keeping from the likelihood estimation
only the part that is dependent on the covariance model [2]
(since the feature means can be strongly affected by irrelevant
changes in static channel characteristics) we end up with the
following hypothesis test:
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 If this number is positive, we decide H1 and break the whole
segment into the two sub-segments. In this equation the
complexity of H1 is penalized via the factor
d d d+ ⋅ +( ) /1 2  i.e. the number of free parameters in the

second full covariance Gaussian model for d-dimensional
feature vectors. We have found throughout our experiments
that the value of λ had to be tuned in order to obtain the EER.
We have found a strong dependency of its optimal value with
the dimensionality of the input parameter vector (d) that is
not compensated for by the model complexity factor #(M).

3.2. Acoustic Change Detection Procedure

 Given this mechanism to decide whether or not to accept a
possible break point, we face the problem of dynamically
produce the acoustic change detection of a large amount of
speech. Instead of hypothesizing a possible break point on
each input frame, we consider only the nonspeech regions
detected by the phonetic classifier, as described above.  We
found that requiring the nonspeech regions to be at least 3
frames in duration helped remove a number of spurious
‘glitches’. The non-speech regions are excluded from our
acoustic similarity calculations, since they presumably do
not contain any speech, and speaker change is our main
focus. We  hypothesize the center of the non-speech region
as the possible break point; thus, these initial break points
hypothesis define the maximum possible partitioning of the
speech material into small segments. Using these basic
segments, we run the following ACD procedure [2]:

 



 

 ACD Procedure

1) Add another segment into a buffer and write down a new
possible break point

2) Calculate likelihood ratio via the BIC for each
hypothesis in the buffer.  Find the most likely break
point (the one with the highest likelihood ratio)

3) Is the best likelihood ratio test positive?

     YES: Produce a break point. Delete segmented zone
 from buffer.

4) Go to 1)

3.3. Clustering to improve ACD

 Using the same BIC criterion, we generate an initial
clustering of the segments produced by the ACD using an
incremental algorithm. This clustering is then further refined
with fewer than 10 iterations of a re-clustering of the input
acoustic segments to avoid order effects in the clustering
algorithm. The basic iteration is:

 

 Clustering Optimization Procedure

5) Pick one ACD segment

6) Remove this segment from its cluster and update cluster
data

7) Find the ‘closest’ cluster (if any) to the segment

8) If there is a representative cluster, go to 6)

9) Generate a new cluster with only this segment.
Go to 7)

10) Update this cluster with the segment information

11) If there are more segments to process, go to 1)

 

 Clustering information is fed back into the ACD procedure
via two approaches: a "hard" decision where a break is only
allowed if the segments belong to different clusters, and a
soft integration where the distance between each segment and
the center of its cluster acts as a confidence measurement,
weighting the contribution of the between-cluster distance in
a linear combination with the BIC criterion in the ACD
decisions.  This last approach gave the best 18% EER
performance for the test task. The implementation of the soft
integration is guided by the following ideas: We were
pursuing how to integrate another BIC measurement
dependent on the clusters to which the two segments belong.

If we think of likelihood values as if they were distances, we
could define generically a distance between two acoustic
segments as:
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Using this distance, the first idea is to use the function
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where

C1 is the cluster to which the segment S1 belongs

C2 is the cluster to which the segment S2 belongs

as extra information about the suitability of separating S1
from S2. Assuming that C1 and C2 are good representatives
of S1 and S2 correspondingly, the "distance" from one to the
other will be greater when we should separate S1 from S2 and
ideally 0 (because C1=C2) when S1 and S2 come from the
same acoustic conditions. We wish to integrate this class-
derived information with the distance metric based only on
the segments,

F N N N= ⋅ − ⋅ − ⋅log log logΣ Σ Σ1 1 2 2

In order to give the same relevance to the information
conveyed by F and G, we decided as a first approach to
equalize their dynamic range with the following formula:
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where σF and σG are fixed estimates of the standard deviations
of F and G over all the segments. (In fact, we found first an
approximate experimental value for this equalizing parameter
and then realized that it was close to this ratio for the samples
we had and then decided to substitute the experimental value
by this more flexible one.) We stress that this is a fixed
value, rather than one that is updated during the procedure. We
then use the same criterion of separating the two segments if
this value is positive. The value λ has to be tuned again to
different values to obtain EER. To apply different importance
to each source of information, we used the formula:
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where α can be varied from 0 (only the baseline F function
takes control on the decisions) to 1 (only the new G function
decides).  Finally, we also tried a dynamic α with the
expression:

α =
−

+

e
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Here, α is 1 if d(S1,C2) and d(S2,C2) are both zero. In this
case, we know that C1 and C2 are perfect representatives of
the segments S1 and S2 and this is an indication that we can
thoroughly rely on the robust information given by the
function G of the distance between centers of clusters. On the
other hand, α will be close to zero when these distances will
be large and C1 and C2 would be in this case bad
representatives of the acoustic segments. In this case we
prefer not to rely so much on the clustering information, but
give more relevance to the information in the old function F.

4. EXPERIMENTS AND RESULTS

For the evaluation of our systems we have used the same
database than [1] & [2], that is, 3 hours of speech that were
defined as the Hub 4 1997 evaluation data. The hand labeled
transcriptions define 618 segments in this database (617
breakpoints) that are mostly speaker changes but also include
changes to and from music, silence, excluded regions, etc. We
will consider them all as true target break points. There are
119 different labels in the hand labeling of these segments,
most of them the speaker proper names but also some others
as: generic speaker labels (like "CNN_WVW_mAnnouncer1"
or "female_nonnative3") and special labels (like "BEGIN",
"Inter_segment_gap" or "Excluded_Region").

Following the evaluation directions in [2] for the ACD task,
we have converted the break points into valid break regions
that extend with the non-speech region around a certain
breakpoint. This extension is produced using the labeling
obtained by using the neural network trained at ICSI for
recognition purposes. 6 frames of 16 msec. (about 100 msec.
as in [2]) are added to both extremes of these regions as an
allowance margin. With these criteria, we have defined the
final target regions for our break points evaluation. Only one
generated boundary can be matched to each target region.
Different performances can be obtained tuning the value of λ .
We can design a large variety of systems from the ones
having high false acceptance with low false rejection to
those performing low false acceptance with high false
rejection. That is why when comparing results we have used
the EER working point where the system has the same false
acceptance and rejection rates. This point is also, by
definition, the case in which the system generates exactly the
same number of break points as the reference (617 in our
case).

4.1 Results

We first made a study of the dependence of the ACD accuracy
with the variation in number of features extracted. Table 1
presents the results with full-covariance Gaussian models for
the specified number of plain cepstral coefficients.  Table 2
shows intermediate results for several of the approaches
described above.  Our best result of 18% EER was achieved by
the full dynamic soft integration of clustering information.

System variant EER%

Baseline 12th order cepstral ACD 26.5
Hard feedback of cluster info 21.0
Soft feedback, equal weight 20.5
Soft feedback, optimal static α 20.0

Soft feedback, dynamic α 18.0

Table 2: ACD performance for various system
configurations.

5. CONCLUSIONS

The BIC criterion performs well as an acoustic similarity
criterion and allows ACD with reasonable results in accuracy
and CPU time if it is accompanied by a hypothesis generator.
We have improved the baseline accuracy by feeding back
information from an optimized clustering of the produced
segments. A dynamic soft integration has been presented that
was found to be the best strategy for integrating the
clustering information into the ACD module.
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