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current work, theclustering informationmay be used to
ABSTRACT improve the robustness stibsequent decisions arcoustic
] ] environment identity and can be fed back to the AyBtem
We have developed a system that breaks input speech (o perform bettersegmentation decisions. Completing the

segments using an acoustic similarity measure. The aim is{{Qks with speechiecognition and umerstanding, weeould
detect the timepoints where the acoustic characteristics |,se these labels as indexes for information retrieval.

change, usuallydue to speaker changes but alsesulting
from changes in the acoustienvironment. Wehave also This paper is structured dgllows. Section 2 presents the
developed asystem to cluster the segments generated by thgerall segmentation system architecture. In section 3 we
first system into clusters composed of homogenemtsustic discussour ACD algorithm and present theway in which
conditions. In this paper, we present a techniquamnprove clustering information is fed-back withithe segmentation.

the robustness of the acoustic change detectiorfebding Section 4 describes our experiments and results, and section 5
back the results of the segment clusteriegploiting the forms our conclusions.

extra information available ithe distance between the two

clusters to which the segments dmj. The interaction 2. SYSTEM ARCHITECTURE

between the acoustic change detection and clusteystems
gives us a substantial improvemeaover resultspreviously
reported on the 199Hub-4 BroadcasNewstest set that we
employed [1][2]: Feedback ofclustering information
improved theEqual Error Rate(EER) of our acousticchange

The segmentation system is cposed of thefollowing
modules: 1) Feature extraction modules calculating IRitR-
smoothed cepstra [Slised by the break-point hypothesis
generator(FeatureExtraction 1 infigure 1) and unsmoothed

detection (ACD) system from 26.5% to 18%. cepstra for ACD and clustering (Featu@gtraction 2 in figure
1); 2) Abreak-point hypothesigenerator based on a broad-
1. INTRODUCTION class phonetic recognizeand subsequenfiltering; 3) ACD

based on the Bayes InformatioBriterion (BIC) acoustic
We have been working with the well-know Broadciiws similarity measurement; 4) A clustergeneration and
database [4] of Tvand radio recordings. Thismaterial optimization algorithm for the acousticsegments. This
contains multiple speakers,wide range ofspeakingstyles, architecture is shown in figure 1.
and varied acousticconditions such as backgroundnusic,

telephone channels etc. For a number of reasons, the tasRpefth Feature Broad Class Hypothesis
acoustic change detection (ACD) is particulaityportant for Extraction 1 |—p»| Recognizer |—»| Generator
this data. ACD consists of findingthe time points where

there is a speaker change (or mayenerally, an acoustic +
enylronment changg). Wgan then cluster thesegmgnts r— 2CD

defined by these time points into clusters containing Extraction 2 <
homogeneous acousticonditions, for instance, all the

speech by a particular speaker in the sameoustic ¢
environment. This could ultimately be used to label the CLUSTERING

segments with the appropriate pesker/condition &gs,
giving us both the acoustic changepoints and the
recognition of the acoustic condition in each segment.

One important motivatiorfor ACD is to obtainsegments of Figure 1: Block diagram of the system.
homogeneous speecihese segmentsare well suited to )
short-term  adaptation inorder to improve recognition 2.1 Speech Features Extraction Modules

accuracy. Another possibility is for threcognition language ) )
model to be "reset" at these brepdiints to originate a new Thefirst blocks are speechfeature extraction modules that
extract a vector of features for eadrame of the input

sentence [2]. With segments clustering we will of cours

obtain larger amounts of homogeneous speech material to l&veform. We have depicted two different featesetraction
usedfor model adaptation. But mossignificantly for the modules because we foutitht the features best suited to our

broad-class phonetic classifier weudifferent from the



features most successful in segment change detection. We wherethe penalty weighth shouldtheoretically be 1#(M)
12" orderPLP-smoothed cepstra for tfghonetic classifier, measures theomplexity ofthe model by its fregarameter
the features we have found best for our full speedognition  count, and.(X,M) is the likelihood ofdataX undermodel M.
system. For ACD and clustering, we used unsmootfegistra. The segmentation decisionlepends on aomparison of a
We experimented with using between &hd 19 cepstral hypothetical division ofX into two subsequenceswith
elementsand foundstable behavior between 1and 15 separate models for eaamdhence more parameterand the
parameters; table 1 showsur baseline ACD results as anyll hypothesis ofusing a single model for the entiset.
function of thefeaturevector size,quoted asthe equal-error Using Gaussian models, we have the following hypotheses:
rate (EER) over the test set described in section 4.

Ho: Xo oo Xpya ~N (U, X)
Number of features | %EER H,: Xo o Xy 4 ™ N (TR
6 32.0
7 30.5 XN1 v Xy =Ny, Z5)
8 29.5
9 29.5 Using the BIC,and keepingfrom the likelihood estimation
10 27.5 only the part that is dependent on the covariammael [2]
11 26.5 (since the feature means can be strongly affectedrbievant
12 26.5 changes in static channel characteristics)eng upwith the
13 26.5 following hypothesis test:
14 26.0 H,
15 26.5 D
19 27.0 z d d 1
N‘l h " 5 i+ 499 D000y o
Table 1: ACD performance evolutiorfor different numbers
of cepstral features and full covariance models. HO
2.2 Break-point hypothesis generator If this number ispositive, wedecide H and breakhe whole

segment into thetwo sub-segments. In this edion the
Based on ourBroadcastNews speech recognizer [3], the complexity of H is penalized via the factor

hypothesis generator uses afeed-forward multi-layer 4+ [{d +1)/2 i.e. thenumber of free parameters in the

&erl(jte IF; tl’90 Zo\gggcii\ln?elgtu?;d?ri%ézyea[ngﬁt?\(é :unlts_ ;?: second full covariance Gaussian model firdimensional
thg osterior probability of four brc;ad acoustict-mhmo&nletic featurevectors. We havdound throughout our experiments
P P y P that the value oA had to be tuned in order to obtaihe EER.

classes: vowels+nasals, fricatives, obstruen&md non- o )
speech. The ACD algorithm considers placindgpreakpoints We hgve fqund a strong d_ependency ofdpgimal value W't_h
the dimensionality ofthe input parameter vectod)(that is

only at sequences of 3 or more frames labeledaasspeech. )
This approach means that in a test set686069 frames, "ot compensated for by the model complexity factdd)#(

only 5180 candidate brealoints (or 0.76% of the frames)

need be examined. 3.2. Acoustic Change Detection Procedure

Given this mechanism tdecidewhether or not to accept a

3. THE ACOUSTIC CHANGE DETECTOR possible beak point, we fcethe problem ofdynamically

. o producethe acoustic change detection of a large amount of
3.1. Acoustic Similarity Test based on the  gspeech. Instead dfypothesizing a possible break point on
Bayesian Information Criterion each input frame, we considenly the nonspeechregions
detected by thehonetic classifier, adescribedabove. We
For adjacent acoustic segments (delimitedcapdidatebreak  foynd that requiring thenonspeech regions to be at least 3
points from the hypothesis generator), atual breakpoint  fames in duration helped remove a number spiurious
is inserted by comparing the fit of a single ltidimensional gjitches’. The non-speech regionsre excludedfrom our
Gaussian model for the entire segment with separeiéels acoustic similarity calculations, since they presumably do
for each side of the break. We compare thalernatives not contain any speechand speaker change isur main
using the Bayesian Information Criterion (BIC) [1], agocys. We hypothesizethe center of thewon-speech region
likelihood measurement penalized by themplexity of the 5q thepossible beak point; thus, these initial break jrds

assumednodel. Given a set oN vectors X={x, : i=0.N-1} = pynothesis define the maximupossible partitioning of the
that weare trying torepresent through a mod#, the BIC speech material into small segments. Using theseic
score would be: segments, we run the following ACD procedure [2]:

BIC(M) = log[ L(X, M)] —%@(M) [og(N)



ACD Procedure

1) Add another segment into bauffer andwrite down a ne
possible break point

2) Calculate likelihood ratio via the BIC for each
hypothesis inthe buffer. Find the most likelyoreak
point (the one with the highest likelihood ratio)

3) Is the best likelihood ratio test positive?

YES: Produce a lmak point.
from buffer.

Delete segmentedzone

4) Gotol)

3.3. Clustering to improve ACD

Using the same BiCcriterion, we generate an itmal

clustering of the segmentgroduced bythe ACD using an
incremental algorithm. This clustering is th&mther refined
with fewerthan 10 iterations of a re-clustering tife input
acoustic segments to avomtder effects in theclustering
algorithm. The basic iteration is:

Clustering Optimization Procedure
5)
6)

Pick one ACD segment

Remove this segment from its clusterd updateluster
data

7)
8)
9)

Find the ‘closest’ cluster (if any) to the segment
If there is a representative cluster, go to 6)

Generate anew cluster
Goto7)

with only this segment

10) Update this cluster with the segment information

11) If there are more segments to process, go to 1)

Clustering information is fedhack into the ACDprocedure
via two approaches: éhard" decisionwhere a beak isonly

allowed if the segments belong tdifferent clusters,and a
soft integration where the distance between each segment
the center of its cluster acts as a confidemoeasurement,
weighting the contribution of the between-cluster distance
a linear combination with the BIC criterion in the ACD
decisions.

integration is guided by the following ideas: We were
pursuing how to integrate another
dependent on the clusters to which the segmentsbelong.

If we think of likelihood values as if they were distances, we
could definegenerically a distance betweetwo acoustic
segments as:

d(X,Y) = (Ny +N,) Dog %, | =Ny Dog | ~N, Ibgz,|

XUY‘

Using this distance, the first idea is to use the function

G=d(G,C,)
=(Ng, +Ng,) D]Og‘zclucz‘ -N, Dbg‘zcl‘ N, Dbg‘zcz‘

where
C1 is the cluster to which the segment S1 belongs
C2 is the cluster to which the segment S2 belongs

as extra informationabout thesuitability of separating S1
from S2. Assuming that Cand C2 arggood representatives

of S1 and S2 correspondingly, the "distance" from one to the
other will be greater when we should separate S1 from S2 and
ideally O (because C1=C2) when &hd S2come from the
same acousticonditions. Wewish to integrate this class-
derivedinformation with the distance metric basemhly on

the segments,

F = N ogiz| - N, dog%,| - N, og|Z,|

In order to give the same relevance to thHaformation
conveyed by Fand G, wedecided as dirst approach to
equalize their dynamic range with the following formula:

F+% -2 g + 99Dy gy

Og 2 2

whereo, ando;, are fixedestimates of the ahdarddeviations

of F andG over all thesegments.(In fact, wefoundfirst an
approximate experimental value for this equalizing parameter
and then realized that it was close to this ratio forsgamples

we had andhen decided tosubstitute the experimental value
by this more flexible one.) We stress that this is a fixed
value, rather than one that is updated during the procedure. We
then use the same criterion of separating tthe segments if
this value ispositive. The value A has to betuned again to
different values to obtain EER. To apply differemtportance

to each source of information, we used the formula:

(1-a)[F +a BZL ® —% T +@) Tog(N)

am@re o can be varied from Qonly the baselineF function
takes control on the decisions) to 1 (only tiew G function
idbcides). Finally, we also tried a dynamica with the
expression:

This last approach gave the best 18% EER
performance for the test task. The implementation of the soft

_4d(5.G)+d($:,C,)
a=e factor

BIC measurement



Here,a is 1 if d(S1,C2)andd(S2,C2)areboth zero. Inthis
case, we know that Cand C2 areperfectrepresentatives of

the segments S1 and $Rdthis is an indication that we can

thoroughly rely on the robustinformation given by the

function G of the distance between centers of clusters. On the

other handg will be close to zero when these distaneéd

be large and C1 and C2 would be iis case bad
representatives ofhe acousticsegments. In thiscase we
prefer not to rely sanuch onthe clusteringinformation, but
give more relevance to the information in the old funcfon

4. EXPERIMENTS AND RESULTS

For the evaluation ofour systems we havaused the same
database than [1] & [2], thas, 3 hours of speech thatere
defined agthe Hub 41997 evaluationdata. The handlabeled
transcriptions define 618 segments in this databag€é17

System variant EER%
Baseline 12" order cepstral ACD 26.5
Hard feedback of cluster info 21.0
Soft feedback, equal weight 20.5
Soft feedback, optimal static & 20.0
Soft feedback, dynamic o 18.0

Table 2: ACD performance for

configurations.

5. CONCLUSIONS

The BIC criterion performswell as an acousticsimilarity
criterion and allows ACD with reasonable resultsaturacy
and CPU time if it is accompanied byhgpothesisgenerator.
We have improved the baselineccuracy by feedingack
information from an optimizedclustering of theproduced

various system

segments. A dynamic soft integration has been presented that

was found to bethe best strategyfor integrating the

breakpoints) that are mostly speaker changes but also incluigstering information into the ACD module.
changes to and from music, silence, excluded regions, etc. We

will consider them all asrue target breakpoints. There are
119 different labels in théandlabeling of thesesegments,

most of them the speaker proper names but also some others
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as: generic speaker labels (like "CNN_WVW_mAnnouncerl"”

or "female_nonnative3")and special labels (like'BEGIN",
"Inter_segment_gap" or "Excluded_Region").

Following the evaluation directions ii2] for the ACD task,
we have converted the bregbints intovalid breakregions
that extend with thenon-speech regioraround acertain
breakpoint. This extension isproducedusing the labeling
obtained by using the neural network trained @8l for
recognition purposes. 6 frames of 16 msec. (aboutri88c.

as in [2]) areadded toboth extremes of these regions as an

allowance margin. With these criteria, we hadefined the

final target regions for our break points evaluation. Only one

generated boundary can be matched to each taegion.
Different performances can be obtained tuning the valug. of
We can design a large variety afystemsfrom the ones
having high false acceptance wilbw false rejection to
those performinglow false acceptance withhigh false

rejection. That is why whercomparing results we have used

the EERworking point wherethe system has thgamefalse
acceptanceand rejection rates. This point is also,

same number of breagoints asthe reference (617 in our
case).

4.1 Results

We first made a study of the dependence of the ACD accuracy
with the variation in nurber of features extracted. Table 1
presents the results with full-covariance Gaussian models for

the specified number gflain cepstral coefficients.Table 2
shows intermediate results for several of thpproaches
described above. Our best result of 18% B achieved by
the full dynamic soft integration of clustering information.

by
definition, the case in which the system generates exactly the
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