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ABSTRACT

This work outlines the problems encountered in modeling pro-
nunciation for automatic speech recognition (ASR) of spontaneous
(American) English speech. We detail some of the phonetic phe-
nomena within the Switchboard corpus that make the recognition
of this speaking style difficult. Phonetic transcribers found that fea-
ture spreading and cue trading made identification of phonetic seg-
mental boundaries problematic. Including different forms of con-
text in pronunciation models, however, may alleviate these prob-
lems in the ASR domain. The syllable appears to play an im-
portant role, as many of the phonetic phenomena seen are sylla-
ble-internal, and the increase in pronunciation variation compared
to read speech is concentrated in coda consonants. In addition, we
show that other forms of context – speaking rate and word pre-
dictability – help indicate increases in variability. We present a
dynamic ASR pronunciation model that utilizes longer phonetic
contextual windows for capturing the range of detail characteristic
of naturally spoken language.

1. INTRODUCTION

ASR systems typically perform more poorly on spontaneous
speech than on corpora containing scripted and highly planned ma-
terial. Although some of this deterioration in performance reflects
the wide range of acoustic background conditions typical of natu-
ral speech, much of the decline in recognition accuracy can be at-
tributed to a mismatch between the phonetic sequence recognized
and the representation of words in the system’s lexicon. Finding
ways to predict when and how the phonetic realization of an ut-
terance deviates from the norm is likely to improve recognition
performance.

In NIST’s recent evaluation of speech recognizers [11], it was
clear that all current systems perform much worse in spontaneous
conditions. In Figure 1 we show the error rates of recognizers run-
ning on the Broadcast News corpus, a collection of radio and tele-
vision news programs, for two different focus conditions:planned
studio speech, in which announcers read from a script, andspon-
taneousstudio speech, in which reporters conducted more natu-
ral interviews.1 All of the recognizers in the evaluation had 60 to
100% more errors in the spontaneous condition. Since the acoustic
environment of these two conditions is similar, the most plausible
explanation of the variation in ASR performance is the difference
in speaking style.

Recognizers’ diminished performance on spontaneous speech
can be attributed to many factors, such as differences in sentence
structure or additional disfluencies that would affect the ASR lan-
guage model [6,13]. One of the biggest influences, however, is the
variation in pronunciations seen in spontaneous speech. We have
observed [2] that an increase in errors made by ASR systems cor-
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Figure 1. ASR system error for nine recognizers on planned and
spontaneous studio speech in the Broadcast News corpus.

relates with situations in which phonetic transcriptions of the test
speech data do not match the pronunciations found in the recogni-
tion dictionary. For example, one system tested on the Switchboard
corpus of spontaneous speech produced one-third more errors for
words pronounced non-canonically.

McAllasteret al. [10] used simulated acoustic data with their
Switchboard recognizer to normalize the effects of misclassifica-
tions made by the acoustic (phonetic categorization) model; fo-
cusing on the differences between the phonetic transcript of the
Switchboard test set and pronunciation models in the dictionary,
they found that reductions and phonological variations in Switch-
board were the single most significant cause of errors in their rec-
ognizer. Thus, a critical step for training a casual-speech recogni-
tion system is the determination of when and how pronunciations
can vary in this speaking style.

2. HOW IS SPONTANEOUS SPEECH DIFFERENT?

Since the above experiments suggest that the pronunciations of
spontaneous speech are different enough to cause substantial mis-
matches with standard recognizer pronunciation models developed
primarily for read speech, it is important to characterize how these
differences are realized both acoustically and with respect to fea-
tures other than segmental context. We present here some observa-
tions from our transcription of the Switchboard corpus.
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Switchboard (spontaneous) TIMIT (read)
Syllable constituent # instances % Canonical # instances % Canonical
Onset 39214 84.4 57868 90.0

Simple [C] 32851 84.7 42992 88.9
Complex [CC(C)] 6363 89.4 14876 93.3

Nucleus 48993 65.3 62118 62.2
with/without onset 35979 / 13104 69.6 / 53.4 50166 / 11952 64.7 / 51.8
with/without coda 26258 / 15101 64.4 / 66.4 32598 / 29520 58.2 / 66.6

Coda 32512 63.4 40095 81.0
Simple [C] 20282 64.7 25732 81.3

Complex [CC(C)] 12230 61.2 14363 80.5

Table 1. Frequency of phone transcription matches against the lexicon’s canonical pronunciation for Switchboard and TIMIT

2.1. Transcribing Switchboard
For the 1996 and 1997 Johns Hopkins Large Vocabulary Contin-
uous Speech Recognition Summer Research Workshops, linguists
at ICSI transcribed phonetically roughly four hours of the Switch-
board corpus [4]. The difficulty of transcribing this data provided
valuable insights into how the assumptions made for read-speech
transcription did not fit this database.

The original transcription system used was modeled after
the guidelines developed for transcribing the TIMIT corpus of
prompted speech [3]. Transcribers were asked to segment words
into individual phones, as most ASR systems require. However,
the transcribers often found phenomena that defied the given seg-
mentation and identification criteria. Irregular phonetic expression
of segments was a common occurrence. The linguists cited the
following difficulties in transcription:

Feature spreading: Many segments are deleted entirely in pro-
duction, though their influence is often manifest in the pho-
netic properties of their segmental neighbors. This makes it
difficult to determine hard phonetic boundaries. For exam-
ple, the character of vowels neighboring/r/ or following
/j/ are colored almost completely by the consonant; it was
impossible to say where the segmental boundary lay. Nasals
often spread into adjoining stops (e.g., /nd/ clusters in syl-
lable codas), eliminating the closure but preserving the stop
burst.

Cue trading: Alternative phonetic realizations often occur in
place of canonical acoustic patterns. For example, dental and
nasal flaps are occasionally demarcated by dips in waveform
amplitude, rather than by any noticeable change in the for-
mant trajectories. Often, there was almost no acoustic evi-
dence for very predictable words (e.g., moreof that); how-
ever, a vestigial timing cue would indicate the presence of a
word that could be filled in from context.

These observations instigated a slight shift in transcription fo-
cus for later phases of the project. Since phonetic boundaries were
difficult to determine, and many of the observed phenomena were
syllable-internal, the linguists were instructed to give the phonetic
identities of segments, but only mark junctions between syllables.
While not every boundary was unambiguous, this did ease the de-
cision process for transcribers, speeding transcription greatly. For
more examples from the Switchboard transcription project, visit
http://www.icsi.berkeley.edu/real/stp .

2.2. TIMIT versus Switchboard
Syllabic constraints exert influence on pronunciation variation in
both read and spontaneous speech; the differences between the two
speaking styles also stand out when examining phones within syl-
labic contexts. Greenberg [5] has previously demonstrated with

the Switchboard corpus that the probability of canonical pronunci-
ation of a phone depends on the position of the phone within the
syllable. We compared these results with the TIMIT read-speech
corpus in order to determine whether syllabic constraints caused
characteristic pronunciation variation effects.

We compared the pronunciations transcribed for each word
in Switchboard and TIMIT to the closest pronunciation given for
the word in the Pronlex pronunciation dictionary [9], using auto-
matic syllabification methods to determine syllabic positions, as
described in [2].2 This procedure highlighted marked similarities
and differences between pronunciations in the two corpora. As we
see in Table 1, onset consonants are pronounced canonically more
often than other phones in both corpora, particularly in the case
of complex consonant clusters. These segments are often acous-
tically strong, perhaps to demarcate the start of a syllable. Also,
vowel nuclei match thea priori pronunciation approximately as
often in read as in spontaneous speech. This is a surprising fact —
it suggests that the acoustics of vowels are influenced by context,
but still remain relatively variable. Nuclei without preceding on-
set consonants are much less likely to be canonical than those with
onsets, probably because they are influenced more by the varying
preceding syllable than by the (usually canonical) onset.

The biggest difference between spontaneous and read speech
is the large increase in variability of the coda consonants — es-
sentially a 20% change. Thus, in spontaneous speech coda seg-
ments are about as canonical as nuclei, whereas in read speech their
canonicity compares to that of onset consonants. Keating’s [8]
analysis of a different portion of this corpus concurs with this
finding: most of the variation phenomena she discusses involve
changes either in vowel qualities or in the final consonant.

The implication of these findings is that words may be identi-
fied most strongly by the syllable-initial portion of the word. Less
variation is observed in onsets because they are used to discrim-
inate between lexical items. Given the words in the transcribed
portion of the Switchboard corpus, we located pairs of words that
differed by one phone in the Pronlex dictionary (e.g., newsand
lose). These pairs were classified by whether the phone difference
was in onset, nucleus, or coda position. Onset discrepancies out-
numbered nucleus discrepancies by a factor of 1.5 to 1, and coda
discrepancies by 1.8 to 1, indicating that at least for this crude mea-
sure, onsets appear to be more important for word discriminability.

2.3. Word Frequency and Speaking Rate
Phonetic context is not the only factor that can affect the acous-
tic realization of words. We have been investigating other non-
segmental factors (word frequency and speaking rate) that can de-
termine how pronunciations can vary [2].

We computed an average syllabic distance measure between
the phonetic transcription and the Pronlex dictionary for all of the
syllables in the transcribed portion of the Switchboard corpus; an
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Figure 2. Distance from canonical pronunciation as a function of
word frequency and speaking rate (from [2]). Higher frequency
words are to the right on this graph; faster speaking rates are to the
left/rear.

increase in this measure corresponds to further divergence in pro-
nunciation in terms of a phonetic feature space. In Figure 2, this
measure is plotted against the unigram frequency of the word and
local interpausal speaking rate, as given by the transcribers.

There is an interaction between unigram probability, speak-
ing rate, and the average distance for each syllable from the Pron-
lex baseforms: in less frequent words there is some increase in
mean distance as rate increases, but for syllables occurring in more
frequent words, the rate effect is more marked. This complex in-
terdependency between these three variables makes sense from an
information-theoretic viewpoint — since high-frequency words are
more predictable, more variation is allowed in their production at
various speaking rates, as the listener will be able to reconstruct
what was said from context and few acoustic cues.

Other factors besides speaking rate and word predictability
can affect pronunciations. Jurafskyet al. [7] have studied how
filled pauses, disfluencies, segmental context, speaking rate, and
word predictability relate to the realization of the ten most com-
mon function words in the Switchboard corpus. For many of these
variables, they found significant independent effects on function
word reductions.

3. IMPLICATIONS FOR ASR MODELS

It is clear that the context in which a phone appears has a significant
effect on the acoustic (and articulatory) realization of the phone;
this effect is very prominent in spontaneous speech. The increased
variability in the phonetic realization must be considered in build-
ing statistical models for ASR systems. Many of the “problematic”
phonetic phenomena described here can be modeled by examining
the extended context for each phone: either the neighboring phones
or the containing syllable or word.

Many speech recognizers already incorporate triphone mod-
els [12] that are dependent on the previous and subsequent phones
in context. In essence, one builds finer and finer models of phonetic
categories; so that one does not have to build a model ofeverypos-
sible phonetic context, clustering techniques [15] that either use
phone categories (e.g. manner or place of articulation) or a blind
statistical criterion of similarity can effectively reduce the number
of models needed.

NO YES

NO YES

Is next word one of:

{Clinton, Clinton’s,
  Boris}

Is previous word one of:

?

{for, the}
0.69 pcl p r eh z ih dx ax n
0.18 pcl p r eh z dx ax n
0.10 pcl p r eh z ih dx ax ng

?

0.47 pcl p r eh z ih dx ax n

0.14 pcl p r eh z ax n
0.33 pcl p r eh z ih dx ax n tcl

0.89 pcl p r eh z ih dx ax n tcl
0.06 pcl p r eh z ih dx ax n
0.05 pcl p r eh z dx ax n

Figure 3. Decision tree model forpresident.

Another option is to determine which pronunciation mod-
els match acoustic examples under different contexts [14,inter
alia]. In this scenario, a recognizer, trained using a baseline pro-
nunciation representation, generates a phonetic transcription of
some training data unconstrained by the word sequence. One can
then use automatic techniques to find how the unconstrained ASR
phone models differ from the dictionary pronunciation, given the
surrounding phones as context — a quasi-phonological approach.
Instead of concerning ourselves with the interrelation of phonemes
and phones, we are determining how phones relate to recognizer
models in different contexts.

As we have seen, all phones are not created equal — syllabic
position can influence the phonetic realization of segments. Since
many of the phenomena we studied are syllable-internal, syllable
and word models can be used explicitly to model internal context.
Rather than spending modeling power on learning the contexts in
which phones change pronunciation, we allow segmental context
to determine the set of models we use. We can then learn how
other factors (e.g., speaking rate) affect pronunciations within this
longer context anddynamicallychoose appropriate pronunciation
models during recognition.

We trained decision trees (d-trees) to predict the pronuncia-
tion of words based on information about surrounding words. D-
trees [1] are statistical classifiers that can select a set of features
to improve the prediction of events (in this case the probability of
a particular pronunciation). Thus, we can present the d-tree algo-
rithm with a substantial number of features, such as the identities
and features of surrounding phones or extra-segmental features like
speaking rate and word predictability, and have the algorithm auto-
matically select the best combination of these features to improve
pronunciation classification.

Using roughly 74 hours of training data from the Broadcast
News corpus, we built models for the 550 most frequent words us-
ing surrounding word identities and the identities, manner, place,
and syllabic position of neighboring phones as features in the d-
tree. We also included information about word length, several es-
timates of speaking rate, and the trigram probability of the word.
Slightly less than half of the trees in each case used a distribution
other than the prior (i.e., were grown to more than one leaf).

The automatic analyses provided by the d-tree algorithm lo-
cated several linguistically plausible pronunciation changes. For
example, in the tree forpresident(shown in figure 3), when the
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All Planned Spontaneous
Dictionary conditions studio studio
Baseline 26.7% 15.4% 27.2%
Word trees 26.5% 15.0% 27.0%
Syllable trees 26.3% 15.3% 25.8%

Table 2. Broadcast News word error rate for dynamic tree models.

following word wasClinton, Clinton’s,or Boris, the final/t/ clo-
sure was very likely to be deleted. In addition, the velarization of
/n/ to [ng] was possible, a likely consequence of the follow-
ing /k/ in Clinton(’s). It is important to note that the velarization
requires the deletion of/t/ to be possible; it is easier for the rec-
ognizer to learn these co-occurrences when units larger than indi-
vidual phones are modeled.

We also trained roughly 800 d-trees to model syllables, giv-
ing about 70% coverage of the syllables in the corpus. Each word
was given a single canonical syllable transcription so that words
with similar alternative syllabic-internal pronunciation in the base-
line dictionary shared the same syllable model. In addition to the
features found in the word trees, we informed the the syllable trees
about the lexical stress of the syllable, position within the word,
and the word’s identity.

We found the 100 best hypotheses for each utterance using our
baseline recognizer in a 30-minute subset of the 1997 Broadcast
News (Hub 4) English evaluation test set. The word and syllable
d-trees were used to expand each hypothesis into a large pronunci-
ation graph that was then rescored; hypotheses were then re-ranked
using an average of the old and new acoustic scores.

The word-based d-trees gave a slight improvement over the
baseline, though the syllable trees boosted results a bit more. No-
tably, the word trees provided incremental improvements under
each focus condition, whereas the syllable trees contributed pri-
marily to an improvement specific to spontaneous speech. Given
the distinct effects of syllabic structure on spontaneous pronuncia-
tions demonstrated in Section 2, the improvement on this speaking
style is not unexpected; however, the exact relationship between
these phenomena is uncertain, and bears further investigation.

4. CONCLUSIONS

Spontaneous speech presents a difficult challenge to speech re-
searchers; engineers and phoneticians should work together to
build coherent models of the pronunciation variability inherent in
this speaking style. Mostly due to this variability, current rec-
ognizer technology for spontaneous speech lags behind that for
recognition of planned speech.

The pronunciation variability inherent in Switchboard is ac-
companied by a number of non-traditional phonetic phenomena,
including feature spreading and cue trading. We have found that a
syllabic orientation can help explain some of these phenomena, as
the onsets of syllables in casual speech tend to be more stable than
the rime (nucleus/coda segments).

In order to integrate these phonetic observations into our rec-
ognizer, we developed statistical models of syllables and words
which took into account an extended context that included word
predictability and speaking rate, as well as segmental context. An
initial implementation of this model showed improvement partic-
ularly for the spontaneous speech portion of the Broadcast News
corpus; we are encouraged by these results, and are continuing de-
velopment of these models.
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NOTES

1. The corpus also comprises several other focus conditions, including de-
graded acoustics and foreign accents.

2. The results reported here deviate slightly from those listed in [5:Table 6]
due to differences in how the canonical dictionary pronunciation was cho-
sen, as well as issues of normalizing phonesets between the Switchboard
and TIMIT transcriptions.
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