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ABSTRACT

2.METHOD

We explore the two related tasks of dialog act (DA) 2.1.Data

segmentation and DA classification for speech from the ICSI
Meeting Corpus. We employ simple lexical and prasod
knowledge sources, and compare results for hunaarsdribed
versus automatically recognized words. Since therdittle
previous work on DA segmentation and classificationthe
meeting domain, our study provides baseline perdoce rates
for both tasks. We introduce a range of metrics dse in
evaluation, each of which measures different aspecinterest.
Results show that both tasks are difficult, patéidy for a fully
automatic system. We find that a very simple prasododel
aids performance over lexical information aloneeesally for
segmentation. Both tasks, but particularly wordedas
segmentation, are degraded by word recognitiorrerfnally,
while classification results for meeting data sh@eme
similarities to previous results for telephone censations,
findings also suggest a potential difference wekpect to the
effect of modeling DA context.

1. INTRODUCTION

A growing interest in spoken language technologgaech is the
automatic processing of multiparty meetings. Comngmals
include automatic browsing, retrieval, questionvesring, and
summarization [1,6,19]. Such tasks require moren thest a
stream of recognized words. Parsing continuous cépéeto
dialog acts (DAs), such as statements, questicackchannels,
and so on, is a useful step in answering questites“Who
asked what to whom?, “Where did participants dise@t, or
“Who interrupted whom?”.

Past work has addressed automatic dialog act fitasi&in
in various domains, but has tended to “cheat” bingisa
segmentation (into dialog acts) that is given bynao labelers
[3,5,8,13,16,17,18]. In this paper, we explore bsgjmentation
and dialog act classification for audio recordinfgsm the
publicly available ICSI Meeting Corpus [7]. Work aatomatic
processing of multiparty meetings has only recebégun (e.g.,
[3,8]), and has proven challenging because of tlesgmce of
multiple speakers, frequent speaker overlap, agt hates of
both self- and other-interruptions. For each task, compare
results using different knowledge sources and usingan-
generated versus fully automatic processing. Wepaoenresults
using various metrics, some newly proposed in wWosk. Each
metric is intended to convey different but usefiibrmation.

The ICSI Meeting Recorder corpus [7] includes 7%uraly
occurring meetings containing roughly 72 hours ailtitalker
speech data and associated human-generated wetd-lev
transcripts. The audio is recorded by close-talkinigrophones
(used here) as well as table-top microphones. Tpus was
hand-annotated for dialog acts (and their boundprias
described in detail in [4,15]. For this paper wewgred labels
into five broad categories: statements, questibaskchannels,
fillers, and disruptions. The ICSI DA annotatioriscaprovide
an option for breaking versus not breaking at bawied like
that at the “|" in “yeah | | agree”, when produesdone prosodic
unit. In this work we chose to break at these bawied, but
results for a non-breaking analysis were fairlyileim

2.2. Speech recognition and alignment

The meeting data was automatically recognized kigraion of
the system that SRI used in the DARPA 2003 Ricim3eeption
Evaluation [11]. The recognizer models used hereewained
on conversational telephone speech (with some abdsticast
and Web data for language modeling); they weretnaited on
any meeting data. The system was simplified toquickly, and
yielded an average word error rate of 39% on thigesnorpus,
and 32% on native speakers of American English.

2.3. Features

We extracted various lexical and prosodic feattessed on
recognition and forced alignment information) toeuim the
segmentation and classification tasks. As lexiedtdres, we
used word n-gram information for segmentation, amdous
lexical cues for classification. As prosodic featrwe used
pause information for segmentation, and a largeotéeatures
for classification. The latter included pause, tiorg pitch,
energy, and spectral tilt features, many normalizgdspeaker-
specific statistics and/or phonetic context.

3. DIALOG ACT SEGMENTATION
3.1. Segmentation metrics

To investigate the segmentation performance oéwdfit models,
we used three different metrics. The first metddST-SU)



Reference: A|B C D|E F G|HE|I J]|
System:A|B C D E F|G H|I JI|

NIST-SU: C E EEC c
Boundary: CCCECEZECCC
“Strict’: CEEEEEEE C C
Metric Errors Ref. Units Error
NIST-SU |2 misses, 1 FA |5 DAs 60%
Boundary | 3 boundary err. |10 boundaries | 30%
“Strict” 7 match errors |10 words 70%

Figure 1: Comparison of segmentation metrics.
Example reference and system pair and their eusirgy the
different metrics. ‘E’ = error/incorrect decisionC’ =
correct decision. ‘| = boundary ‘A¥ = words. Table
Summary of errors according to the different mstric

parallels the SU (sentence-like unit) evaluatiortrimegiven by

NIST in the EARS MDE evaluations [12]. This asstesaan

end marker for the unit in question (DA units he&S&s in MDE)

with a word in the word stream. Segmentation eri®r
determined by finding the misses and false alamas dividing

by the total number of reference units. This isgheary metric

we use in our comparisons. A similar metric (Bougdaased)

divides instead by the total number of referencedaaather
than the number of reference units. This resul& much lower
error value. A third metric (“Strict”) measures thercentage of
words that were placed in a segment perfectly idahto that in

the reference. In other words, if an output segnpmrfectly

matches a corresponding reference segment on the hexel,

each word in that segment is counted as corretbtAér words

are counted as incorrect. We call this the “Striogtric because
of its stringent requirement for DA segmentation.

Figure 1 illustrates the three metrics. Notice tllae
reference and system words match exactly, becawstcus is
segmentation performance: we want to know, givenwords
(whether true or recognized), how well we can plaegment
boundaries within that word stream.

When assessing the performance of automatic segtimnt
and classification jointly, we use a modified “Sttimetric and a
“Lenient” metric. The “Strict” metric is modifiedosthat we add
the constraint that the DA class must be correszi. a&This means
that only the words that are in a correct segmadtaae labeled
with the correct class are counted as correct. Temient”
metric bases classification accuracy on the nurobarords that
are assigned the correct class, regardless of wh#th segment
boundaries are correct. See Figure 2 for an example

3.2. Segmentation techniques

We investigated two simple techniques for DA segmion,
using a split of 51 meetings for training, 11 megs for
development, and 11 meetings for testing. First, vsed a
decision tree (DT) with only a simple pause fea{paise length
between contiguous words from the same speakegcti@as a
classifier that estimates the conditional probabilof the
boundary class (DA or not) at each wbwalindary. The prosodic
classifier employs bagging [10] to better estimaiesterior
probabilities. It is likely, based on results in] [9or

Reference: B|S S S|D D DIB|Q QI
System: S|S S S S S|IB B|Q Q]
“Lenient’: E C CCEEE CC C
“Strict"’.: E EEEEEEE C C

Metric |Errors Ref. Units |Error
“Lenient” |4 match errors |10 words 40%
“Strict” |8 match errors |10 words 80%

Figure 2: Comparison of metrics for segmentatioth
classification. ‘B’,’S’,’D’,’Q’ = differently claséfied words.
‘E’ = error/incorrect decision. ‘C’ = correct deigs. ‘|' =
boundary.

conversational telephone speech, that using a rlasge of
prosodic features extracted around each word wdnedefit
performance here, but this requires a further efeord thus
awaits future work. Our second approach used aehiddent
language model [14]. For a sequenceBAYW, E, ... W,, where

the DA events Eare included as pseudo-word tokens, the

language model (LM) models the joint probabilitytbé word
and event sequence. We also tried an HMM-based ioaititn
of the two approaches above, following the framdwnor[9]. A
forward-backward algorithm was used to find the mdsly
event at each inter-word boundary.

3.3. Segmentation results and discussion

Table 1 summarizes the results of our segmentatiperiments.
According to human segmentation, about 16.2% ofathiels (in
both conditions) are at the end of a DA. In the A&Rdition,
the recognition words are dropped into the givegments
according to the midpoint of each word. These wotlisn
inherit the DA label of the segment that they fatb. Because
the alignment is time based, occasionally DA sedmbave no

Pause DT HE-LM Combination
Ref 56.02 45.92 34.35
ASR 58.25 61.81 48.60

Table 1. DA Segmentation error rate (in %) using
NIST-SU metric. ‘Pause DT’ = decision tree with
pause. ‘HE-LM’ = hidden-event LM. ‘Combination’ =
HMM combination.
recognition words. These segments are includelderetrors and
the total number of units in the NIST-SU metric eTBoundary-
based metric counts these units as errors, tode e “Strict”
metric ignores them (since it focuses on words).

In the reference words condition (Ref), the comtiama
system gives a 10% absolute improvement over thé. MENd
20% over the Pause DT. Using recognition words (AiBBtead
of reference words, the HE-LM suffers much more%) Ghan
does the prosodic DT (2%). In fact, the pause madtmhe is
better than the language model alone in the ASRdition.
Despite this poor performance of the HE-LM alonegha ASR
condition, however, a roughly 10% improvement ignfd over
the Pause DT alone by combining the two modelsicatithg
that both make important contributions.



4. DIALOG ACT CLASSIFICATION

We grouped the DA labels given in the MRDA corpuot® ifive
classes (see Sect. 2.1), which we use to assesdadgification
performance by finding classification error ratélsat is, the
number of incorrectly classified segments dividgdtie total
number of segments. To develop and test the mat#sisribed
below, we use the same data split presented inoBeRL2.

4.1. Classification techniques

To perform DA classification, we determine the slag each
given DA unit by using a maximum entropy (Maxengssifier.
This approach maximizes the conditional likelihooder the
training data, and thus explicitly optimizes distnation of
correct from incorrect class labels for each uhiélso provides
a principled way to incorporate many correlateduess. See [9]
for more details.

In the Maxent classifier, we use the following teadt
features: the length of unit, the first two wor@dt€r removing
filler words), the final two words, and the initialord of the
following DA. To take advantage of prosody, we geted a
variety of features and fed them to a decision. tTéw features
most used include the number of speech phones,-sa@ader
and different-speaker DA pause gaps, normalizedpiésh and
average pitch, and DA duration. We added the pioster
probabilities given by the tree as features inNtexent model.
Because the Maxent approach uses binary featuregiciently,
we cumulatively binned the posterior probabilitieto multiple
binary features.

4.2. Classification results and discussion

Classification results using human segmentatioesgiwven in

Chance Word Word + DT posteriors
Ref 44.92 | 20.47 (0.66 18.82 (0.70)
ASR 42.93 27.67 (0.51 26.04 (0.56)

Table 2: DA classification error rate (in %) basedhuman
segmentations. Kappa (a measure of agreement) is given in
parenthesesll results are significant with a Sign test. Word
= word-based features only. Word + DT posterions/crd-
based features and DT binned posterior probalsilitie

Table 2, which reports error rate for the five-wagk. Chance
error rate is different in the two conditions bemauwf the
segments that contain no ASR words in the ASR ¢mmd{see
Sect. 3.3). When the binned tree posteriors arecidd the
word-based features, error rate decreases slightlyoth the
Reference and ASR conditions.
performance consistently drops about 7% absoluteenwh
compared to the Reference condition. The resultswsthe
importance of having correct words for the clasatfion task.
Kappa, a measure of agreement that adjustthéotevel of
agreement expected by chance, is also included aipleT?2
because it is commonly reported. We note howevat for
skewed class distributions, there is some debater dke
measure’s interpretation. We find that adding tpeesteriors
increases Kappa by about 0.05, and that the ASRIitom
decreases Kappa by about 0.15 from the Referenmzbtiom.

In the ASR condition,

4.3. Effect of DA context

We examined whether DA context information would ai
performance on the classification task. Startinthvei baseline
result of 18.82% for Reference and 26.04% for ASRe(last
column of Table 2), we added the knowledge of the DA for
the previous and following segments for both same speaker
and theclosest previous and following different speaker (as
estimated from an ordering by DA start times in foeced
alignment). With the DA context, we obtain errortes of
18.11% (Ref) and 25.46% (ASR). This slight improeamnis
also seen in the experiment using only word-basatlifes.

4.4. Automatic segmentation and classification

A final experiment involved using our best automati
segmentation as input for DA classification, sotthe could
investigate its effect on DA classification. Thesuks are
summarized in Table 3. We see a 5% error increaiser( using
the “Lenient” metric) due to automatic segmentatidhe main
observation, however, is that over 75% of the wdrdm this
system have a segmentation or classification efworboth).
When the automatic segmentation is correct (udieg“Strict”

“Lenient” | “Strict” with

DA label
Using Human Segments 19.60 19.60
Using Automatic Segments 25.13 75.39

Table 3: Classification error rate (in %), usindgfatent
inputs for segmentation. (“Combination” segmenterd a
“Word-based features only” classifier uged

metric), 29.62% of the segments (21.05% of the wjrare
incorrectly classified.

4.5. Comparisons with previousresearch

Although there is no directly comparable work,sitinteresting
to draw a comparison to previously reported DA sifasation

Chance | Words  Words+DT|
Ref Meetings 80.00 31.55 27.03
SWB 85.71 29.70 28.86
ASR Meetings 80.00 44.26 37.89
SWB 85.71 41.40 39.88
Table 4: Classification error rate (in %) using aqglass

priors (after downsampling) in this work and for B\jL3].

results using data from Switchboard (SWB)—both inmte of
error rates and in terms of the effect of contexclassification.
Table 4 summarizes results of the present studmgaleith
results reported in [13]. Note that in additiorthe difference in
data sources, the studies also differ somewhaerims of the
target class breakdown. In both studies, the setlagses
includes statement, question, backchannel,

disruption/incomplete. The studies differ on renmainclasses,
and [13] used 7 rather than 5 classes; thus onlyergé
comparisons can be made. The trends of the twooappes

and



show similarity in the effect of ASR words over éravords.
However, the present study finds more gain fromspdic
information than did [13], despite the simpler mdis features
used in the current work. Further study should stigate
whether this reflects a fundamental corpus diffeeenin
speakers’ use of prosody, versus an effect of rififfe class
definitions, bandwidth conditions, or modeling irmpements.
When we compare the two studies in terms of thecefif
adding DA context, we find a major difference. Wéees [16]
found a large improvement from modeling surroundd#gs, our
results show little improvement (only 0.6-1.0%) nfrothis
information. Recent results reported in [8] for teme corpus
also find a lack of improvement. The differenceviesn these
results for meetings and results for telephone emations [16]
is even more striking if one considers that thisgdgtused true
DAs while [16] used automatically obtained DAs. ther
investigation is necessary to determine with thisutt reflects a
stylistic difference between telephone conversatioand
meetings, versus a difference in the DA classespeoad or in

the modeling approach (maximum entropy here; an HMM

framework in [16]) used to capture DA context.
5. SUMMARY AND DISCUSSION

We explored both DA segmentation and classificatitsing
simple lexical and prosodic knowledge sources. uReshow
that both tasks are difficult, particularly for allfy automatic
system. We find that prosodic information aids perfance over
lexical information alone. Both tasks are impactad word
recognition errors, with more severe degradatiocuoing for
lexical- than for prosodic-based segmentation noddRough
comparisons of DA classification results for megtthata show
some similarities to previous results for telephooeversations.
Unlike previous work however, meetings show litjigin from
the modeling of DA context.

As noted earlier, this study aimed to providaseline
performance rates for a new domain; considerabtdu work
is in order. One long-term goal is to model these tasks
jointly, along the lines of [20], which addresseihj modeling
but for a much simpler domain. The present stuskduonly
very simple features, particularly for prosody. &&s could
show considerable improvement from adding in adeiget of
prosodic features (e.g., pitch and energy pattémg)e vicinity

of each word—a feasible next step. This would allow

comparison to the problem of SU (sentence-like)uthétection

in the EARS program [9], since DA segments hereehelose

overlap with the SU segments used in that effo?{.[1Further

research is in order in the future to learn abdet effect of
domain on the degradation from errorful word redtgn and

on the contribution from lexical, prosodic, and wxt-based
knowledge sources. Finally, a long-term goal isagsess the
contribution of automatic dialog act modeling towshstream
tasks in automatic meeting applications.
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