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ABSTRACT 

 
We explore the two related tasks of dialog act (DA) 
segmentation and DA classification for speech from the ICSI 
Meeting Corpus. We employ simple lexical and prosodic 
knowledge sources, and compare results for human-transcribed 
versus automatically recognized words. Since there is little 
previous work on DA segmentation and classification in the 
meeting domain, our study provides baseline performance rates 
for both tasks. We introduce a range of metrics for use in 
evaluation, each of which measures different aspects of interest.  
Results show that both tasks are difficult, particularly for a fully 
automatic system. We find that a very simple prosodic model 
aids performance over lexical information alone, especially for 
segmentation. Both tasks, but particularly word-based 
segmentation, are degraded by word recognition errors. Finally, 
while classification results for meeting data show some 
similarities to previous results for telephone conversations, 
findings also suggest a potential difference with respect to the 
effect of modeling DA context. 
 

1. INTRODUCTION 
 
A growing interest in spoken language technology research is the 
automatic processing of multiparty meetings. Common goals 
include automatic browsing, retrieval, question answering, and 
summarization [1,6,19]. Such tasks require more than just a 
stream of recognized words. Parsing continuous speech into 
dialog acts (DAs), such as statements, questions, backchannels, 
and so on, is a useful step in answering questions like “Who 
asked what to whom?, “Where did participants disagree?”, or 
“Who interrupted whom?”. 

Past work has addressed automatic dialog act classification 
in various domains, but has tended to “cheat” by using a 
segmentation (into dialog acts) that is given by human labelers 
[3,5,8,13,16,17,18]. In this paper, we explore both segmentation 
and dialog act classification for audio recordings from the 
publicly available ICSI Meeting Corpus [7]. Work on automatic 
processing of multiparty meetings has only recently begun (e.g., 
[3,8]), and has proven challenging because of the presence of 
multiple speakers, frequent speaker overlap, and high rates of 
both self- and other-interruptions. For each task, we compare 
results using different knowledge sources and using human-
generated versus fully automatic processing. We compare results 
using various metrics, some newly proposed in this work. Each 
metric is intended to convey different but useful information. 

 

 
2. METHOD 

 
2.1. Data 
 
The ICSI Meeting Recorder corpus [7] includes 75 naturally 
occurring meetings containing roughly 72 hours of multitalker 
speech data and associated human-generated word-level 
transcripts. The audio is recorded by close-talking microphones 
(used here) as well as table-top microphones. The corpus was 
hand-annotated for dialog acts (and their boundaries) as 
described in detail in [4,15]. For this paper we grouped labels 
into five broad categories: statements, questions, backchannels, 
fillers, and disruptions. The ICSI DA annotations also provide 
an option for breaking versus not breaking at boundaries like 
that at the “|” in “yeah | I agree”, when produced as one prosodic 
unit. In this work we chose to break at these boundaries, but 
results for a non-breaking analysis were fairly similar. 
 
2.2. Speech recognition and alignment 
 
The meeting data was automatically recognized by a version of 
the system that SRI used in the DARPA 2003 Rich Transcription 
Evaluation [11]. The recognizer models used here were trained 
on conversational telephone speech (with some added broadcast 
and Web data for language modeling); they were not trained on 
any meeting data. The system was simplified to run quickly, and 
yielded an average word error rate of 39% on the entire corpus, 
and 32% on native speakers of American English. 
 
2.3. Features 
 
We extracted various lexical and prosodic features (based on 
recognition and forced alignment information) to use in the 
segmentation and classification tasks. As lexical features, we 
used word n-gram information for segmentation, and various 
lexical cues for classification. As prosodic features, we used 
pause information for segmentation, and a larger set of features 
for classification. The latter included pause, duration, pitch, 
energy, and spectral tilt features, many normalized by speaker-
specific statistics and/or phonetic context. 

 
3. DIALOG ACT SEGMENTATION 

 
3.1. Segmentation metrics 
 
To investigate the segmentation performance of different models, 
we used three different metrics. The first metric (NIST-SU) 



parallels the SU (sentence-like unit) evaluation metric given by 
NIST in the EARS MDE evaluations [12]. This associates an 
end marker for the unit in question (DA units here, SUs in MDE) 
with a word in the word stream. Segmentation error is 
determined by finding the misses and false alarms and dividing 
by the total number of reference units. This is the primary metric 
we use in our comparisons. A similar metric (Boundary-based) 
divides instead by the total number of reference words rather 
than the number of reference units. This results in a much lower 
error value. A third metric (“Strict”) measures the percentage of 
words that were placed in a segment perfectly identical to that in 
the reference. In other words, if an output segment perfectly 
matches a corresponding reference segment on the word level, 
each word in that segment is counted as correct. All other words 
are counted as incorrect. We call this the “Strict” metric because 
of its stringent requirement for DA segmentation.  

Figure 1 illustrates the three metrics. Notice that the 
reference and system words match exactly, because our focus is 
segmentation performance:  we want to know, given the words 
(whether true or recognized), how well we can place segment 
boundaries within that word stream. 

When assessing the performance of automatic segmentation 
and classification jointly, we use a modified “Strict” metric and a 
“Lenient” metric. The “Strict” metric is modified so that we add 
the constraint that the DA class must be correct also. This means 
that only the words that are in a correct segment and are labeled 
with the correct class are counted as correct. The “Lenient” 
metric bases classification accuracy on the number of words that 
are assigned the correct class, regardless of whether the segment 
boundaries are correct. See Figure 2 for an example. 
 
3.2. Segmentation techniques 
 
We investigated two simple techniques for DA segmentation, 
using a split of 51 meetings for training, 11 meetings for 
development, and 11 meetings for testing. First, we used a 
decision tree (DT) with only a simple pause feature (pause length 
between contiguous words from the same speaker), to act as a 
classifier that estimates the conditional probability of the 
boundary class (DA or not) at each word boundary. The prosodic 
classifier employs bagging [10] to better estimate posterior 
probabilities. It is likely, based on results in [9] for 

conversational telephone speech, that using a larger set of 
prosodic features extracted around each word would benefit 
performance here, but this requires a further effort and thus 
awaits future work. Our second approach used a hidden-event 
language model [14]. For a sequence W1 E1 W2 E2 … Wn, where 
the DA events Ei are included as pseudo-word tokens, the 
language model (LM) models the joint probability of the word 
and event sequence. We also tried an HMM-based combination 
of the two approaches above, following the framework in [9]. A 
forward-backward algorithm was used to find the most likely 
event at each inter-word boundary. 
 
3.3. Segmentation results and discussion 
 
Table 1 summarizes the results of our segmentation experiments. 
According to human segmentation, about 16.2% of the words (in 
both conditions) are at the end of a DA. In the ASR condition, 
the recognition words are dropped into the given segments 
according to the midpoint of each word. These words then 
inherit the DA label of the segment that they fall into. Because 
the alignment is time based, occasionally DA segments have no 

recognition words. These segments are included in the errors and 
the total number of units in the NIST-SU metric. The Boundary-
based metric counts these units as errors, too, while the “Strict” 
metric ignores them (since it focuses on words). 

In the reference words condition (Ref), the combination 
system gives a 10% absolute improvement over the HE-LM and 
20% over the Pause DT. Using recognition words (ASR) instead 
of reference words, the HE-LM suffers much more (16%) than 
does the prosodic DT (2%). In fact, the pause model alone is 
better than the language model alone in the ASR condition. 
Despite this poor performance of the HE-LM alone in the ASR 
condition, however, a roughly 10% improvement is found over 
the Pause DT alone by combining the two models, indicating 
that both make important contributions. 

 

 Pause DT HE-LM Combination 
Ref 56.02 45.92 34.35 
ASR 58.25 61.81 48.60 
 
Table 1: DA Segmentation error rate (in %) using 
NIST-SU metric. ‘Pause DT’ = decision tree with 
pause. ‘HE-LM’ = hidden-event LM. ‘Combination’ = 
HMM combination. 

Figure 1: Comparison of segmentation metrics. Top: 
Example reference and system pair and their errors using the 
different metrics. ‘E’ = error/incorrect decision. ‘C’ = 
correct decision. ‘|’ = boundary ‘A’-‘J’ = words. Table: 
Summary of errors according to the different metrics. 

Figure 2: Comparison of metrics for segmentation and 
classification. ‘B’,’S’,’D’,’Q’ = differently classified words. 
‘E’ = error/incorrect decision. ‘C’ = correct decision. ‘|’ = 
boundary.  



4. DIALOG ACT CLASSIFICATION 
 
We grouped the DA labels given in the MRDA corpus into five 
classes (see Sect. 2.1), which we use to assess DA classification 
performance by finding classification error rates, that is, the 
number of incorrectly classified segments divided by the total 
number of segments. To develop and test the models described 
below, we use the same data split presented in Section 3.2. 
 
4.1. Classification techniques 
 
To perform DA classification, we determine the class of each 
given DA unit by using a maximum entropy (Maxent) classifier. 
This approach maximizes the conditional likelihood over the 
training data, and thus explicitly optimizes discrimination of 
correct from incorrect class labels for each unit. It also provides 
a principled way to incorporate many correlated features. See [9] 
for more details. 

In the Maxent classifier, we use the following textual 
features: the length of unit, the first two words (after removing 
filler words), the final two words, and the initial word of the 
following DA. To take advantage of prosody, we generated a 
variety of features and fed them to a decision tree. The features 
most used include the number of speech phones, same-speaker 
and different-speaker DA pause gaps, normalized last pitch and 
average pitch, and DA duration. We added the posterior 
probabilities given by the tree as features in the Maxent model. 
Because the Maxent approach uses binary features conveniently, 
we cumulatively binned the posterior probabilities into multiple 
binary features. 
 
4.2. Classification results and discussion 
 
Classification results using human segmentations are given in 

Table 2, which reports error rate for the five-way task. Chance 
error rate is different in the two conditions because of the 
segments that contain no ASR words in the ASR condition (see 
Sect. 3.3). When the binned tree posteriors are added to the 
word-based features, error rate decreases slightly in both the 
Reference and ASR conditions. In the ASR condition, 
performance consistently drops about 7% absolute when 
compared to the Reference condition. The results show the 
importance of having correct words for the classification task.      
     Kappa, a measure of agreement that adjusts for the level of 
agreement expected by chance, is also included in Table 2 
because it is commonly reported. We note however that for 
skewed class distributions, there is some debate over the 
measure’s interpretation. We find that adding tree posteriors 
increases Kappa by about 0.05, and that the ASR condition 
decreases Kappa by about 0.15 from the Reference condition. 

 
4.3. Effect of DA context 
 
We examined whether DA context information would aid 
performance on the classification task. Starting with a baseline 
result of 18.82% for Reference and 26.04% for ASR (see last 
column of Table 2), we added the knowledge of the true DA for 
the previous and following segments for both the same speaker 
and the closest previous and following different speaker (as 
estimated from an ordering by DA start times in the forced 
alignment). With the DA context, we obtain error rates of 
18.11% (Ref) and 25.46% (ASR). This slight improvement is 
also seen in the experiment using only word-based features. 
 
4.4. Automatic segmentation and classification 
 
A final experiment involved using our best automatic 
segmentation as input for DA classification, so that we could 
investigate its effect on DA classification. The results are 
summarized in Table 3. We see a 5% error increase (when using 
the “Lenient” metric) due to automatic segmentation. The main 
observation, however, is that over 75% of the words from this 
system have a segmentation or classification error (or both). 
When the automatic segmentation is correct (using the “Strict” 

metric), 29.62% of the segments (21.05% of the words) are 
incorrectly classified. 
 
4.5. Comparisons with previous research 
 

Although there is no directly comparable work, it is interesting 
to draw a comparison to previously reported DA classification 

results using data from Switchboard (SWB)—both in terms of 
error rates and in terms of the effect of context on classification. 
Table 4 summarizes results of the present study along with 
results reported in [13]. Note that in addition to the difference in 
data sources, the studies also differ somewhat in terms of the 
target class breakdown. In both studies, the set of classes 
includes statement, question, backchannel, and 
disruption/incomplete. The studies differ on remaining classes, 
and [13] used 7 rather than 5 classes; thus only general 
comparisons can be made. The trends of the two approaches 

 

 Chance Word Word + DT posteriors 
Ref 44.92 20.47  (0.66) 18.82  (0.70) 
ASR 42.93 27.67  (0.51) 26.04  (0.56) 
 
Table 2: DA classification error rate (in %) based on human 
segmentations. Kappa (a measure of agreement) is given in 
parentheses. All results are significant with a Sign test. Word 
= word-based features only. Word + DT posteriors = word-
based features and DT binned posterior probabilities. 

 

 “Lenient” “Strict” with 
DA label 

Using Human Segments 19.60 19.60 
Using Automatic Segments 25.13 75.39 

 
Table 3: Classification error rate (in %), using different 
inputs for segmentation. (“Combination” segmenter and 
“Word-based features only” classifier used.) 

 

  Chance Words Words+DT 
Meetings 80.00 31.55 27.03 

Ref 
SWB 85.71 29.70 28.86 
Meetings 80.00 44.26 37.89 

ASR 
SWB 85.71 41.40 39.88 

 
Table 4: Classification error rate (in %) using equal class 
priors (after downsampling) in this work and for SWB [13]. 



show similarity in the effect of ASR words over true words. 
However, the present study finds more gain from prosodic 
information than did [13], despite the simpler prosodic features 
used in the current work. Further study should investigate 
whether this reflects a fundamental corpus difference in 
speakers’ use of prosody, versus an effect of differing class 
definitions, bandwidth conditions, or modeling improvements.  

When we compare the two studies in terms of the effect of 
adding DA context, we find a major difference. Whereas [16] 
found a large improvement from modeling surrounding DAs, our 
results show little improvement (only 0.6-1.0%) from this 
information. Recent results reported in [8] for the same corpus 
also find a lack of improvement. The difference between these 
results for meetings and results for telephone conversations [16] 
is even more striking if one considers that this study used true 
DAs while [16] used automatically obtained DAs. Further 
investigation is necessary to determine with this result reflects a 
stylistic difference between telephone conversations and 
meetings, versus a difference in the DA classes compared or in 
the modeling approach (maximum entropy here; an HMM 
framework in [16]) used to capture DA context.  
 

5.  SUMMARY AND DISCUSSION 
 
We explored both DA segmentation and classification using 
simple lexical and prosodic knowledge sources.  Results show 
that both tasks are difficult, particularly for a fully automatic 
system. We find that prosodic information aids performance over 
lexical information alone. Both tasks are impacted by word 
recognition errors, with more severe degradation occurring for 
lexical- than for prosodic-based segmentation models.  Rough 
comparisons of DA classification results for meeting data show 
some similarities to previous results for telephone conversations. 
Unlike previous work however, meetings show little gain from 
the modeling of DA context. 
     As noted earlier, this study aimed to provide baseline 
performance rates for a new domain; considerable further work 
is in order. One long-term goal is to model these two tasks 
jointly, along the lines of [20], which addressed joint modeling 
but for a much simpler domain.  The present study used only 
very simple features, particularly for prosody. Results could 
show considerable improvement from adding in a larger set of 
prosodic features (e.g., pitch and energy patterns) in the vicinity 
of each word—a feasible next step. This would allow 
comparison to the problem of SU (sentence-like unit) detection 
in the EARS program [9], since DA segments here have close 
overlap with the SU segments used in that effort [12].  Further 
research is in order in the future to learn about the effect of 
domain on the degradation from errorful word recognition and 
on the contribution from lexical, prosodic, and context-based 
knowledge sources. Finally, a long-term goal is to assess the 
contribution of automatic dialog act modeling to downstream 
tasks in automatic meeting applications. 
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