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ABSTRACT

Feature extraction is the key element when aiming at ro-
bust speech recognition. In this work both linear and
nonlinear data-driven feature transformations were applied
to the logarithmic mel-spectral context feature vectors
in the TIMIT phone recognition task. Transformations
were based on Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Linear Discriminant
Analysis (LDA) and multilayer perceptron network based
Nonlinear Discriminant Analysis (NLDA). All four meth-
ods outperformed the baseline system which consisted of
the standard feature representation based on MFCCs with
the first-order deltas, using a mixture-of-Gaussians HMM
recognizer. Further improvement was gained by forming
the feature vector as a concatenation of the outputs of all
four feature transformations.

1. INTRODUCTION

Feature transformations can be divided into two main cat-
egories: unsupervised and discriminative. Inside these
classes the transformation can be linear or nonlinear. Linear
transformations can be implemented by matrix multiplica-
tions and nonlinear transforms by using e.g. MLP networks.

In this work four feature transformations, three linear
and one nonlinear, were experimented in the TIMIT phone
recognition task. In each transformation, the input feature
vector was a five-frame window of successive logarithmic
mel-spectrum vectors. Two linear transforms based on Prin-
cipal Component Analysis (PCA) and Independent Compo-
nent Analysis (ICA) were unsupervised in nature, i.e., the
class information of the training data was not used when
forming them. In two other transformations based on Lin-
ear Discriminant Analysis (LDA) and its nonlinear exten-
sion (NLDA) implemented by an MLP network, the class
information was utilized. The baseline system consisted of
standard MFC features with the first-order deltas.
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2. FEATURE TRANSFORMATIONS

The basic ideas behind the experimented data-driven feature
transformations are described in this section. For text book
references, see e.g. [1] and [2]. The dimensionality of the
feature vector before the transformation is denoted by

�
and after the transformation by

���
.

2.1. Principal Component Analysis

Principal Component Analysis is a method to represent the
data in the low-dimensional subspace. The correspond-
ing projection matrix is called Karhunen-Loeve transform
(KLT). When the original feature vectors are projected into
a lower-dimensional linear subspace using KLT, the recon-
struction error is the smallest possible among linear trans-
formations. The reconstruction error is measured as the
mean-square error between the data vectors in the original
feature space and in the projection space. The rows of the� ��� �

KLT transformation matrix consist of the
� �

eigen-
vectors corresponding to the

���
largest eigenvalues of the

covariance matrix of the training data. These eigenvectors
are the principal axes of the data set. KLT decorrelates the
feature vectors, which enables modeling the data with diag-
onal Gaussians.

2.2. Independent Component Analysis

The idea behind using the Independent Component Anal-
ysis in the feature extraction is to reduce the redundancy
of the original feature vector components. While PCA re-
moves the second order dependencies of the features vector
components, ICA removes also higher order dependencies
(minimizes the mutual information between the feature vec-
tor components).

The data model of the linear ICA is ���	��
 , where � is
the original feature vector, 
 is the vector of the underlying
(independent) sources, and � is a mixing matrix. Only � is
observed, and the goal is to estimate both � and 
 trying to
find the sources 
 which are statistically independent.



The column vectors of the mixing matrix correspond
to the building blocks of the data in the generative model.
When the mixing matrix � has been estimated from the
training data, the transformation matrix for obtaining a new
feature representation is its inverse, � � ����� . When the
data vector � is projected to the row vectors of � , the com-
ponents of the new feature vector represent the activations
of the sources 
 . ICA representation is usually sparse, i.e.,
only few sources are active at the same time.

There are only few previous work using ICA in the fea-
ture transformation related to speech recognition. In [3],
ICA was compared to the standard MFCC, but no compar-
ison between PCA and ICA was then made. Also, in that
work ICA was applied only to the single-frame feature vec-
tors. In the current work ICA is applied to the multi-frame
context windows, see Fig. 1.

2.3. Linear Discriminant Analysis

LDA attempts to separate classes using linear hyperplanes.
Such basis vectors are sought which try to maximize the
linear class separation. Class separability is measured by
the within-class variance and between-class variance. The
former is tried to be minimized while the latter is tried to
be maximized. Two covariance matrices are computed, the
within-class covariance matrix ��� and the between-class
covariance matrix �	� . � � linear discriminants are obtained
by taking the eigenvectors corresponding to the

� �
largest

eigenvalues of the matrix � �
�� � � (for � classes there are at
most �
��� linearly independent eigenvectors). In the feature
transformation, the original feature vectors are projected to
these eigenvectors. For previous work on LDA applied to
the context feature vectors, see e.g. [4].

2.4. Nonlinear Discriminant Analysis

NLDA is a nonlinear extension of the LDA. Multilayer per-
ceptron (MLP) networks can be used for learning the non-
linear mapping from the input features to the phone class
identifiers. The number of the output layer nodes corre-
sponds to the number of the phone classes and the training
of the network is supervised. The activation values of the
output nodes of the MLP network are then used as the val-
ues of the nonlinear discriminant functions for separating
classes.

The number of the input nodes in the MLP corresponds
to the dimension of the original (context) feature vector

�
.

If the number of the nodes in the output layer is larger than
the desired output feature

���
, the dimension can be reduced

by KLT (this may be beneficial also because of the decorre-
lation effect). The number of the nodes in the hidden layers
can be arbitrary. Also the nonlinear activation functions of
the nodes can be arbitrary. This is the most flexible class of

Fig. 1. ICA basis vectors for ten-frame logmel-spectrum
windows. Each subimage corresponds to one column of the
mixing matrix. Vertical axis of each subimage corresponds
to the mel-channel and horizontal axis corresponds to the
time frame. The dimension of the original context feature
vector was first reduced to 40 by PCA and after that the un-
supervised FastICA algorithm (MATLAB Toolkit, [2]) was
applied. Some basis vectors are purely temporal or purely
spectral edge filters while some of them have been tuned to
detect more complex spectro-temporal patterns.



transformations (in principle including all previous trans-
formations as special cases). It has been proved that MLPs
are universal approximators of nonlinear functions. How-
ever, this flexibility can also cause problems. If the num-
ber of the free parameters in the network is too large com-
pared to the complexity of the training data the network may
overlearn the training data and does not generalize well.
However, there are several ways for controlling the learn-
ing and the generalization performance; one simple but effi-
cient method is to use early stopping criterion: the training
is stopped when the error of the independent validation set
does not decrease in further iterations.

MLPs have been been shown to give promising results
in the feature transformation, see earlier work e.g. [5].

3. EXPERIMENTS

In order to compare different feature transformations, phone
recognition experiment was carried out using the TIMIT
database. The training set consisted of all si and sx sen-
tences from the 496 speakers of the original training set
(3698 sentences) and the test set consisted of all si and sx
sentences from the complete 168-speaker test set (1344 sen-
tences).

The original phoneset consists of 61 phone classes.
Some of these classes are highly overlapping, e.g., there are
10 separate classes for various kinds of silences (beginning
and ending mark of speech ’#h’, pause ’pau’, ’epi’, closures
’bcl’, ’dcl’, ’gcl’, ’pcl’, ’kcl, ’tcl’, and glottal stop ’q’). For
this reason some authors have reduced the number of the
classes of the original phoneset. In this work the class merg-
ing was done according to [6] resulting in 39 phone classes.
According to [6], merging the closures had the major im-
pact in the recognition performance, but further merging of
the allophones led only to minor improvements.

Each phone was modeled by a three-state left-to-right
HMM and each state was modeled by a mixture of diag-
onal Gaussians. The models were trained using the HTK
software [7]. The models were initialized using ’flat start’
method, i.e., no phone segmentation information was used.
Each state contained only one Gaussian in the beginning
of the training. The number of the Gaussians was then
expanded into 2, 4, 8, and 16, after each expansion run-
ning one cycle of the BW re-estimation. Finally, five cycles
of the Baum-Welch training were performed using the 16-
component mixtures. This training scheme was applied in-
detically to each feature transformation. In the recognition,
the back-off bigram model was used for phones (computed
from the TIMIT sentences which were present in the train-
ing set). Language model weights were determined sep-
arately for each feature set by using 370 sentences of the
training set. For MFCC, PCA, ICA, and LDA features, the
weight was 3.0 and for the 24-component NLDA feature it

was 4.0.
All features were computed from the five-frame loga-

rithmic mel-spectrum windows. The mel-spectrum vectors
were computed from 25 ms Hamming-windowed speech
frames at every 10 ms interval. The number of the mel-
channels in each frame was 24. The dimension of the five-
frame context window

�
was thus 120. The baseline fea-

ture vector consisted of 12 MFCC coefficients (utterance-
wise cepstral mean subtraction) with the first-order deltas
resulting in a 24-component feature vector. The deltas were
computed from the five-frame windows. The number of the
output feature vector components was fixed to be the same
in all feature transformations (

� � ����� ). In the following
feature computations, utterance-wise mean was subtracted
from the logarithmic mel-spectrum vectors.

PCA and ICA bases were formed using middle parts of
the phone segments. This was only for reducing the num-
ber of the frames, no class information was utilized when
forming the feature transform matrices. Fast fixed-point al-
gorithm was used for computing the ICA basis [2].

It is interesting to compare the DCT against PCA. How-
ever, it is not reasonable to use one-dimensional DCT to the
concatenated feature vectors. Instead, a two-dimensional
DCT can be applied to the successive mel-spectrum frames.
First, one-dimensional DCT is performed for individual
mel-spectrum vectors resulting in the conventional MFCC
vectors. After that another one-dimensional DCT is applied
to the successive MFCC vectors component-wise over time.
However, the feature vectors projected to the three first ba-
sis vectors of the DCT correspond to the average, delta, and
delta-delta features which is the conventional MFCC feature
set. Here PCA clearly outperformed the combination of the
MFC vector with the first-order deltas.

NLDA-features were obtained by training an MLP net-
work for discriminating phone classes. The number of the
hidden layer nodes (600) was set to be five times the num-
ber of the input nodes (120). The number of the output
layer nodes was the size of the phone set (39). MLP train-
ing was done using the ICSI software. Softmax-activation
function was used in the output layer during the training, but
when using the MLP output as a feature vector to HMM,
this nonlinearity was removed (in order to get more Gaus-
sian distributed features for a mixture-of-Gaussians HMM
[5]). The 39-dimensional output vector was reduced to 24
components by KLT (transformation matrix obtained from
the training data). Before KLT, frame-wise mean was sub-
tracted from each phone class posterior vector in order to
eliminate the bias term of the MLP [8].

The results of the experiments are in Fig. 2. All ex-
perimented feature transformations outperformed the base-
line MFCC features. It was also experimented to concate-
nate PCA, ICA, LDA, and MLP features and then decor-
relate and reduce the dimensionality of the resulting vector
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Fig. 2. TIMIT phone recognition using different feature
transformations. All features were computed from five-
frame logarithmic mel-spectrum windows (120 feature vec-
tor components). DCT12+12D is the MFCC with the first-
order deltas which was the baseline feature. All feature vec-
tors on the left side of the vertical dash line had 24 com-
ponents. CON denotes concatenated feature vector (PCA,
ICA, LDA, MLP) followed by KLT, CON48 contained 48
feature components and CON72 72 components, respec-
tively.

by KLT. This gave further improvement to the recognition
accuracy.

4. DISCUSSION

The main purpose of the experiments presented in this work
was to compare different feature transformations. There-
fore, simple 3-state context-independent phone HMMs
were used. The results of all feature sets could be improved
by using more detailed acoustic models, e.g. context-
dependent phones. Also, better overall results would be ob-
tained by using larger context than five frames. This was
confirmed in a preliminary experiment.

Another topic is the use of Gaussian mixtures. It may
favor certain kinds of features. Therefore, the same fea-
tures could also be compared using another classifier, e.g.
an MLP-based HMM.

Finally, in this work only global transformations were
considered. However, the transformation could also be
class-specific, or in case of HMMs, state-specific. Integrat-
ing the feature transformation more closely into the classi-
fier could help in detecting more class-specific cues from
the input.

5. CONCLUSIONS

In this work, four feature transformations were experi-
mented in the TIMIT phone recognition task. The input fea-
ture vector consisted of the five consecutive frames of the
logarithmic mel spectra. Two of the transformations were
unsupervised (PCA and ICA), i.e., no class information of
the frames were used when forming the transformation ma-
trices, and two of the transformations were discriminative
(LDA and NLDA). All four feature transformations clearly
outperformed the baseline feature which consisted of the
MFC coefficients with the first-order deltas.

It was interesting that the unsupervised PCA and ICA
performed as well as the discriminative LDA-based fea-
tures. The differences between the PCA and ICA features
were not visible using HMMs with Gaussian mixtures, but
some other classifier might benefit more from the ICA. PCA
removes only the second-order dependencies between the
feature vector components while ICA removes also higher-
order dependencies.

The best results were obtained when the feature vectors
from all four transformations were concatenated together
and the resulting feature vector was decorrelated by KLT.
This suggests that the different features contain complemen-
tary information. Future work will be done on determining
what is the best way to combine the different features. In-
stead of concatenating the feature vectors, separate recog-
nizers can be run in parallel, and the model combination
can then be done in the state-likelihood level.

6. REFERENCES

[1] C. Bishop, Neural Networks for Pattern Recognition, Oxford,
1995.

[2] A. Hyvärinen, J. Karhunen, and E. Oja, Indepen-
dent Component Analysis, John Wiley & Sons, 2001,
http://www.cis.hut.fi/projects/ica/fastica/index.shtml.

[3] I. Potamitis, N. Fakotakis, and G. Kokkinakis, “Spectral and
cepstral projection bases constructed by independent compo-
nent analysis,” in Proceedings of the ICSLP, 2000, vol. 3, pp.
63–66.

[4] S. Kajarekar, B. Yegnanarayana, and H. Hermansky, “A study
of two dimensional linear discriminats for ASR,” in Proceed-
ings of the ICASSP, 2001, vol. 1.

[5] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connection-
ist feature stream extraction for conventional HMM systems,”
in Proceedings of the ICASSP, 2000, vol. 3, pp. 1635–1638.

[6] K. Lee and H. Hon, “Speaker-independent phone recognition
using hidden Markov models,” IEEE Tr. ASSP, vol. 37, no. 11,
pp. 1641–1648, 1989.

[7] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell,
D. Ollason, V. Valtchev, and P. Woodland, The Hidden Markov
model Toolkit, version 3.1, 2001, http://htk.eng.cam.ac.uk/.

[8] S. Sharma, unpublished work, 2002.


