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ABSTRACT lected by 4 omnidirectional PZM table-mount microphones, plus
In collaboration with colleagues at UW, OGI, IBM, and SRI, we are a “dummy” PDA that has two inexpensive microphone elements.

developing technology to process spoken language from informal I @ddition to these 6 distant microphones, the audio setup permits
meetings. The work includes a substantial data collection and tran-2 maélrr&un;\of 9 c_Iose-taIklg_g m_|cfrophones to_ be|S|ml;JIt_aneous_Iy
scription effort, and has required a nontrivial degree of infrastruc- recorded. A meeting recording Inirastructure Is also being put in

ture development. We are undertaking this because the new taskP!ace at Columbia University, at SR International, and by our col-
area provides a significant challenge to current HLT capabilities, '€2gues at the University of Washington. Recordings from all sites
while offering the promise of a wide range of potential applica- will be transcribed using standards evolved in discussions that also

tions. In this paper, we give our vision of the task, the challenges it i_nvolvetlj( IBM |(|Wh° also have c?]mmittt)ed to assistin thgr’][ranscrfip-
represents, and the current state of our development, with particularion task). Colleagues at NIST have been in contact with us to fur-
attention to automatic transcription. ther standardize these choices, since they intend to conduct related
collection efforts.
A segment from a typical discussion recorded at ICSl is included
1. THETASK below in order to give the reader a more concrete sense of the task.

We are primarily interested in the processing (transcription, Utterances on the same line separated by a slash indicate some de-

query, search, and structural representation) of audio recorded fromgree of overlapped speech.

informal, natural, and even impromptu meetings. By “informal” we
mean conversations between friends and acquaintances that do not
have a strict protocol for the exchanges. By “natural” we mean
meetings that would have taken place regardless of the recording
process, and in acoustic circumstances that are typical for such
meetings. By “impromptu” we mean that the conversation may
take place without any preparation, so that we cannot require spe-
cial instrumentation to facilitate later speech processing (such as
close-talking or array microphones). A plausible image for such
situations is a handheld device (PDA, cell phone, digital recorder)
that is used when conversational partners agree that their discussion
should be recorded for later reference.

Given these interests, we have been recording and transcrib-
ing a series of meetings at ICSI. The recording room is one of
ICSI's standard meeting rooms, and is instrumented with both
close-talking and distant microphones. Close-mic'd recordings
will support research on acoustic modeling, language modeling,
dialog modeling, etc., without having to immediately solve the
difficulties of far-field microphone speech recognition. The dis-
tant microphones are included to facilitate the study of these deep
acoustic problems, and to provide a closer match to the operating
conditions ultimately envisaged. These ambient signals are col-

A: Ok. So that means that for each utterance, .. we’ll need
the time marks.

E: Right. /A: the start and end of each utterance.

[a few turns omitted]

E: So we - maybe we should look at the um .. the tools that
Mississippi State has.

D: Yeah.
E: Because, | - | - | know that they published .. um .. annota-
tion tools.
A: Well, X-waves have some as well, .. but they're pretty

low level .. They're designed for uh -O: phoneme A: for
phoneme-level D: transcriptions. Yeah.

J: I should -

A: Although, they also have a nice tool for - .. that could be
used for speaker change marking.

D: There’s a - there are - there’s a whole bunch of tools

J: Yes. /D: web page, where they have a listirg: like 10

of them or something.

J: Are you speaking about Mississippi State per se? or

D: No no no, there’s some .. | mean, there just - there are -
there are a lot of J: Yeah.

J: Actually, | wanted to mention -D: (??)

J: There are two projects, which are .. international .. huge
projects focused on this kind of thing, actually .. one of
them’s MATE, one of them’s EAGLES .. and um.

D: Oh, EAGLES.

D: (??) /3: And both of them have

J: You know, | shou-, | know you know about the big book.
E: Yeah.

J: | think you got it as a prize or something.

E: Yeah. /D: Mhm.

J: Got a surprise {laugh}t {J. thought “as a prize” sounded
like “surprise’}

Note that interruptions are quite frequent; this is, in our expe-

rience, quite common in informal meetings, as is acoustic overlap



between speakers (see the section on error rates in overlap regions)that is, meetings by the group working on this technology) or “Ro-
bustness” (primarily concerned with ASR robustness to acoustic
2. THE CHALLENGES effects such as additive noise). A smaller number of other meeting
types at ICSI were also included.
In addition to the spontaneous recordings, we asked meeting par-
ipants to read digit strings taken from a TI digits test set. This
was done to facilitate research in far-field microphone ASR, since
we expect this to be quite challenging for the more unconstrained
case. At the start or end of each meeting, each participant read 20
digit strings.

Once the data collection was in progress, we developed a set of
procedures for our initial transcription. The transcripts are word-
level transcripts, with speaker identifier, and some additional in-
formation: overlaps, interrupted words, restarts, vocalized pauses,
ASR from far-field microphones - handling the reverberation backchannels, and contextual comments, and nonverbal events
and background noise that typically bedevil distant mics, as (Which are further subdivided into vocal types such as cough and
well as the acoustic overlap that is more of a problem for augh, and nonvocal types such as door slams and clicks). Each

microphones that pick up several speakers at approximately event is tied to the time line through use of a modified version of the
the same level. “Transcriber” interface (described below). This Transcriber win-

dow provides an editing space at the top of the screen (for adding
e Segmentation and turn detection - recovering the different utterances, etc), and the wave form at the bottom, with mechanisms
speakers and turns, which also is more difficult with overlaps for flexibly navigating through the audio recording, and listening
and with distant microphones (although inter-microphone and re-listening to chunks of virtually any size the user wishes.
timing cues can help here). The typical process involves listening to a stretch of speech until
a natural break is found (e.g., a long pause when no one is speak-
e Extracting nonlexical information such as speaker identifi- ing). The transcriber separates that chunk from what precedes and
cation and characterization, voice quality variation, prosody, follows it by pressing the Return key. Then he or she enters the
laughter, etc. speaker identifier and utterance in the top section of the screen.
The interface is efficient and easy to use, and results in an XML
representation of utterances (and other events) tied to time tags for
further processing.

The “Transcriber” interface [13] is a well-known tool for tran-
scription, which enables the user to link acoustic events to the wave
form. However, the official version is designed only for single-
channel audio. As noted previously, our application records up to
¢ Information retrieval from errorful meeting transcriptions - 15 parallel sound tracks generated by as many as 9 speakers, and we
topic change detection, topic classification, and query match- wanted to capture the start and end times of events on each channel
ing. as precisely as possible and independently of one another across

channels. The need to switch between multiple audio channels to
Summarization of meeting content [14] - representation of clarify overlaps, and the need to display the time course of events
the meeting structure from various perspectives and at vari- on independent channels required extending the “Transcriber” in-
ous scales, and issues of navigation in thes representations. terface in two ways. First, we added a menu that allows the user to
switch the playback between a number of audio files (which are all
assumed to be time synchronized). Secondly, we split the time-
linked display band into as many independent display bands as
there are channels (and/or independent layers of time-synchronized
annotation). Speech and other events on each of the bands can now
be time-linked to the wave form with complete freedom and totally
independently of the other bands. This enables much more precise
start and end times for acoustic events.

See [8] for links to screenshots of these extensions to Transcriber
(as well as to other updates about our project).

3. DATA COLLECTION AND HUMAN In the interests of maximal speed, accuracy and consistency, the
TRANSCRIPTION transcription conventions were chosen so as to be: quick to type,

Using the data collection setup described previously, we have _related to standard literary conventions where possible (e.g., - for

been recording technical meetings at ICSI. As of this writing we interrupted word or thought,. for pause, using standard ort.hpgra
- phy rather than IPA), and minimalist (requiring no more decisions
have recorded 38 meetings for a total of 39 hours. Note that thereb transcribers than absolutely necessary)
are separate microphones for each participant in addition to the 6 y . : yn ). .
; - After practice with the conventions and the interface, transcribers
far-field microphones, and there can be as many as 15 open chan-

nels. Consequently the sound files comprise hundreds of hours Of:fnhcl)i\:ﬁdofatilrﬁélr;,\atllj(i)r;cfi ?gntsr er'lzgﬂn titc')r:eoftos ng:r?r;atrllmjé ;—r}s
recorded audio. The total number of participants in all meetings is q P P guag

237, and there were 49 unique speakers. The majority of the meet-kmOWn to vary widely as a function of properties of the_ discourse
ings recorded so far have either had a focus on “Meeting Recorder” (amount of overlap, etc.), and amount of detailed encoding (prosod-

While having a searchable, annotatable record of impromptu
meetings would open a wide range of applications, there are sig-tiC
nificant technical challenges to be met; it would not be far from the
truth to say that the problem of generating a full representation of a
meeting is “Al complete”, as well as “ASR complete”. We believe,
however, that our community can make useful progress on a range
of associated problems, including:

e ASR for very informal conversational speech, including the
common overlap problem.

e Dialog abstraction - making high-level models of meet-
ing ‘state’; identifying roles among participants, classifying
meeting types, etc. [2].

¢ Dialog analysis - identification and characterization of fine-
scale linguistic and discourse phenomena [3][10].

Energy and memory resource limitation issues that arise in
the robust processing of speech using portable devices [7].

Clearly we and others working in this area (e.g., [15]) are at an
early stage in this research. However, the remainder of this pa-
per will show that even a preliminary effort in recording, manually
transcribing, and recognizing data from natural meetings has pro-
vided some insight into at least a few of these problems.



ics, etc.), with estimates ranging from 10:1 for word-level with of the meeting recordings. The language model contained about

minimal added information to 20:1, for highly detailed discourse 30,000 words and was trained on a combination of Switchboard,

transcriptions (see [4] for details). CallHome English and Broadcast News data, but was not tuned for
In our case, transcribers encoded minimal added detail, but hador augmented by meeting data.

two additional demands: marking boundaries of time bins, and

switching between audio channels to clarify the many instances of )

overlapping speech in our data. We speeded the marking of time4.2 Speech segmentation

bins by providing them with an automatically segmented version  As noted above, we are initially focusing on recognition of the
(described below) in which the segmenter provided a preliminary indjvidual channel data. Such data provide an upper bound on
set of speech/nonspeech labels. Transcribers indicated that the Prérecognition accuracy if speaker segmentation were perfect, and
segmentation was correct sufficiently often that it saved them time. constitute a logical first step for obtaining high quality forced align-
After the transcribers finished, their work was edited for consis- ments against which to evaluate performance for both near- and far-
tency and completeness by a senior researcher. Editing involvedsie|g microphones. Individual channel recordings were partitioned
checking exhaustive listings of forms in the data, spell check- nto “segments” of speech, based on a “mixed” signal (addition
ing, and use of scripts to identify and automatically encode cer- of the individual channel data, after an overall energy equalization
tain distinctions (e.qg., the distinction between vocalized nonverbal t5ctor per channel). Segment boundary times were determined ei-
events, such as cough, and nonvocalized nonverbal events, like dookher by an automatic segmentation of the mixed signal followed by
slams). This step requires on average about 1:1 - one minute ofhand-correction, or by hand-correction alone. For the automatic
editing for each minute of speech. _ case, the data was segmented with a speech/nonspeech detector
Using these methods and tools, we have currently transcribed consisting of an extension of an approach using an ergodic hidden
about 12 hours out of our 39 hours of data. Other data have \jzrkov model (HMM) [1]. In this approach, the HMM consists
been sent to IBM for a rough transcription using commercial tran- of two main states, one representing “speech” and one represent-
scribers, to be followed by a more detailed process at ICSI. Once jng “nonspeech” and a number of intermediate states that are used
this becomes a routine component of our process, we expect it toyg model the time constraints of the transitions between the two
significantly reduce the time requirements for transcription at ICSI. main states. In our extension, we are incorporating mixture den-
sities rather than single Gaussians. This appears to be useful for

4. AUTOMATIC TRANSCRIPTION the separation of foreground from background speech, which is a

As a preliminary report on automatic word transcription, we Serious problem in these data. _
present results for six example meetings, totalling nearly 7 hours ~ The algorithm described above was trained on the
of speech, 36 total speakers, and 15 unique speakers (since mangPeech/nonspeech segmentation provided manually for the
speakers participated in multiple meetings). Note that these re- first meeting that was transcribed. It was used to provide segments
sults are preliminary only; we have not yet had a chance to addressOf speech for the manual transcribers, and later for the recognition
the many obvious approaches that could improve performance. In€xperiments. Currently, for simplicity and to debug the various
particular, in order to facilitate efforts in alignment, pronuncia- Processing steps, these segments are synchronous across chan-
tion modeling, language modeling, etc., we worked only with the Nels. However, we plan to move to segments based on separate
close-mic'd data. In most common applications of meeting tran- SPeech/nonspeech detection in each individual channel. The latter
scription (including those that are our chief targets in this research) @Pproach should provide better recognition performance, since it
such a microphone arrangement may not be practical. NeverthelesdVill eliminate cross-talk in segments in which one speaker may
we hope the results using the close microphone data will illustrate S&Y only a backchannel (e.g. “uhhuh”) while another speaker is
some basic observations we have made about meeting data and iti/king continuously.

automatic transcription. Performance was scored for the spontaneous conversational por-
. tions of the meetings only (i.e., the read digit strings referred to
4.1 Recognltlon system earlier were excluded). Also, for this study we ran recognition only

The recognizer was a stripped-down version of the large- ON thosg segments during yvhich atrgnscription was produced for
vocabulary conversational speech recognition system fielded bythe particular speaker. This overestimates the accuracy of word
SRI in the March 2000 Hub-5 evaluation [11]. The system per- recognition, since any speech recognized in the “empty” segments
forms vocal-tract length normalization, feature normalization, and Would constitute an error not counted here. However, adding the
speaker adaptation using all the speech collected on each chan€MPpty regions would increase data load by a factor of about ten—
nel (i.e., from one speaker, modulo cross-talk). The acous- Which was impractical for us at this stage. Note that the current
tic model consisted of gender-dependent, bottom-up clustered NIST Hub-5 (Switchboard) task is similar in this respect: data are
(genonic) Gaussian mixtures. The Gaussian means are adapted bjecorded on separated channels and only the speech regions of a
a linear transform so as to maximize the likelihood of a phone-loop SPeaker are run, not the regions in which they are essentially silent.
model, an approach that is fast and does not require recognitionVe plan to run all speech (including these “empty” segments) in
prior to adaptation. The adapted models are combined with a bi- future experiments, to better assess actual performance in a real
gram language model for decoding. We omitted more elaborate Meeting task.
adaptation, cross-word triphone modeling, and higher-order lan-
guage and duration models from the full SRI recognition system .. . .
as an expedient in our initial recognition experiments (the omitted 4-3 ~ R€COgnition results and discussion
steps yield about a 20% relative error rate reduction on Hub-5 data). Overall error rates. Table 1 lists word error rates for the six

It should be noted that both the acoustic models and the lan- meetings, by speaker. The data are organized into two groups: na-
guage model of the recognizer were identical to those used in thetive speakers and nonnative speakers. Since our recognition system
Hub-5 domain. In particular, the acoustic front-end assumes a tele-is not trained on nonnative speakers, we provide results only for the
phone channel, requiring us to downsample the wide-band signalsnative speakers; however the word counts are listed for all partici-



Table 1: Recognition performance by speaker and meeting (MRM = “Meeting Recorder meeting”; ROB = “Robustness meeting”).
Speaker gender is indicated by “M” or “F” in the speaker labels. “* ... *" marks speakers using a lapel microphone; all other cases
used close-talking head-mounted microphones. “—" indicates speakers with severely degraded or missing signals due to incorrect
microphone usage. Word error rates are in boldface, total number of words in Roman, and out-of-vocabulary (OOV) rates iitalics.

OOV rate is by token, relative to a Hub-5 language model. WER is for conversational speech sections of meetings only, and are not
reported for nonnative speakers.

Meeting MRM002 MRMO003 MRM004 MRMO0OO5 ROB005 ROBO004
Duration (minutes) 45 78 60 68 81 70
Native speakers
M_004 42.4 48.1 44.3 48.4 45.1
4550 3087 3432 4912 5512
2.07 2.75 1.60 2.12 1.61
M_001 42.4 50.6 37.6 38.6
2311 2488 1904 3400
1.82 2.09 2.78 1.56
F_001 45.2 43.2 42.9 41.9
3008 3360 2714 2705
2.59 3.18 4.05 2.14
M_009 *100.1*  *115.8* 38.2 *68.7*
1122 367 1066 696
1.59 2.45 1.88 2.01
F_002 45.2 43.7 *46.0*
1549 1481 2480
2.26 2.64 1.63
M_002 *55.6*
990
2.12
Speakers with low word counts
M_007 55.6 —
198 69
2.97 2.90
M_008 72.7 59.5
55 121
5.45 5.79
M_015 —
59
6.56

Non-native speakers (total words only)
M_003 (British) 2189

M_011 (Spanish) 2653 1239 663

F_003 (Spanish) 620 220
M_010 (German) 28

M_012 (German) 639

M_006 (French) 3524 2648




pants for completeness.

The main result to note from Table 1 is that overall word error
rates are not dramatically worse than for Switchboard-style data.
This is particularly impressive since, as described earlier, no meet-

Table 2: Word error rates broken down by whether or not seg-
ment is in a region of overlapping speech.

ing data were used in training, and no modifications of the acoustic Speaker No overlap With overlap
or language models were made. The overall WER for native speak- Headset Lapel Headset Lapel
ers was 46.5%, or only about a 7% relative increase over a compa- M_004 41.0 ) 0.3 )
rable recognition system on Hub-5 telephone conversations. This M-001 34.2 ) 47.6 .
suggests that from the point of view of pronunciation and language F.001 40.5 ) 45.8 )
(as opposed to acoustic robustness, e.g., for distant microphones), M-009 30.7 41.0 40.7 117.8
Switchboard may also be “ASR-complete”. That is, talkers may not F.002 37.7 29.8 0.5 6.3
really speak in a more “sloppy” manner in meetings than they do in M_002 - 48.6 i 71.3
M_007 52.2 - 81.3 -

casual phone conversation. We further investigate this claim in the
next section, by breaking down results by overlap versus nonover-
lap regions, by microphone type and by speaker.

Note that in some cases there were very few contributions from
a speaker (e.g., speakers 007, M.008, and M015), and such
speakers also tended to have higher word error rates. We initially
suspected the problem was a lack of sufficient data for speaker
adaptation; indeed the improvement from adaptation was less than
for other speakers. Thus for such speakers it would make sense t
pool data across meetings for repeat participants. However, in look-
ing at their word transcripts we noted that their utterances, while
few, tended to be dense with information content. That is, these
were not the speakers uttering “uhhuh” or short common phrases

(which are generally well modeled in the Switchboard recognizer) for the lapel microphone, which picks up a greater degree of back-

but rather high-perplexity utterances that are generally harder to ground speech. As demonstrated by speak@dE it is possible

recognize. Such speakers also tend to have a generally higher over: . 0
all OOV rate than other speakers. to have a comparatively good word error rate (29.8%) on the lapel

. . microphone in regions of no overlap (in this case 964/2480 words
Error rates in overlap versus nonoverlap regions. As noted ; lapDi hel . h f
in the previous section, the overall word error rate in our sam- werel n npnove[]_a%pl_ng segcrinents). Nivert eess, smdc_et irate °
) o . - > ver i igh in verall, we are avoidin
ple meetings was slightly higher than in Switchboard. An obvious overiaps 1s so nig the data overall, we are avoiding the use

question to ask here is: what is the effect on recognition of over- of the lapel microphone where possible in the future, preferring

lapping speech? To address this question, we defined a crude mear_lead-mounted microphones for obtaining ground truth for research

h . purposes. We further note that for tests of acoustic robustness for
sure of overlap. Since segments were channel-synchronous in these,.

- . ) distant microphones, we tend to prefer microphones mounted on
meetings, a segment was either non-overlapping (only one speaker

was talking during that time segment), or overlapping (two or more the meeting table (or on a mock PDA frame), since they provide a

speakers were talking during the segment). Note that this does nOtis a central interest to us - recognition via portable devices. In other

measure a_mgunt of overlap or number of overlapping speakers;words’ we are finding lapel mics to be too “bad” for near-field mi-
more sophisticated measures based on the phone backtrace from h d “q0od” for far-field
forced alignment would provide a better measure for more detailed crophone tests, and too "good" for far-field tests. .
. i Error rates by error type. The effect of overlapping speech on

analyses. Nevertheless, the crude measure provides a clear first . . . - .
answer 1o our question. Since we were also interested in the inter_error rates is due almost entirely to insertion errors, as shown in
action if an bgtween o.verla and microphone tvoe. we comouted Figure 1. Rates of other error types are nearly identical to those ob-

y P P yPe, P served for Switchboard (modulo a a slight increase in substitutions
results separately for the head-mounted and lapel microphones. Re-

. LT i with the lapel condition). This result is n rprisin
sults were also computed by speaker, since as shown earlier in .I_a_assoc ated with the lapel condition) S result is not surprising,

ble 1, speakers varied in word error rates, total words, and words bysmce background speech obviously adds false words in the hypoth-

) esis. However, it is interesting that there is little increase in the
microphone typ_e_'. Note that speakers0@9 and EO02 have data other error types, suggesting that a closer segmentation based on
from both conditions.

As shown, our measure of overlap (albeit crude), clearly shows individual channel data (as noted earlier) could greatly improve
- ) -riap ' y S recognition accuracy (by removing the surrounding background
that overlapping speech is a major problem for the recognition of

speech from meetings. If overlap regions are removed, the recog-sDeeCh)'

b ) . Error rates by meeting type. Different types of meetings
nition accuracy overall is actually better than that for Switchboard. should give rise to differences in speaking style and social interac-

Itis premature to make absolute comparisons here, but the_ fact thattion and we may be interested in whether such effects are realized
the same pattern is observed for all speakers and across mlcrophongS differences in word error rates. The best way to measure such

effects is within speaker. The collection of regular, ongoing meet-
!Given the limitations of these pilot experiments (e.g., no on-task ings at ICSI offers the possibility of such within-speaker compar-
training material and general pronunciation models), recognition isons, since multiple speakers participate in more than one type of
on nonnative speakers is essentially not working at present. In the eqylar meeting. Of the speakers shown in the data set used for this

case of one nonnative speaker, we achieved a 200% word error rate - . - ]
surpassing a previous ICSI record. Word error results presentedswdy’ speaker M04 is a good case in point, since he has data from

here are based on meeting transcripts as of March 7, 2000, and ardhrée “Meeting Recorder” meetings and two “Robustness” meet-
subject to small changes as a result of ongoing transcription errorings. These two meeting types differ in social interaction; in the
checking. first, there is a fairly open exchange between many of the partici-

M_008 50.9 - 69.9
Overall 39.9 38.5 48.7 85.2

conditions suggests that it is not the inherent speech properties of
articipants that makes meetings difficult to recognize, but rather
he presence of overlapping speech.

Furthermore, one can note from Table 2 that there is a large inter-
action between microphone type and the effect of overlap. Overlap
is certainly a problem even for the close-talking head-mounted mi-
crophones. However, the degradation due to overlap is far greater

more realistic representation of the ultimate target application that
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Figure 1: Word error rates by error type and micro-

phone/overlap condition. Switchboard scores refer to an in-
ternal SRI development testset that is a representative subset
of the development data for the 2001hub-5 evals. It contains
41 speakers (5-minute conversation sides), from Switchboard-
1, Switchboard-2 and Cellular Switchboard in roughly equal
proportions, and is also balanced for gender and ASR diffi-
culty. The other scores are evaluated for the data described
in the text.

pants, while in the second, speaker@@4 directs the flow of the
meeting. It can also be seen from the table that speak@®Mcon-
tributes a much higher rate of words relative to overall words in the
latter meeting type. Interestingly however, his recognition rate and
OOV rates are quite similar across the meeting types. Study of ad-
ditional speakers across meetings will allow us to further examine
this issue.

5. FUTURE WORK

The areas mentioned in the earlier section on “Challenges” will
require much more work in the future. We and our colleagues at
collaborating institutions will be working in all of these. Here, we
briefly mention some of the work in our current plans for the study
of speech from meetings.

Far-field microphone ASR. Starting with the read digits and

action (as when a group tries to help a speaker to recall a person’s
name when he is in mid-sentence). In addition, different speakers
may differ in the amount and kinds of overlap in which they engage
(speaker style). In future work we will explore types of overlaps
and their physical parameters, including prosodic aspects.

Language modeling. Meetings are also especially challenging
for the language model, since they tend to comprise a diverse range
of topics and styles, and matched training data is hard to come
by (at least in this initial phase of the project). Therefore, we ex-
pect meeting recognition to necessitate investigation into novel lan-
guage model adaptation and robustness techniques.

Prosodic modeling.Finally, we plan to study the potential con-
tribution of prosodic (temporal and intonational) features to auto-
matic processing of meeting data. A project just underway is con-
structing a database of prosodic features for meeting data, extend-
ing earlier work [10, 9]. Goals include using prosody combined
with language model information to help segment speech into co-
herent semantic units, to classify dialog acts [12], and to aid speaker
segmentation.
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