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Summary
Psychoacoustical and neurophysiological results indicate that spectro-temporal modulations play an important role

in sound perception. Speech signals, in particular, exhibit distinct spectro-temporal patterns which are well matched
by receptive fields of cortical neurons. In order to improve the performance of automatic speech recognition (ASR)
systems a number of different approaches are presented, all of which target at capturing spectro-temporal modulations.
By deriving secondary features from the output of a perception model the tuning of neurons towards different envelope
fluctuations is modeled. The following types of secondary features are introduced: product of two or more windows
(sigma-pi cells) of variable size in the spectro-temporal representation, fuzzy-logical combination of windows and a
Gabor function to model the shape of receptive fields of cortical neurons. The different approaches are tested on a
simple isolated word recognition task and compared to a standard Hidden Markov Model recognition system. The
results show that all types of secondary features are suitable for ASR. Gabor secondary features, in particular, yield a
robust performance in additive noise, which is comparable and in some conditions superior to the Aurora 2 reference
system.

PACS no. 00.00.Xx, 00.00.Xx

1. Introduction

Speech and many other natural sound sources exhibit dis-
tinct spectro-temporal amplitude modulations. While the
temporal modulations are mainly due to the syllabic struc-
ture of speech, resulting in a bandpass characteristic with
a peak around 4Hz [1], spectral modulations are due to
the harmonic and formant structure of speech. The latter
are not at all stationary over time. Coarticulation and in-
tonation result in variations of fundamental and formant
frequencies even within a single phoneme (cf. Fig. 1 as an
example). The question is whether there is relevant infor-
mation in amplitude variations oblique to the spectral and
temporal axis and how it may be utilized to improve the
performance of automatic classifiers.

In automatic speech recognition (ASR) the focus typ-
ically is on spectral modulation for a given time frame
(cepstral analysis)and/or temporal fluctuations in individ-
ual frequency channels [2, 3]. Although there are propos-
als to take two-dimensional variability into account (e.g.
[4]), auditory processing is not modeled explicitly.

Therefore, three different approaches are presented in
this paper which target at capturing spectro-temporal mod-
ulations to increase the robustness of ASR systems:

Sigma-pi cells were originally proposed as a part of ASR
systems in order to better capture certain features of
speech like formants, formant transitions, fricative on-
sets and (for larger units) phoneme sequences. A log-
ical ”AND” operation is performed by multiplicative
combination of two spectro-temporal windows [5]. A

Received 1 January 1995,
accepted 1 January 1995.

−50

0

50

100

150

200

250

time [s]

G
am

m
at

on
e 

F
B

 c
en

te
r 

fr
eq

ue
nc

ie
s 

[H
z]

0.2 0.4 0.6 0.8 1 1.2
 348
 414
 488
 569
 660
 761
 874

1000
1140
1296
1470
1664
1879
2119
2387
2685
3017
3387
3799

Figure 1. An example of a primary feature matrix for an utterance of
the two words ”Woody Allen” - in this case derived from the model
of auditory perception as described in Section 3.2. Gray shading
denotes output values in model units. A number of diagonal spectro-
temporal structures may be identified.

generalization of this approach, towards a larger num-
ber of windows and variable window size, is moti-
vated by recent psychoacoustical reverse correlation
experiments. Using short segments of semi-periodic
white Gaussian noise as stimuli,early auditory fea-
tures of certain spectro-temporal shape were revealed
[6]. These findings correspond well to physiological
measurements of spectro-temporal receptive fields of
neurons in the primary auditory cortex [7] which often
encompass different unconnected but highly localized
parts of the spectrogram.
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Fuzzy logic units: Due to its linear nature, the reverse
correlation method does not reveal, if there has to be
energy in regions Aand B in order to stimulate a re-
sponse or whether the receptive field is simply frag-
mented. To take account of this ambiguity the sigma-pi
cell approach is extended to other fuzzy logical com-
bination of windows, adding OR, NOR and NAND to
the multiplicative AND operation.

Gabor functions are localized sinusoids and known to
model the receptive fields of certain neurons in the vi-
sual system [8]. In addition, experiments on human
spectro-temporal modulation perception were mod-
eled well by assuming a response field similar to two-
dimensional Gabor functions [9]. Therefore, in the
third approach of this paper, two-dimensional Gabor
receptive fields are examined for ASR. A complex
two-dimensional Gabor function is calculated and re-
duced to real values by using only the real or imaginary
component.

In the following the three types of secondary features
are introduced and then applied to a simple isolated word
recognition task for a first evaluation. Because of the large
number of possible parameter combinations for all three
variants of secondary features, the selection of a suitable
subset is a major concern and the key to good classifica-
tion performance. The classification and feature selection
scheme described in Sec. 3.3 allows to automatically op-
timize a subset from all possible secondary features on
a given task and is therefore favored over standard ASR
back ends in this approach.

2. Secondary features

The secondary featuress1(t)::sM (t) are calculated from
the primary feature valuesp(t; f), which form a spectro-
temporal representation of the input signal.t and f de-
note time and frequency channel index, respectively. The
simplest examples of such two-dimensional representa-
tion (amplitude over frequency and time) are the spec-
trogram obtained by short-term Fourier analysis of con-
secutive time windows or, alternatively, a bank of band-
pass filters. For speech and signal classification purposes,
auditory-based approaches are likely to be more appropri-
ate.

2.1. Sigma-pi cells

Sigma-pi cells are known as second order elements from
artificial neural network theory. This term describes cer-
tain network units in which the weighted outputs from two
or more other units are multiplied before summation over
all input values.

In the approach presented here, a number of windows
k = 1::K are defined centered around one element of
the primary feature representation, which is located at fre-
quency channelfk and bytk time steps shifted relative to
the current feature vector. The windows have the extension
�tk and�fk in time and frequency.
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Figure 2. This sketch shows the denotation of parameters for a
sigma-pi cell with two windows. See text for further description!

First, the average valuewk of each window is derived
by

wk =
1

�tk�fk

X
t0

X
f 0

p(t0 + tk + t0; fk + f 0)(1)

with ��tk
2 � t0 � �tk

2 and��fk
2 � f 0 � �fk

2 .
The resulting value of any sigma-pi cell for time frame

t0 is then obtained from the window averages by:

sm(tk; fk;�tk;�fk; t0) =

KY
k=1

wk (2)

The secondary feature valuessm(t0) are often aver-
aged over the whole utterance to obtain a single value per
sigma-pi cell. Gramß and Strube [5] proposed sigma-pi
cells to be used as secondary features based on critical
band spectrograms for isolated word recognition. Sigma-
pi cells have later been used in combination with a percep-
tion model as front end for isolated word recognition and
it was shown, that this combination increases the robust-
ness of ASR systems in additive noise [10]. With a non-
linear back end the combination of perception model and
sigma-pi cells is also suitable for sub-band signal-to-noise
ratio (SNR) estimation [11]. In all those applications only
two windows were used per sigma-pi cell and the smaller
window was restricted to a single element ofp(t; f).

In the experiments presented below the window pa-
rameters for sigma-pi cells have the following con-
straints: tk = �20::20 (�200::200ms), �tk =
1::10 (10::100ms), �fk = 1::5 (ERB)1, and the number
of windowsK = 2::3. Furthermore, the windows have to
be non-overlapping. Summation over time is performed to
obtain a single secondary feature value per utterance.

1 equivalent rectangular bandwidth[12]
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Figure 3.
TOP: An example of a sigma-pi cell with two windows. Win-
dow A parameters are:t = �10 (�100ms), f = 7 (ERB),
�t = 5 (50ms) and�f = 3 (ERB). Window B parameters
are:t = 10 (100ms), f = 16 (ERB),�t = 10 (100ms) and
�f = 5 (ERB).
BOTTOM: Window averages and product of the two windows as a
function of time, when the above sigma-pi cells is applied to the ut-
terance depicted in Fig. 1. The combination of the vowels /u/ and /i/
(or the lower and higher formants, respectively) in ”Woody” was de-
tected by the sigma-pi cells, by yielding large feature values around
0.4s.

Fig. 3 gives an example on how a sigma-pi may serve
as a feature detector. The sigma-pi cell is tuned to a se-
quence of phonetic elements in that case. The two win-
dows, when coinciding with peaks in the spectro-temporal
primary feature representation, basically detect spectro-
temporal modulation of the frequency corresponding to
the distance between the two windows. The temporal and
spectral extension of the windows compensate to some de-
gree for the variability inherent to spoken language. By
calculating the product of the two windows, the secondary
feature is of second order and the detection information
remains even after integration over the whole time span of
a word.

2.2. Fuzzy logic units

The sigma-pi cell approach is now extended by using true
fuzzy logical combinations of windows instead of a sim-
ple multiplication, which corresponds to a logical AND.
To obtain a value range between zero and one, the pri-
mary feature vectors are normalized by a logistic mapping
function over the whole utterance:

p0(t; f) =
1

1 + exp
h
�p(t;f)�50

25

i : (3)

or, alternatively, by a linear min-max normalization
scheme:

p0(t; f) =
p(t; f)�min(p)

max(p)�min(p)
: (4)

The window averageswk are calculated as in Eq. 1. The
resulting value of a fuzzy logic unit for timet0 is obtained
recursively by:

sm;1(t0) =W1(w1) (5)

and

sm;k(t0) = sm;k�1 Ok�1 Wk(wk): (6)

The recursion terminates afterK steps and the value
sm;K is than adopted as secondary feature valuesm =
sm;K for time t0. The window operatorWk is either iden-
tity (f(A) = A) or fuzzy complement (NOT operation),
which is defined asf(A) = 1 � A. The possible fuzzy
operatorsOl are

intersection f(A;B) = min(A;B)
algebraic product f(A;B) = A �B
union f(A;B) = max(A;B)
algebraic sum f(A;B) = A+B �A �B.

The first two operators represent a fuzzy logical AND
while the latter two correspond to fuzzy logical OR. With
two or more windows a variety of combinations are pos-
sible. The NAND operation (’A AND NOT B’), for ex-
ample, is assumed to be useful for edge detection in any
spectro-temporal direction, while the AND operation (’A
AND B’, ’A AND NOT B AND C’) serves as a detector
for spectro-temporal modulations.

In the experiments described below, for fuzzy logic
units the same parameter constraints applied as for sigma-
pi cells.

2.3. Gabor receptive fields

The receptive field of cortical neurons is modeled as a
two-dimensional complex Gabor functiong(t; f) defined
as the product

g(�) = n(�) � e(�) (7)
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of the Gaussian envelopen(t; f) with parameters
f0; t0; �f ; �t

n(�) =
1

2��x�t
�exp

"
�(f � f0)

2

2�2f
+
�(t� t0)

2

2�2t

#
(8)

and the complex Euler functione(t; f) with parameters
f0; t0; !f ; !t

e(�) = exp [i!f (f � f0) + i!t(t� t0)] (9)

by using either the real or imaginary component only.
The envelope width is defined by standard deviation val-
ues�f and�t. These are chosen as� = 1

!
=) � = T

2�
for the imaginary component to ensure that only one pe-
riod of the oscillation gives a significant contribution to
the function, and as� = �

!
=) � = T

2 for the real com-
ponent. In the latter case the chosen combination of spread
and periodicity leads to about 2.5 periods of the oscillation
in the envelope and results in a negligible bias because

1Z
�1

1Z
�1

g(�) dt df� exp

�
�
!2t �

2
t + !2x�

2
x

2

�
(10)

and, with�t = �
!t

and�f = �
!f

,

1Z
�1

1Z
�1

g(�) dt df� exp
�
��2

�
: (11)

This is important, because otherwise any stationary
background signal would contribute to the secondary fea-
ture value.

In the experiments below the allowed temporal modula-
tion frequencies!t2� are limited to a range of one to 30Hz
and the spectral modulations!f2� to a range of 0.05 to 0.3
cycl/ERB, roughly corresponding to 0.25 - 1.5 cycl/oct.
For a one ERB spectral resolution of the primary features,
spectral modulations may only be calculated up to 0.5 cy-
cles/ERB.

In order to extract a secondary feature value, the corre-
lation between Gabor receptive field and the primary fea-
ture matrix is calculated. This matched filter operation is
carried out in each frequency channel and the resulting
values are summarized over all channels to obtain the ac-
tivationa(t0; f0; !f ; !t; �f ; �t) for each time stept0. The
cell response or secondary feature value for the whole ut-
terance is then calculated as follows:

sm(f0; !f ; !t; �f ; �t) =

TX
t0=1

T [ a(t0) ] (12)

with the non-linear transformation functionT by either
full-wave or half-wave rectification ofa(t0).
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Figure 4.
TOP: Example of the real component of a 2D Gabor function spec-
trally centered at 1000 Hz. Function values are given in shadings
of gray. The Euler frequencies are!t

2�
= �12Hz and

!f

2�
=

0:2cycles/channel: The function is calculated on a grid with 100
Hz temporal and 1/ERB spectral sampling, according to the primary
feature extraction method used in this study.
BOTTOM: Filter output (”activation”) and halfway rectified feature
values (”response”) over time when the above Gabor filter is applied
to the utterance depicted in Fig. 1. The rising formant between 0.3
and 0.4s fits the Gabor filter shape well and yields highest feature
values. A similar diagonal feature is detected around 1.1s, resulting
in a second, somewhat smaller peak.

In the experiments presented below, the primary feature
vector sequencep(t; f) is used either without or with min-
max normalization (Eq. 4).

While the imaginary component might be able to serve
as edge detector in the spectro-temporal domain, the real
component is designed to capture spectro-temporal mod-
ulations in any possible direction - including simple tem-
poral or spectral modulations. The wide range of possi-
ble Gabor features is therefore versatile enough to contain
purely spectral features (as cepstra) or temporal process-
ing (as in the RASTA or TRAPS approaches). The above
mentioned front ends are extended as most of the possi-
ble Gabor filters perform integrated spectraland temporal
processing. Fig. 4 shows one example of such a diagonal
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Gabor feature function and how it can be used to detect
formant transitions.

3. Automatic speech recognition experiments

3.1. Material

The speech material for training and testing is taken from
the ZIFKOM database2. Each German digit was recorded
once from 200 different speakers. The speech material is
equally divided into two parts for training and testing, each
consisting of 1000 utterances by 50 male and 50 female
speakers. Training is performed on clean digits only. Test-
ing is performed on clean and on noisy digits. For dis-
tortion, three types of noise are added to the utterances
with SNR between 25 and -5dB: a) un-modulated speech
shaped noise (CCITT G.227), with a spectrum similar to
the long-term spectrum of speech, b) real babble noise
recorded in a cafeteria situation and c) speech-like shaped
and modulated noise (ICRA noise signal 7, [13] )3. Be-
fore mixing, speech and noise signals are bandpass filtered
to 300-4000Hz, roughly corresponding to the telephone
band.

3.2. Primary feature extraction

The output of the model of auditory perception (PEMO)
is used as primary feature matrix. PEMO has been origi-
nally developed by Dau et al. [14] for quantitatively simu-
lating psychoacoustical experiments, such as temporal and
spectral masking, and has been successfully applied as a
robust front end in isolated word recognition experiments
[15, 16]. Its major components are the peripheral gamma-
tone filter bank [17] and the non-linear adaptation loops
[18], which perform a log-like compression for station-
ary signals and emphasize onsets and offsets of the en-
velope. This causes a sparse coding of the input in the
spectro-temporal domain. It should be stressed, that any
other time-frequency amplitude representation could also
be used with this approach, preferably an auditory model
or auditory-like processing [11].

In this study, the model was slightly modified by adding
a pre-emphasis4, which is motivated by earlier ASR exper-
iments [10]. Overall, 19 frequency channels are used with
bandwidth and spacing of one ERB and center frequencies
ranging from 384 to 3799Hz. The primary feature vectors
are then derived by downsampling the model output to a
sampling frequency offs = 100Hz in each channel.

3.3. Recognizer

For classification and optimization of the type of sec-
ondary features theFeature-finding Neural Network

2 Deutsche Telekom AG
3 two foreground speakers and four background speakers
4 differentiation with factor of 0.97:yn = xn � 0:97 � yn�1

(FFNN) [5] is used. It consists of a linear single-layer per-
ceptron in conjunction with secondary feature extraction
and an optimization rule for the feature set. For a suffi-
ciently high-dimensional feature space (i.e. a large number
of secondary features), a linear net should classify equally
well as non-linear classifiers and fast training is guaran-
teed by matrix inversion (pseudo-inverse method). Given
P examples, each represented by a secondary feature vec-
tor with M elements, the feature vectors form aM � P

feature matrixX. Given the target matrixY (N � P with
N as the number of classes or target values per example),
the optimal (in RMS sense) weight matrixW (N �M ) is
found analytically by calculating the pseudo-inverse

X
+ = XT (XXT )�1 (13)

of the secondary feature matrixX. The weight matrix
is obtained as

W = YX+ (14)

and minimizes the classification error

E = jY �WXj2: (15)

Gramß [19] proposed a number of training algorithms
for the FFNN system, one of which, thesubstitution rule,
is used in this study:

1. ChooseM secondary features arbitrarily.
2. Find the optimal weight matrixW using allM fea-

tures and theM weight matrices that are obtained by
using onlyM � 1 features, thereby leaving out every
feature once.

3. Measure the relevanceR of each featurei by

Ri = E( without featurei)�E( with all features)(16)

4. Discard the least relevant featurej = argmin(Ri) from
the subset and randomly select a new candidate.

5. Repeat from point 2. until the maximum number of
iterations is reached.

6. Recall the set of secondary features, that performed
best on the training / validation set and return it as
result of the substitution process (modification from
original substitution rule).

Although the classification is performed by a linear neu-
ral network, the whole classification process is highly non-
linear due to the second order characteristics of the sec-
ondary features. The thereby obtained set of secondary
features might also be used as input to other, more sophis-
ticated classification systems. The segmentation problem
is not relevant for an isolated word recognition task and
therefore the summation of secondary feature values over
the whole utterance is a sufficiently good option to de-
rive a single value per secondary feature and utterance. In
the more general continuous case, e.g., a leaky integrator
could be used to extract time-depending secondary feature
values.
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In the experiments below, a set of 60 secondary fea-
tures is optimized over 2000 iterations. Due to the non-
deterministic nature of the substitution rule (random start
set and randomly chosen substituting secondary feature),
training is carried out eight times per configuration.

3.4. Results

The results are summarized in Tab. I. All three types of
secondary feature are suitable for ASR. Gabor features
perform best in CCITT noise and on clean test material
and comparable to sigma-pi cells for babble and ICRA 7
noise. Fuzzy logic secondary features lead to an unaccept-
able high error for clean test data and also to the highest
word error rate (WER) values in most other cases. The ro-
bustness of fuzzy logic features can be increased by using
min-max normalization instead of logistic function (Tab.
II), but the error rate for clean data remains too high also
in that case.

Table I. Word error rates (WER) in percent for different SNR (in dB)
and noise conditions. ’train’ indicates the training material, while
’clean’ refers to the unmixed test data. Mean and standard devia-
tion (in brackets) over 8 training runs per condition are given for
sigma-pi cell, fuzzy logic (logistic normalization) and gabor sec-
ondary features.

cond. SNR Sigma-pi Fuzzy (logistic) Gabor

train 0.5 (0.2) 1.0 (0.2) 0.4 (0.2)

clean 2.0 (0.3) 3.3 (0.6) 1.1 (0.2)
ccitt 25 4.9 (1.2) 9.0 (2.7) 5.1 (1.2)

20 11.7 (2.0) 22.2 (7.4) 11.1 (3.1)
15 35.3 (4.0) 47.9 (10.9) 27.5 (8.6)
10 67.1 (4.8) 72.3 (6.1) 52.7 (9.9)
5 82.8 (5.2) 83.5 (3.4) 72.0 (5.5)
0 88.5 (1.7) 88.2 (1.2) 82.3 (3.8)

-5 89.8 (0.3) 89.6 (0.5) 87.2 (2.3)

babble 25 3.6 (0.7) 8.2 (0.8) 4.5 (1.0)
20 6.3 (1.6) 16.3 (2.3) 8.6 (2.7)
15 16.9 (3.5) 33.5 (7.8) 22.2 (7.4)
10 43.0 (4.7) 54.5 (11.2) 45.8 (10.5)
5 68.1 (4.6) 72.0 (7.8) 68.0 (9.0)
0 82.4 (3.9) 82.1 (3.4) 81.3 (4.8)

-5 87.4 (2.4) 87.5 (2.3) 87.5 (2.1)

icra7 25 3.6 (0.7) 7.4 (1.1) 4.0 (1.1)
20 6.6 (1.3) 15.1 (3.4) 9.0 (4.0)
15 17.2 (4.1) 30.7 (7.1) 23.5 (11.7)
10 44.5 (6.3) 51.6 (9.8) 46.1 (18.3)
5 70.9 (3.2) 70.5 (8.0) 66.4 (17.5)
0 83.0 (2.5) 80.9 (5.3) 78.3 (12.8)

-5 87.9 (1.9) 86.4 (2.7) 84.3 (7.4)

Gabor receptive fields yield lower WER values than
sigma-pi cells in most cases. This is remarkable, because
the Gabor secondary features are of 1st order, while the
other two variants are 2nd order features. The variance of
performance over different training runs is relatively high,
especially for Gabor receptive fields in the case of additive
speech-like modulated noise (ICRA 7). As the optimiza-
tion is carried out on clean training data, only in some
cases the secondary features seem to be affected by the
modulation in the noise signal (which is kept frozen for
all examples). In Tab. II WER for the most robust single
set of Gabor features out of eight sets are shown. The large

variance of WER in noise between the eight sets of opti-
mized Gabor secondary features indicate, that that some
sets of Gabor receptive fields contain features which are
less suitable in noisy conditions. Multi-condition training
is likely to increase the robustness by selecting only noise-
robust type of features into the optimal set.

Table II. Word error rates (WER) in percent for different SNR (in
dB) and noise conditions. ’train’ indicates the training material,
while ’clean’ refers to the unmixed test data. Mean and standard
deviation (in brackets) over 8 training runs per condition are given
for fuzzy logic units and Gabor receptive fields - both with min-max
normalization of primary feature vectors. The most robust single set
of gabor features without normalization (’Gab. best’) is compared
to the Aurora 2 baseline system (’Aurora’), which is given as a ref-
erence.

cond. SNR Fuzzy (min-max) Gabor (min-max) Gab. best Aurora

train 0.5 (0.1) 0.3 (0.1) 0.5 0.3

clean 3.7 (0.6) 1.7 (0.3) 1.1 0.3
ccitt 25 4.6 (1.0) 3.8 (0.8) 4.6 1.7

20 6.8 (1.4) 5.8 (1.8) 7.6 3.9
15 12.9 (2.9) 12.0 (4.1) 16.7 9.7
10 29.2 (6.2) 26.8 (8.5) 37.9 24.1
5 51.8 (9.2) 50.1 (11.5) 66.4 73.8
0 69.8 (8.2) 73.0 (10.0) 80.5 90.9

-5 81.3 (5.7) 85.4 (5.3) 85.0 90.6

babble 25 4.4 (0.6) 3.4 (0.5) 3.4 1.2
20 6.1 (1.0) 5.2 (1.1) 4.8 2.3
15 10.7 (1.1) 10.3 (2.5) 9.0 4.1
10 21.9 (2.5) 22.4 (5.2) 22.7 14.1
5 42.5 (5.1) 43.4 (5.5) 46.6 42.0
0 65.9 (6.6) 64.9 (6.0) 70.3 72.6

-5 82.0 (4.9) 80.0 (3.5) 83.0 83.5

icra7 25 4.6 (0.9) 2.8 (0.5) 2.8 1.1
20 7.6 (1.4) 4.7 (0.9) 3.8 1.6
15 14.6 (2.2) 9.4 (2.8) 7.4 4.0
10 28.3 (3.9) 20.3 (6.0) 15.5 14.8
5 48.0 (4.6) 38.9 (7.6) 30.2 31.3
0 67.8 (2.6) 59.8 (5.3) 50.7 54.8

-5 81.3 (2.3) 75.6 (4.9) 69.1 83.7

As a reference, the Aurora 2 baseline system [20] has
been applied to the same classification task. It is composed
out of the WI007 (mel-cepstrum) front end and a refer-
ence HTK recognizer. The results obtained by this Hidden
Markov Model classifier are presented in Tab. II and com-
pared to improved Gabor secondary features.

Both, the best Gabor set of secondary features and Ga-
bor secondary feature set with min-max normalization of
primary feature values, show a comparable robustness to
the aurora baseline system on the given classification task.
There is a trend for the aurora system to yield lower WER
for clean test data and high SNR values of over 10dB while
the Gabor secondary features seem to be superior in more
unfavorable conditions of low SNR values. It should be
stressed, that the classifier used here for the secondary
features is as simple as possible with a summation over
the whole utterance followed by a linear neural network.
Therefore, an increase in performance can be expected
when combining time-dependent secondary features, e.g.,
Gabor receptive fields, with a more sophisticated classi-
fier.
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4. Discussion

The proposed extensions to the secondary feature ap-
proach are all suitable for for robust isolated word recogni-
tion. Especially the Gabor receptive field method seems to
be worthwhile to be investigated further. Gabor secondary
features combined with a simple linear classifier show a
comparable performance to the state-of-the-art Aurora 2
HMM system. They can be assumed to have a large po-
tential. Earlier studies indicate, for example, an increase
in robustness equivalent to a five to eight dB effective gain
in SNR by using noise reduction pre-processing schemes
with PEMO primary features [16]. Classification perfor-
mance should increase further by replacing the simple lin-
ear network classifier with a state-of-the-art HMM back
end and/or adding spectro-temporal features as another
feature stream in a multi-stream system.

Acknowledgement

The author would like to thank Volker Hohmann and
Birger Kollmeier for their substantial support and con-
tribution to this work. Thanks also to Christian Kaern-
bach for stimulating conversation and his idea to use fuzzy
logic, to Heiko Gölzer for fruitful discussion about opti-
mization rules.
This work was supported byDeutsche Forschungsgemein-
schaft (Project ROSE, Ko 942/15-1).

References

[1] N. Kanedera, T. Arai, H. Hermansky, M.Pavel: On the relative
importance of various components of the modulation spectrum
for automatic speech recognition. Speech Communication28
(1999) 43–55.

[2] H. Hermansky, N. Morgan: RASTA processing of speech.
IEEE Trans. Speech Audio Processing2 (1994) 578–589.

[3] H. Hermansky, S. Sharma: TRAPS - Classifiers of temporal
patterns. Proc. ICSLP’98, 1998. 1003–1006.

[4] K. Weber, S. Bengio, H. Bourlard: HMM2 - A novel approach
to HMM emission probability estimation. ICSLP, 2000.

[5] T. Gramß, H. W. Strube: Recognition of isolated words based
on psychoacoustics and neurobiology. Speech Communica-
tion 9 (1990) 35–40.

[6] C. Kaernbach: Early auditory feature coding. Contributions
to psychological acoustics: Results of the 8th Oldenburg Sym-
posium on Psychological Acoustics., 2000. BIS, Universit¨at
Oldenburg, 295–307.

[7] R. C. deCharms, D. T. Blake, M. M. Merzenich: Optimizing
sound features for cortical neurons. Science280 (1998) 1439–
1443.

[8] R. De-Valois, K. De-Valois: Spatial vison. Oxford U.P., New
York, 1990.

[9] T. Chi, Y. Gao, M. C. Guyton, P. Ru, S. Shamma: Spectro-
temporal modulation transfer functions and speech intelligi-
bility. J. Acoust. Soc. Am.106 (1999) 2719–2732.

[10] M. Kleinschmidt, V. Hohmann: Perzeptive Vorverarbeitung
und automatische Selektion sekund¨arer Merkmale zur ro-
busten Spracherkennung. Fortschritte der Akustik, DAGA
Oldenburg, 2000. DEGA, 382–383.

[11] M. Kleinschmidt, V. Hohmann: Sub-band SNR estimation
using auditory feature processing. Speech Communication
(2002). Special Issue on Digital Hearing Aids (submitted).

[12] B. C. J. Moore, B. R. Glasberg: Suggested formulae for cal-
culating auditory-filter bandwidths and excitation patterns. J.
Acoust. Soc. Am.74 (1983) 750–753.

[13] International Collegium of Rehabilitory Audiology (ICRA) -
Hearing Aid Clinical Test Environment Standardization Work
Group: ICRA noise signals, version 0.3. CDROM, 1997.
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