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Abstract
To reduce inter-speaker variability, vocal tract length

normalization (VTLN) is commonly used to transform
acoustic features for automatic speech recognition (ASR).
The warp factors used in this process are usually derived
by maximum likelihood (ML) estimation, involving an
exhaustive search over possible values. We describe an
alternative approach: exploit the correlation between a
speaker’s average pitch and vocal tract length, and model
the probability distribution of warp factors conditioned
on pitch observations. This can be used directly for warp
factor estimation, or as a smoothing prior in combination
with ML estimates. Pitch-based warp factor estimation
for VTLN is effective and requires relatively little mem-
ory and computation. Such an approach is well-suited for
environments with constrained resources, or where pitch
is already being computed for other purposes.

1. Introduction

Automatic speech recognition systems must be able to
cope with considerable variation among speakers; major
sources of this inter-speaker acoustic variation are phys-
iological factors such as gender and vocal tract length.
VTLN is a technique for scaling the frequency axis of
acoustic feature vectors so that observations are more sim-
ilar across all speakers. This is especially useful in gender-
independent systems, since on average the vocal tract is
2-3 cm shorter for females than males, causing females’
formant frequencies to be about 15% higher.

The most common method for finding warp factors
for VTLN invokes the maximum likelihood (ML) crite-
rion to choose a warp factor that gives a speaker’s warped
observation vectors the highest probability [1, 2]. The
likelihoods can be computed using the recognizer’s phone
models; alternatively, warp factors can be chosen to max-
imize likelihoods from reference acoustic Gaussian Mix-
ture Models (GMMs).

Other approaches predict warp factors by observing
more direct parameters of speech acoustics, such as for-
mants (resonant frequencies of the vocal tract). The first
and second formants can be modeled by vowel-specific
distributions [3], or the less phone-dependent third for-
mant can be averaged globally [4]. While these might be

good indicators of vocal tract length, accurate formant es-
timation is difficult – especially in noisy signals. In [5],
a warp factor is computed using the ratio of a speaker’s
pitch to a reference value. We believe this approach is
not optimal, since pitch is not directly proportional to vo-
cal tract length. According to [4], formant frequencies
are directly proportional to VTL, so if pitch were directly
proportional to VTL it would also be directly proptional
to F2, which Figure 1 suggests it is not (note that the axes
in Figure 1 do not start at the origin).

This work presents an approach inspired by the cor-
relation between laryngeal size and vocal tract length,
as explored in [6]. During training, a joint distribution
of pitch and warp factors is estimated by accumulating
likelihoods of warped acoustic observations at measured
pitch values. This distribution can be utilized to select a
most probable VTLN warp factor given a speaker’s aver-
age pitch, or as a pitch-based prior for combination with
the likelihood scores used in ML warp factor estimation.

The process of selecting warp factors can be reduced
to pitch extraction, which will generally reduce compu-
tation and memory resources needed for VTLN. Using
pitch-based warp factors for VTLN provided substantial
improvement over a system with no VTLN, and the accu-
racy approached that of the more computationally inten-
sive ML-estimated warp factors.

2. ML warp factor estimation

The warp factorα used in VTLN can be estimated through
a maximum likelihood procedure as follows [1]: given
an acoustic modelλ, for each speakeri choose the op-
timal warp factorα̂i to maximize the likelihood of that
speaker’s frequency-warped observation vectorsXα

i :

α̂i = arg max
α

P(Xα
i |λ,Wi) (1)

In the equation above,Wi are the corresponding tran-
scriptions; these are unavailable during testing, thus it is
necessary to haveWi hypothesized by an earlier decoding
of the unwarped observation vectors. The optimal warp
factor is selected by searching over a range ofα values,
maximizing the probability of the warped utterancesXα

i

aligned toWi using the modelλ (generally HMMs).
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Figure 1: Frequencies of the second formant F2 plotted
against a speaker’s average pitch F0, for all segments of
the vowel /iy/ in the TIMIT corpus. Data from [6].

More efficient procedures for estimating warp fac-
tors eliminate the need for full recognition passes and
rescored alignments. Acoustic likelihoods can be com-
puted using a mixture of multivariate Gaussians to model
generic speech, instead of HMM temporal modeling. Warp
factor selection can be moved entirely into the front-end
[2], with a reference GMMM to assign likelihoods of
warped utterance frames:

α̂i = arg max
α

P(Xα
i |M) (2)

3. Pitch-based warp factor estimation

There is a correlation between a speaker’s average pitch
and the length of his or her vocal tract [6]. In general,
both are dependent on the overall physical size of the
speaker. Larger people are generally larger in all dimen-
sions, and thus tend to have not only a longer vocal tract
but also a wider glottis and thicker vocal folds. This can
greatly affect speech characteristics: Figure 1 illustrates
this correlation, plotting the second formant for a given
vowel segment in relation to the speaker’s average pitch.

Pitch-based warp factor estimation simply requires a
conditional probability P(α|F0). We associate a single
value of F0 to each speaker:fi is considered the mean
pitch over speakeri’s voiced frames. Given the observed
pitch F0 = fi, a speaker’s optimal warp factor is found:

α̂i = arg max
α

P(α|fi) (3)

3.1. Modeling P(α|fi) from training data

To calculate the conditional probability of a particular
α = a, we utilize the joint distribution:

P(a|fi) =
P(fi, a)

∑

α P(fi, α)
(4)

The joint probability can be approximated during training
by summing indicator functions to get counts:

P(f, a) ≈

∑

i Ii(f, a)
∑

i,F0,α Ii(F0, α)
(5)

A simple procedure counts one(f, a) observation per
speaker. Unlike pitch, the speaker’s warp factor is not di-
rectly observable from data; we might use the warp factor
α̂i selected by the ML methods in the previous section.
Then a joint observation would be counted as

Ii(f, a) =

{

1, if f = fi anda = α̂i

0, otherwise
(6)

In practice, the training data is too sparse to construct
a smooth distribution using just one joint observation per
speaker. So we chose a more robust solution, basing
counts on the observation likelihoods of a speaker’s warped
utterances. We used the GMM likelihoods, as in Eq. (2):

Ii(f, a) =

{

kiP(Xa
i |M), if f = fi

0, otherwise
(7)

The coefficientski ensure thatIi is normalized so that
every training speaker is counted equally:

1 =
∑

f,a

Ii(f, a) = ki

∑

a

P(Xa
i |M) (8)

Figure 2 depicts the conditional probability of warp
factors given pitch (Eq. 4) which was trained for our ex-
periments. For smoothness, a zero-phase ten-point mov-
ing average filter was applied along the F0 dimension.

3.2. Combination of pitch-based and ML estimates

We also tried combining Eqs. (2) and (3), selecting warp
factors using a maximuma posterioricriterion:

α̂i = arg max
α

kiP(Xα
i |M) · P(α|F0) (9)

Note that the terms are unweighted; it would also be
possible to set interpolation weights using held-out data.
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Figure 2: The conditional probability P(α|F0).

4. Experiments and results

Experiments were devised to compare the performance of
systems using no VTLN, ML warp factor estimation, and
pitch-based warp factor estimation. The OGI Numbers95
corpus, with a vocabulary of 80 words, was suitable for
these tests due to the wide range of speakers; about 3000
training speakers (3 hours) and 1000 test speakers (1 hour)
were selected from the corpus.

These systems were based on SRI’s DECIPHER rec-
ognizer [7], where the front-end used 39 mel-cepstral fea-
tures processed with mean and variance cepstral normal-
ization (CN). Feature warping for VTLN was implemented
with a piecewise linear scaling of the filterbank frequen-
cies1. Transcripts of the training set were used to estimate
a bigram language model, and the decoder was run in a
one-pass configuration generating 1-best hypotheses. All
systems described in this paper were gender-independent.

Table 1 displays the results of these experiments. To
observe the effects due to the amount of speech data used
in normalization, we tried VTLN and CN in both a per-
utterance and per-speaker scheme (respectively, an aver-
age of 1.6 s and 3.3 s of data). The baseline systems in
the first row used only CN and no VTLN (i.e.α = 1).

For pitch tracking, we used the ESPS getf0 program
[8]. We quantized F0 as 251 values from 50 to 300 Hz,
and warp factors as 16 values from 0.70 to 1.30. Pitch-
based warp factors were selected as in Eq. (3).

A contrastive system used DECIPHER’s ML warp
factor estimation, calculating acoustic likelihoods witha
frame-level Gaussian mixture model (cf. [2] and Eq. (2)).
The reference GMM was iteratively estimated from the
training set, and warp factors were considered in the same
range as with pitch-based estimation.

Finally, we tried a system that combined pitch-based
and ML estimates, as described in Section 3.2.

1The SRI system defines warp factors contrary to the standard con-
vention, scaling filterbank frequencies by the inverse:1/α.

Warp factor Normalized Normalized
estimation per-utterance per-speaker

None 6.5 5.6
Pitch-based 5.2 4.7
ML 5.0 4.5
Combined 4.7 4.5

Table 1: Experimental results (WER %)

5. Discussion

5.1. Improvement in recognition accuracy

VTLN with pitch-based warp factor estimation is an ef-
fective method of speaker normalization: these experi-
ments demonstrate a substantial reduction in word error
rate compared to a system with no VTLN. Thus pitch was
useful for estimating warp factors, even when averaged
over fairly short utterances. Presumably, this was aided
by the fact that the Numbers95 task does not elicit much
intra-speaker prosodic pitch variation.

The performance of this novel approach was almost
as good as estimation of warp factors with the usual ML
method. The combined system appeared to give improved
results, but only in the scenario with limited normaliza-
tion data, which is intuitive if we consider the pitch infor-
mation in the combined system as a prior which becomes
less useful when there is more data available to the ML
estimation. This could benefit applications where it may
not be feasible to perform speaker normalization, such as
VTLN, on more than a per-utterance basis.

All systems improved when the amount of normal-
ization data was increased from a per-utterance to a per-
speaker basis. In the case of ML estimation of warp fac-
tors, it is important to have enough observation data avail-
able. Consider Figure 3, which displays the acoustic like-
lihoods from the reference GMM used for ML warp fac-
tor estimation. These distributions differed per-utterance,
so maximum-likelihood warp factors would vary consid-
erably. Using that speaker’s three utterances together, the
per-speaker likelihoods became less noisy.

5.2. Resource usage and implementation costs

There is increasing interest in deploying ASR on plat-
forms that have limited available memory and computing
power. With this in mind, reducing the computation and
memory required for VTLN is a great advantage.

For pitch-based estimation, computing the warp fac-
tor involves little more than pitch extraction; in our ex-
periments, this proceeded nearly five times faster than
computing warp factors with the ML approach. Disre-
garding algorithmic changes which trade thoroughness
for speed (such as a golden-section search, or grid search
over smaller ranges), we compared against one of the
most efficient ML estimation procedures. So it is plau-
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Figure 3: Normalized likelihoods (vertical axes) of ob-
served data for a range of warp factors (horizontal axes).
The first three plots are for individual utterances from
a single speaker. The bottom-right corresponds to that
same speaker’s three utterances taken together.

sible that pitch-based estimation is the faster approach,
generally. Furthermore, if the recognition system already
performs pitch extraction for other purposes (e.g., for noise-
robust feature extraction [9], or various applications of
prosodic modeling [10]) then pitch-based warp factors
enable VTLN at a trivial cost.

The memory requirements for pitch-based warp fac-
tor estimation are also small. Whereas an ML system
may require storage of a reference acoustic model for cal-
culating warp factors (DECIPHER implements a 128-
Gaussian mixture model), a pitch-based system only re-
quires storage of the most probable warp factor for each
pitch. This relation could also be approximated by a lin-
ear regression: in previous work [6] we estimated warp
factors as a function of pitch, with a best-fit line charac-
terized by just two parameters: slope and intercept.

6. Conclusion

This paper presents an effective procedure for VTLN warp
factor estimation, exploiting the correlation between pitch
and vocal tract length. The reduced resource require-
ments of this novel approach make it an appealing alter-
native for VTLN on constrained architectures. Our work
also suggests that a pitch-based prior can be used to im-
prove ML warp factors estimated from scarce data.

We have created a webpage accompanying this pa-
per, which provides Matlab code and additional discus-
sion, and may be used for new information in the future:
www.icsi.berkeley.edu/Speech/papers/eurospeech05-vtln
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