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ABSTRACT

We have been focusing on improving pronunciation models for
automatic transcription of television and radio news reports by
modeling phone, syllable, and word pronunciation distributions
with decision trees. These models were employed in two sep-
arate sets of experiments. First, decision trees facilitated selec-
tion of word pronunciations derived automatically from data for
use in a standard speech recognizer dictionary. We have seen a
small but significant improvement with these automatically con-
structed dictionaries in our one-pass decoding system. In a sec-
ond set of experiments, we allowed decision tree models to de-
termine the probability of word pronunciations dynamically, de-
pendent on the linguistic context of the word during recognition.
Dynamic models provided an additional insignificant decrease
in error, but improvements were focused within the spontaneous
speech portion of the test set.

1. INTRODUCTION

One goal of recent research within the ASR community has been
to provide systems with better pronunciation models, particu-
larly in hopes of improving performance on spontaneous speech
tasks such as Switchboard and Call Home. We are working with
the Broadcast News (BN) database, a collection of news reports
and interviews in both planned and spontaneous focus condi-
tions. In this study, we examine the effects of pronunciation
modeling across the focus conditions in this corpus.

Our approach, like that of many others, is to automatically
derive new pronunciation models using the acoustic models of
our existing recognizer. In essence, we allow the acoustic mod-
els to suggest new candidate baseforms via phone recognition. It
is debatable, however, whether such a source of pronunciations
is linguistically defensible. Phonetic transcriptions from these
systems often do not match linguistic expectations; thus, a sys-
tem that uses hand-transcriptions (e.g.,[10]) as a seed may per-
form better. On the other hand, from an engineering standpoint,
pronunciation models are the interface between acoustic models
and word sequences: if acoustic conditions (e.g.,telephone ver-
sus studio recording environments) induce regular variations in
the output of acoustic models, then it may be useful to capture
these in the pronunciation model. This implies the dependence
of an automatically-derived dictionary on a particular acoustic
model.

Since pronunciations suggested by a phone recognizer are
often linguistically “noisy,” one can use the overall statistics of
the variations in phone recognition to filter these automatic tran-
scriptions, discarding anomalous events.Smoothed phone recog-
nition [13] attempts to the generalize the generation of new pro-
nunciations, using classifiers (e.g.,decision trees [1] or neural
networks [8]) to constrain alternative pronunciations proposed
by the phone recognizer.

In a staticdictionary, pronunciation probabilities are fixed
before recognition. However, a derived pronunciation may not
be applicable in all contexts. In fast American English, for ex-
ample, instead of the canonical pronunciation forinteresting,
[ih n t er eh s t ih ng] , the reduced pronunciation
[ih n axr s t en] may be observed more frequently; in
slower speaking rates the latter pronunciation may not be ob-
served at all. Recognizers shoulddynamicallychange pronun-
ciation models based on the linguistic context [11]. Previous
examples of dynamic pronunciation models [13, 10] have de-
termined pronunciations by modeling phone variations; here we
study models of syllable and word pronunciations, incorporating
an expanded set of context factors that influence pronunciation
transcriptions [5].

This paper focuses on several dimensions of automatic pro-
nunciation learning. First (and foremost), we examine differ-
ences between the static and dynamic evaluation of induced dic-
tionaries. We also investigate model performance with changes
in the amount of training data and associated acoustic models.
Finally, for dynamic dictionary rescoring, we study effects of
modeling syllables versus words, as well as the effects of em-
ploying different sets of contextual features.

2. STATIC DICTIONARIES

The first goal of our study was to build a good static dictionary,
both for use in theSPRACHBroadcast News system [2], and also
to ensure a fair comparison against any dynamic techniques. In
addition, dynamic dictionaries are used to rescore lattices orn-
best lists of hypotheses; constructing lattices orn-best lists re-
quires the best possible static dictionary in a first decoding pass.

In this section, we describe experiments comparing the 1996
ABBOT system 65K vocabulary dictionary [3] to an automati-
cally augmented dictionary used in theSPRACHsystem. Since
automatic pronunciation techniques depend on the amount of
data available and the acoustic models used, we also provide
comparisons to a new static dictionary (BN97+98) induced from
twice the training data and improved acoustic models.

2.1. Dictionary construction

The algorithm for smoothed phone recognition has been thor-
oughly documented elsewhere ([13, 6],inter alia); an outline
of the algorithm is shown in Figure 1. To learn the variation
between canonical phones (represented by black circles) and al-
ternatives provided by the phone recognizer (mixed black and
grey circles) we use decision trees (d-trees). In the experiments
here, the context provided to the d-trees consisted of the iden-
tity, articulatory manner and place, and syllabic position of each
baseform phone and its immediate neighbors. The d-trees were
then used to generate pronunciation networks to be aligned with
acoustic models, producing a smoothed transcription.
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Figure 1: Algorithm for generation of new dictionaries using smoothed phone recognition

In our initial experiments [6], we used an acoustic model
from an intermediate stage in theSPRACH system’s develop-
ment, the best model available at the time. We combined the
1997ABBOT PLP-based recurrent neural network (RNN) context-
independent phone classifier with a 4,000 hidden unit multi-layer
perceptron (MLP) using modulation-filtered spectrogram (MSG)
features. Both networks were trained only on the 1997 BN train-
ing data. We refer to this combined acoustic model as A-Model
I. To build the dictionary for theSPRACHsystem, we used A-
Model I acoustics to perform smoothed phone recognition on
the 100-hour 1997 BN training set.

Since the 1998 evaluation, we have retrained the pronunci-
ation models using an improved acoustic model (A-Model II)
that combines a PLP-based RNN, and two 8,000 hidden unit
MLPs, trained on PLP and MSG features, respectively. All 200
hours of the 1997 and 1998 BN training sets were transcribed
using the smooth phone recognition procedure; the resulting dic-
tionary is labeled “BN97+98 training” in these studies.

2.2. Results I: Changing the acoustic model

To encourage fast testing, most of our experiments use a half-
hour subset of the 1997 Broadcast News Evaluation test set (la-
beled Hub-4E-97-Subset). In Table 1, the left-hand column of
results describe the experiment reported in [6]: the augmented
SPRACH98 dictionary outperforms the baselineABBOT96 dic-
tionary. While this difference is not large, we have found that it
is consistent across different test conditions.

One such change in test conditions was the inclusion of
the improved acoustic model (A-Model II), as well as a change
in decoder. The experiments with A-Model I also utilized the
NOWAY time-synchronous stack decoder from our colleagues in
Sheffield [9]; the results in the right column use theCHRONOS

“time-first” decoder from our partners at Softsound [12]1. The
improvement from theSPRACHdictionary (0.6%) is unchanged
with the new acoustic model and decoder. The automatically
derived pronunciation model is at leastsomewhatindependent
of the acoustic models from which they were derived; therefore,

1We have used two different decoders in our experiments be-
cause theCHRONOSdecoder is an order of magnitude faster than
NOWAY , but has the shortcoming of only producing a single best
hypothesis, not a lattice of hypotheses. TheCHRONOSdecoder
tends to outperformNOWAY by a few tenths of a percent with the
particular parameter settings we are using.

Acoustic Model/Decoder
A-Model I A-Model II

Dictionary NOWAY CHRONOS

ABBOT96 (baseline) 27.5 24.0
SPRACH98 (BN97 training) 26.9 23.4

BN97+98 training - 23.2

Table 1: Word Error Rates for Hub4E-97-Subset

one does not have to retrain the pronunciation models every time
the acoustic models are changed. Nonetheless, the dictionaries
are probably still dependent on the corpus and overall recogni-
tion system.

2.3. Results II: Adding pronunciation training data

Doubling the amount of pronunciation training data appears to
have a very small effect. Comparing the last row of Table 1
(BN97+98 training) to theSPRACH98 results shows only a 0.2%
absolute gain. We used these three dictionaries to decode the full
1997 Hub4E evaluation set usingCHRONOSand A-Model II (Ta-
ble 2), and found that the improvement pattern for the full set is
very similar to that of the subset, with BN97+98 only just edging
out SPRACH98. The improvement over theABBOT96 dictionary
is significant atp < 0:05.

It is interesting to note the focus conditions for which im-
provements are shown in the full evaluation set. ComparingAB-
BOT96 to BN97+98, we see decreases in word error rate in al-
most every category (except F3, speech with background music),
leading to a significant improvement overall. Most of this gain
was obtained from training with the first half of the data; be-
tweenSPRACH98 and BN97+98, no difference was seen in the
planned and spontaneous studio focus conditions (F0 and F1),
from which the majority of the test data is drawn. The BN97+98
dictionary was marginally better in most of the non-studio con-
ditions (F2-FX), although these differences are not statistically
significant. In summary, both derived dictionaries helped in all
focus conditions; the additional training data may have just cap-
tured variation in the acoustic model caused by more difficult
acoustic environments.



Focus Conditions
Dictionary Overall F0 F1 F2 F3 F4 F5 FX

ABBOT96 (baseline) 23.0 14.6 24.4 31.8 31.3 27.0 22.9 35.4
SPRACH98 (BN97 training) 22.4 14.2 23.6 31.4 30.7 25.3 23.2 35.1

BN97+98 training 22.3 14.2 23.6 30.9 31.3 25.1 22.4 35.1

Table 2: Word Error Rates for Hub4E-97, using A-Model II. The focus conditions for Broadcast News include Planned Studio Speech
(F0), Spontaneous Studio Speech (F1), Speech Over Telephone Channels (F2), Speech in the Presence of Background Music (F3),
Speech Under Degraded Acoustic Conditions (F4), Speech from Non-Native Speakers (F5), All Other Speech (FX).

3. DYNAMIC PRONUNCIATION RESCORING

We have shown previously [5] that pronunciations in the Switch-
board corpus depend heavily on other factors in addition to pho-
netic context. In particular, the frequency of a word influences
the extent to which reduction processes are correlated with speak-
ing rate: more frequent words have more variation at high rates
of speech. Syllabic structure also plays an important part in de-
termining which phones are more likely to vary; coda consonants
are much more likely to be non-canonical than onset consonants.
Others ([4],inter alia) have found that modeling tuples of words
(multiwords) has a beneficial effect.

These studies suggest that an orientation towards larger
linguistic units (i.e., syllables or words) may prove beneficial
in pronunciation modeling. This is easy to implement in our
paradigm; instead of d-trees modeling one phone each, they now
model one syllable or one word each. One can integrate more
forms of context in syllable or word trees; for instance, in a
phone tree, the identity of a neighboring word probably has little
meaning.

3.1. Building syllable and word trees

In our initial experiments, we built 550 word models (BN97
word trees) from the smoothed transcriptions obtained by align-
ing A-Model I to the 1997 training set, as in the training of the
SPRACH98 dictionary (Figure 1, step 5b). The word d-trees used
the phonetic features from Section 2.1 and the surrounding word
identities as a set of primarysegmental contextfeatures. Addi-
tional context features included word length, several estimates of
speaking rate, and the trigram probability of the word. Slightly
less than half of the trees in each case used a distribution other
than the prior (i.e.,were grown to more than one leaf).

We also trained roughly 800 d-trees based on syllable dis-
tributions (BN97 syllable trees). Each word was given a sin-
gle canonical syllable transcription, so that words with similar
syllabic-internal pronunciation variations in theABBOT96 dic-
tionary shared the same syllable model. In addition to the fea-
tures found in the word trees, syllabic tree context features in-
cluded the lexical stress of the syllable, position within the word,
and the word’s identity.

As in our static dictionary experiments, when A-Model II
became available we regenerated both sets of trees using the
1997 and 1998 training sets (BN97+98 trees), providing 1300
syllable and 920 word classifiers. We also trained a separate set
of trees on the segmental context features alone, to determine the
influence of secondary features such as speaking rate.

Dictionary 100-best lattice

SPRACH98 (baseline) 26.7% 27.0%
BN97 Word trees 26.5% 26.6%
BN97 Syllable trees 26.3% 26.4%

Table 3: Hub4E-97-Subset Word Error Rates for dynamic
rescoring of tree models using A-Model I.

3.2. Results III: Lattice versus N-best rescoring

Starting from A-Model I and theSPRACH98 dictionary, we gen-
erated lattices for the Hub4E-97-Subset test set, and also de-
coded the lattices into a list of the 100 best hypotheses for each
segment.N -best lists were particularly easy to rescore in our
paradigm: each hypothesis was expanded into a pronunciation
graph, and then aligned to the acoustics (as in Figure 1, step 5),
resulting in a new acoustic score for the hypothesis. The hy-
potheses were then re-ranked after adding in the language model
scores.

We also integrated the dynamic pronunciation model ear-
lier in the search by rescoring lattices [7]. To do this, a de-
coder must determine the pronunciations of words on-the-fly.
We implemented an acoustic-rescoring lattice decoder (JOŚE2);
the search algorithm is a typical stack-based lattice decoder, with
one minor difference. In a regular time-synchronous stack de-
coder, hypotheses (word sequences) are extended by a word at
every time step; each new hypothesis is inserted into a stack cor-
responding to its particular end time. InJOŚE, before inserting
an hypothesis extension, we rescore the penultimate word with
the dynamic pronunciation model, using the word sequence (and
associated phonetic and syllabic information) as the context for
the d-trees.

In both paradigms, we found that averaging the rescoring
model with the original lattice acoustic score in a multistream-
like approach improved results. We did not tune the combination
parameter, but instead weighted each acoustic score evenly.

Since different decoders are used in each paradigm, we
tested the influence of the decoding process by recomputing the
baseline scores. Then-best decoder and lattice decoder were run
with the SPRACH98 static dictionary as a calibration (Table 3,
line 1). The results in both cases were similar to those of the
first-pass decoding (26.9% word error rate (WER)).

As Table 3 shows, the dynamic decoding of trees gave us an
insignificant increase in accuracy over our improved static dic-
tionary, with syllable trees performing the best. The difference
between lattice decoding andn-best rescoring seems to be min-
imal in this test. As opposed to the across-the-board improve-
ments seen with theSPRACH98 static dictionary in most focus
conditions, we found that the 0.4% difference betweenn-best
decoding of the baseline and the syllable trees was accounted
for almost completely by a 1.4% improvement in WER in the
spontaneous broadcast speech focus condition, and a 0.9% im-
provement for speech with background music.

3.3. Results IV: Changing the acoustic model

We regeneratedn-best lists for Hub4E-97-Subset using A-Model
II and the BN97+98 static dictionary, and rescored the lists us-
ing both the BN97 and BN97+98 trees. Table 4 shows that none
of the trees made a significant difference in performance. How-
ever, we can see some general trends across the experiments:
first, BN97 trees performed worse than both the baseline and

2So named becauseNOWAY produces lattices for it
beforehand.



Dictionary Overall WER F0 F1 F2 F3 F4 F5 FX

Static: BN97+98 (baseline) 23.6 13.5 23.3 34.5 29.2 26.6 16.8 44.4
Word trees: BN97 24.0 13.5 25.2 34.7 26.9 27.1 17.6 45.0

BN97+98 All Features 23.4 13.2 23.0 34.6 27.8 26.8 17.6 44.6
BN97+98 Segmental Context 23.3 13.5 22.4 34.4 27.2 26.2 17.6 44.8

Syllable trees: BN97 24.1 13.4 23.5 36.7 29.5 27.1 16.0 45.7
BN97+98 All Features 24.0 13.5 24.2 34.6 28.9 27.2 19.3 46.1
BN97+98 Segmental Context 23.5 13.5 22.8 33.9 28.1 27.1 16.0 45.4

Table 4: Hub4E-97-Subset WER for dynamic evaluation of tree models using A-Model II.

BN97+98 trees. This suggests that dynamic models may be
more susceptible to changes in the acoustic model, since the
BN97 trees were trained using A-Model I. Also, in a reversal of
our earlier experiment, the BN97+98 word trees outperformed
the syllable trees. The increase in training data, which allowed
for greater coverage of the corpus, may have contributed to this
result.

When non-segmental features like speaking rate and tri-
gram probability were removed from the trees, performance im-
proved. We have highlighted the lowest error rate in each focus
condition across all seven experiments; the lowest error in five of
seven focus conditions occured with a segmental context model.
Our measures of speaking rate and word predictability may not
be robust enough for use in a dynamic model.

Finally, as in our initial experiments, the modest improve-
ments of the dynamic models (e.g.,BN97+98 segmental word
trees) were concentrated in the non-F0 portions of the corpus,
although, with the lack of statistical significance, we do not wish
to make any strong claims.

4. CONCLUSIONS

We have experimented with static and dynamic pronunciation
models that use decision trees at various representational lev-
els. Automatically learned static dictionaries from decision tree
smoothed phone recognition gave roughly 3% relative improve-
ment on the Broadcast News task; this result was used in the
SPRACH Broadcast News system for the 1998 Hub4E evalua-
tion. The learned static dictionaries seem to be somewhat robust
to changes in decoding conditions. Experiments using additional
training data showed diminished returns.

In our experiments with dynamic evaluation of syllable and
word tree models, small gains were seen over static dictionaries;
these models may be capturing some of the pronunciation varia-
tion in the spontaneous portion of the BN corpus. Unlike static
dictionaries, performance of these models are more dependent
on the acoustic model used. Questions remain about the robust-
ness of speaking rate and word predictability features, as trees
only using segmental context outperformed trees using all fea-
tures. In future work, we plan to investigate the effectiveness of
individual features in hopes of improving the dynamic model.
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